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Abstract—Novel view synthesis (NVS) from a sparse set of
multi-view images has long been a challenging task in computer
vision community. However, with the advent of Neural Radiance
Field (NeRF) and 3D Gaussian Splatting (3DGS) technologies,
a remarkable progress has been made in NVS and 3D scene
representation. Especially, recent progress in 3DGS has unlocked
new possibilities across various domains such as Augmented-
Reality (AR)/Virtual-Reality (VR), sports, entertainment, com-
puter graphics, and 3D modeling, sparking extensive research
into its practical applications. In this article, we highlight the
latest advances in 3DGS works focusing on representation,
optimization, and compression. The goal of this paper is to
explore state-of-the-art (SoTA) 3DGS works, offering insights
into emerging trends and future directions in NVS and 3D scene
representation.

Index Terms—Novel View Synthesis (NVS), Neural Radiance
Field (NeRF), 3D Gaussian Splatting (3DGS), 3D Representation

I. INTRODUCTION

Reconstruction of 3D scenes and novel view synthesis
(NVS) from a sparse set of images captured form multiple
viewpoints have always been topics of great interest among
computer vision community. Photogrammetry, for example, is
a classical method to reconstruct a 3D point cloud from a
set of images. However, this method is not very robust and
requires a large amount of images for dense 3D reconstruction.
Later, Neural Radiance Field (NeRF) [1] based methods are
developed to reconstruct highly robust and photo-realistic
3D scenes. However, these methods rely on implicit neural
representation to learn volumetric radiance field through deep
neural networks and therefore, are very slow to train and
render. Hybrid methods like InstantNGP [2] improved the
training and rendering speed with multi-resolution hash-grid
based explicit scene representation and neural network based
scene decoding. These hybrid methods achieved excellent
reconstruction quality but did not reach real-time rendering.

Recently, 3D Gaussian Splatting (3DGS) has emerged as
a new paradigm of learning radiance field using a set of
3D Gaussians optimized via differentiable rendering. Despite
its recent introduction, 3DGS has rapidly gained attention in
computer vision community, due to its remarkable rendering
speed and quality. Building upon prior 3DGS surveys [3]–
[6], we review more recent trends and categorize them in a
structured manner aligned with an end-to-end system design
for deploying 3DGS across diverse applications. We focus on
the following three key areas:

1) Representation: This category addresses adaptations of
3DGS representation to various dimensionalities, primi-
tive functions, and auxiliary attributes, aimed at enhanc-
ing representation capabilities and enabling advanced
manipulation of 3D scenes.

2) Optimization: To further exploit the capability of 3DGS
model, several techniques have been proposed to opti-
mize the model parameters. In this category, we discuss
the optimization techniques to address the challenges in
initialization, adaptive density control, anti-aliasing, and
regularization.

3) Compression: Exceptional rendering quality of 3DGS
comes with the cost of generation of a large number
of 3D Gaussian primitives. Efficient compression is
required for practical deployment. We examine those
research trends through the lens of 3DGS parameter
reduction, compact representation, and 2D/3D codec-
based compression.

II. FUNDAMENTALS OF GAUSSIAN SPLATTING

3D Gaussian Splatting [7] represents a volumetric scene
as an ensemble of 3D Gaussians. Each 3D Gaussian is
characterized by its position µ ∈ R3, rotation in quaternion
r ∈ R4, scaling s ∈ R3, opacity α ∈ R1, and color represented
in Spherical Harmonic (SH) coefficients c ∈ R3×16, resulting
in a total of 59 attributes per Gaussian. Novel view rendering is
achieved by first projecting these 3D Gaussians into 2D image
space based on the camera’s view transformation matrix. For
each pixel on the rendering plane, the final color is computed
through alpha blending as follows:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (1)

where N denotes the set of Gaussians intersecting the ray,
ordered along ray direction. Here, ci, and αi are the color and
opacity of the i-th Gaussian, and the cumulative transmittance
term accounts for contributions from earlier Gaussians in
the compositing process. This rendering is computationally
efficient, supporting parallel alpha blending for each ray and
projecting only camera-visible Gaussians, enabling real-time
rendering. During training, a differentiable renderer computes
gradients to optimize the Gaussian attributes, ensuring that the
representation aligns accurately with the multi-view training
images.
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III. REPRESENTATIONS

In this section, we summarize ongoing advancements in
Gaussian splatting representations by exploring their variations
and categorizing them based on key characteristics, including
dimensionality, primitive functions, and auxiliary attributes.
We also highlight the motivations underlying these adaptations
to assist the understanding of the latest research trends.

A. Dimensionality of Gaussian

While the standard representations of Gaussians are inher-
ently 3D, various studies have explored alternative dimen-
sionalities to address specific application needs. For instance,
2D Gaussian Splatting (2DGS) [8] is a seminal work that
overcomes the limitations of 3D Gaussians in accurately rep-
resenting surfaces. It introduces 2D-oriented planar Gaussian
disks and employs a ray-splat intersection for perspective-
correct splatting. These surface-aligned Gaussians are partic-
ularly useful for applications like scene editing, animation,
and relighting, where precise surface representation is essential
for realistic manipulation and light interaction. Building on
this idea, various works have incorporated depth- and normal-
based supervision inspired by 2DGS to develop flat, surface-
aligned Gaussians. Gaussian Opacity Field (GOF) uses such
supervision on ray-Gaussian intersection planes to extract
surfaces and construct meshes. Methods in [9], [10] supervise
the alignment of flat Gaussians to mesh surfaces, enabling
animating and editing Gaussians through mesh control. In [11],
[12], surface-aligned Gaussians are constructed to provide an
accurate geometric prior, enabling illumination decomposition
for relighting applications. Studies have also investigated 4D
Gaussian splatting, extending the representation to dynamic
3D scenes by incorporating time as an additional dimension.
In [13], they introduce a spatio-temporal separable 4D rotor,
enabling flexible modeling of both static and dynamic scenes.
By setting the temporal dimension to zero, the rotor simplifies
to a standard 3D rotation. In Space-Time Gaussian (STG)
[14], the position, opacity, and rotation of the Gaussian are
extended as functions of time, modeled as a 1D Gaussian and
polynomial functions to incorporate temporal variations. 4G-
GS [15] utilizes a hex-plane, an extension of the tri-plane into
the temporal dimension, to model dynamic scenes. In [16], the
authors explicitly model spatio-temporal 4D volumes using 4D
Gaussian primitives, enabling NVS at any desired time stamp.
There are works even extending beyond 4D, such as [17],
which introduces an N-dimensional Gaussian mixture. It is
projected into 3D space based on viewing conditions, enabling
the handling of complex lighting and material properties.

B. Primitive Functions

Some works address the inherent limitations of 3D Gaussian
kernels in representing sharp textures and edges due to their
low-pass characteristics, exploring alternative primitive func-
tions to replace Gaussians. In GES [18], the author proposes
the Generalized Exponential Function (GEF) as a replacement
for Gaussian functions. The method includes a GEF shape
parameter as an additional attribute, offering greater flexibility

in adapting kernel shapes to accommodate various structures.
3D-HGS [19] introduces a splitting plane for 3D Gaussians,
where the normal of the splitting plane and additional opacities
are included as Gaussian attributes. Two half-Gaussians share
the remaining attributes but have distinct opacities, enabling
better representation of high-frequency details. NegGS [20]
introduces the concept of negative Gaussians, inspired by the
Difference of Gaussians (DoG), which effectively approxi-
mates complex structures. Tangram-Splatting [21] leverages
all the aforementioned function types (Gaussian, GEF, and
DoG), diversifying the function types to optimally represent
the scene. These methods collectively reduce the number of
particles required to accurately represent scenes with complex
structures.

C. Attributes of Gaussians

Beyond the visual representation of 3D scenes, some works
incorporate additional attributes into Gaussians to enable
physics-based or semantic decomposition of the scene, sup-
porting 3D scene editing tasks. A branch of work focuses on
’relightable’ Gaussian Splatting by decomposing illumination
into environment lighting and material properties, leveraging
the bidirectional reflectance distribution function (BRDF) for
physically-based rendering. 3iGS [22] employs a learnable
vector-matrix (VM) decomposition to represent a continuous
illumination grid, with each Gaussian containing BRDF fea-
tures to simulate view-dependent specular. GaussianShader
[23] embeds attributes such as diffuse color, specular tint,
roughness, and normals within each Gaussian, while jointly
learning differentiable environment light to allow accurate
rendering on reflective surfaces. BiGS [24] incorporates view-
dependent lighting attributes (direct/indirect transport and dif-
fuse/directional scattering) without depending on explicit sur-
face normals or reflectance functions, providing compatibility
with 3DGS where normals are undefined. GS-ID [11] and GS-
IR [12] embed attributes like metallicity, albedo, and rough-
ness into surface-aligned Gaussians, modeling environmental
light transport using baked ambient occlusion.

Another line of work focuses on transferring semantic
features from 2D foundational models into 3D space as Gaus-
sian attributes. Feature 3DGS [25] introduces a framework
for distilling features from 2D foundational models, such as
SAM [26] and CLIP-LSeg [27], for semantic segmentation
and language-guided editing. In [28], identity encoding is
added as a Gaussian attribute, supervised by SAM-generated
2D masks to enable instance-based grouping. LangSplat [29]
learns hierarchical language features distilled from CLIP [30],
enabling semantic segmentation with clear object boundaries.
Feature Splatting [31] utilizes DINO-regularized CLIP features
to embed semantic attributes into Gaussians, which are then
integrated with the Material Point Method (MPM) to decom-
pose specific objects and simulate physics-based dynamics of
the selected object based on a language query. By embedding
these additional attributes, the approaches extend Gaussian
representations beyond visual fidelity, enabling interactive
manipulation of 3D scenes.
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IV. OPTIMIZATION

In this section, we review the recent advances in the
optimization techniques in 3DGS. For better understanding
of future research trends, we group recent research works
by their positions in the training pipeline into the following
four categories: initialization, adaptive density control, anti-
aliasing, and regularization, as in the following subsections.

A. Initialization

Typical 3DGS models initialize the Gaussian primitives
from sparse Structure-from-Motion (SfM) points. When SfM
is not available, random initialization can be applied, but
it usually leads to worse rendered image quality. Therefore,
RAIN-GS [32] proposes a sparse-large-variance random ini-
tialization strategy where fewer Gaussians are initialized but
with larger variances calculated from the average neighbor
distance. This strategy helps the model to gradually introduce
new Gaussians during training and avoid high-frequency error
introduced by the initial small Gaussians. Instead of sparsely
and randomly initializing the Gaussian primitives, RadSplat
[33] uses a trained neural radiance field to initialize the
Gaussians. For each sampled ray, a Gaussian primitive is
initialized at the median depth location with the color of the
training image. Pretrained models have also been used to assist
initialization. GaussianObject [34] proposes initialization with
visual hull constructed from object masks in sparse views,
which are acquired from pretrained segmentation models.
Gaussians are randomly initialized within the visual hull with
the colors taken from reference images to avoid floaters.

B. Adaptive Density Control

The 3DGS model adjusts the number of 3D Gaussian
primitives through adaptive density control, which adds more
Gaussians to represent the fine structure and texture of the 3D
scene, and removes the inessential Gaussians that have little
contribution to the rendered images. Additional error terms
have been proposed to guide the adaptive density control.
Rota Bulò et al. [35] propose an auxiliary per-pixel error
(e.g., SSIM) as a measure for growing Gaussian primitives to
represent high-texture areas. In addition, an opacity correction
strategy was proposed to correct the color bias caused by the
cloned Gaussian primitives. TrimGS [36] proposes evaluating
the view contribution of each Gaussian primitive to the color
of the rendered images, where the Gaussians with the lowest
view contributions are removed.

Geometric information has also been applied to help the
adaptive density control. GaussianPro [37] proposes propagat-
ing and filtering the rendered 2D depth and normal maps for
creating new Gaussians. GeoGaussian [38] proposes cloning
and splitting the Gaussians in the smooth areas (e.g., walls)
of the scene in densification. FSGS [39] proposes a Gaussian
Unpooling strategy based on a proximity graph that connects
the nearest neighbors, where new Gaussians are created on the
edges whose proximity scores exceed a threshold.

Additional randomness has also been introduced to assist
the training process. 3DGS-MCMC [40] adds noise to the

center location of each Gaussian primitive to avoid getting
stuck in local minimum. The noise strength is adaptive to
the opacity such that opaque Gaussian primitives, which are
usually converged, get less perturbation. GaussianObject [34]
further uses a 2D diffusion model to refine the images rendered
by noise-injected Gaussians to acquire the reference images to
improve the robustness.

C. Anti-aliasing

In the differentiable rasterization in 3DGS, the color of each
pixel is estimated from the projected 2D Gaussians at the
pixel centers. Therefore, the 2D Gaussians are enlarged by a
constant to ensure that their sizes are no smaller than a pixel.
However, these sampling operations can result in aliasing
artifact when zooming in or out in novel views. Therefore,
Analytic-Splatting [41] proposes an analytic formulation to
approximate the integration of a 2D Gaussian within a 2D
pixel area as the intensity response.

Explicit anti-aliasing constraints and operations on the 3D
and 2D Gaussian can also be applied. Mip-Splatting [42]
proposes a 3D smoothing filter to apply to each Gaussian
primitive to ensure the spatial frequency does not exceed the
sampling limits in all training images. Besides, they proposed a
2D Mip filter to adaptively adjust the 2D Gaussians to cover at
least a single pixel in screen space. On the other hand, without
changing the training process, SA-GS [43] proposes a training-
free 2D scale-adaptive filter that can be directly applied to any
pretrained 3DGS models during rendering.

Another approach of anti-aliasing is directly learning the
Gaussian primitives that do not create aliasing. Yan et al. [44]
proposes a multi-scale Gaussian splatting model to maintain
Gaussians at different scales and select Gaussians based on
their pixel coverage during rendering. Mipmap-GS [45] pro-
poses a multi-scale training strategy with pseudo ground truth
of upsampled and downsampled images to ensure rendering
aliasing-free image at arbitrary scale.

D. Regularization

Additional regularization terms have been introduced to the
loss function to improve the rendered image quality. FreGS
[46] proposes the frequency loss term as the L1 loss of the
amplitude and phase in Fourier space. Different frequency
bands are weighted differently and progressively through the
entire training iterations. Geometry and depth information
has also been used for regularization. GeoGaussian [38] pro-
poses a co-planar constraint to penalize the Gaussians whose
normal direction is different from the neighbors. TrimGS
[36] proposes the regularization using the L1 loss between
the normal map derived from the rendered depth map and
the original Gaussian normal. Additional monocular depth
estimated from pretrained models can also be used for reg-
ularization. DNGaussian [47] and Chung et al. [48] calculate
the L1 loss between rendered depth and monocular depth for
regularization, where the monocular depth is normalized using
the rendered depth to resolve the scaling issue.
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V. COMPRESSION

3DGS generates a considerable number of 3D Gaussians to
well represent even a decent sized scene. The consequence is a
substantial burden in storage and communication bandwidth,
which also hinders rendering speed in low-end devices. An
enormous amount of emergent effort has been invested to
efficiently reduce the storage-cost and improve its scalability
to low-end hardware.

We dedicate this section to identify the commonly research
trends for 3DGS compression techniques and compact repre-
sentations to reduce the overall size of 3DGS and improve
the rendering speed. We categorize the ongoing efforts into
three categories: 3DGS Parameter Reduction, Compact 3DGS
Representation and, 2D and 3D Codec-based Compression.

A. 3DGS Parameter Reduction

Almost all existing 3DGS compression works follow either
one or a combination of three ways to reduce the 3DGS
parameters: 1) Pruning, 2) Vector Quantization (VQ) and, 3)
Flexible SH representation. The original 3DGS work is overly
parameterized and produces redundant Gaussian primitives.
Pruning based on appropriate metrics during or post train-
ing has shown to reduce tremendous redundancy in 3DGS.
Similarly, scale and rotation attributes of Gaussians in a
neighborhood bear similarity and therefore can be represented
with a reduced set through codebooks or clustering, also
known as VQ. In original 3DGS, view-dependent color is
represented using SH coefficients. Out of 59 attributes per
Gaussian, 48 are SH coefficients, making SH an essential
target for compression with the most potential redundancy. A
few works have replaced SH based color representation with
hash-grid and MLP, while others follow VQ-based method and
variable degree SH representation.

For example, [49] utilizes all three methods mentioned
above to reduce the 3DGS parameters. It applies a learnable
masking on opacity (appearance) and scale (volume) and
eliminates Gaussians according to the binary mask. It also em-
ploys residual vector quantization (R-VQ) to learn geometric
codebook to represent scale and rotation. To represent view-
dependent color, this method proposes to use hash-grid feature
and MLP. In [50], they utilize resolution and scale-aware
redundancy metric to identify regions in space with redundant
Gaussian primitives and cull those Gaussians which contribute
very little to the final rendered image. This work also proposes
to use SH with lowest possible degree as required by a given
Gaussian primitive. If the variance of the color evaluated
across all views is low or increasing the SH degree does not
improve the quality evaluated across all views, only lower
degree SH are used.

LightGaussian [51] first prunes the Gaussians through
global significance score calculation where Gaussians that
contribute the least to the final rendering across all views
are discarded. Then it applies knowledge distillation to learn
SH coefficients at lower degree and vector quantize them
subsequently. [52] and [53] utilize k-means clustering to vector
quantize the Gaussian attribute for faster and smaller Gaussian

splatting. While [52] learns two compact codebook for shape
(scale, rotation) and appearance (opacity, color) parameters,
[53] learns four codebooks for each attribute.

B. Compact Representation

Some studies focus on the correlation between nearby Gaus-
sians, proposing hierarchical or predictive Gaussian frame-
works. Such framework allows 3DGS to reformat into a very
compact representation with fewer parameters. Scaffold-GS
[54] is a seminal work in this direction that introduced a sparse
anchor points, from which per-view frustum neural Gaussians
are generated from visible anchors. These Gaussians have their
attributes dynamically adjusted based on both implicit and
explicit anchor features and view directions. HAC [55] builds
upon [54] by introducing binary hash-grid and an Adaptive
Quantization Module for learned entropy coding of anchor
attributes, enabling a more compact representation. [56] also
follows representation similar to Scaffold-GS but anchor’s
reference feature is rate-constrained through inter-primitive
prediction using learned entropy modeling. In [57], they adopt
a hierarchical approach, where parent Gaussian attributes are
stored using a hash grid, and child Gaussian attributes are
predicted and generated during the rendering stage using an
MLP and an attention-based mechanism. GaussianForest [58]
employs a tree structure where leaf nodes contain explicit
attributes like position and opacity, which can vary signifi-
cantly among neighbors. Intermediate and root nodes store
implicit features processed through an MLP for covariance and
view-dependent color, which exhibit local smoothness and are
shared among sibling Gaussians.

EAGLES [59], in slight contrast, defines quantized latent
embedding instead of Gaussian attributes and uses a set of
MLPs to decode all the required Gaussian attributes. Since
quantized latent embedding has fewer parameters per Gaussian
primitive, this approach reduces the size of overall 3DGS
representation. In [60], the features are defined in the tri-
planes (xy-, yz- and xz-planes). Through Gaussian mean
projection onto these planes and bi-linear interpolation, feature
are collected for each Gaussian primitive. Then Gaussian
attributes are subsequently decoded using a few sets of MLPs.
Since features are only decomposed into 3 grid planes rather
than arrays of grids, 3DGS is represented with much fewer
number of parameters.

C. 2D and 3D Codec-based Compression

Image (JPEG/JPEG2000/JPEG-XL) [61] and video
(AVC/HEVC/VVC) [62] codecs have been long existed and
are very mature. Similarly, 3D codecs (G-PCC/V-PCC) [63]
for point cloud have also seen a tremendous developmental
progress. Utilizing such codec comes with a benefit of
compression efficiency and seamless hardware integration.
Recently, efforts have been made to utilize these conventional
codec to compress 3DGS. For instance, in V 3 [64], Gaussian
attributes are first optimized on a frame-group basis using
entropy loss to improve inter-frame consistency. Then,
attributes are integer quantized and packed into separate 2D
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image planes after applying Morton sorting, which preserves
the spatial proximity of neighboring 3D points in the 2D
representation. The image planes are then compressed with
AVC/H.264. Similarly, in SOG [65], 3DGS primitives are
sorted based on opacity. Then the Gaussian attributes are
integer quantized and organized into separate 2D square grids
while discarding the excess Gaussians that do not fit into the
grid. The 2D grids are sorted with Parallel Linear Alignment
Sorting (PLAS) algorithm to preserve texture smoothness and
are subsequently compressed with JEPG-XL.

3DGS is essentially points in space representing Gaussian
primitives with attributes. It is very natural to extend existing
point cloud codec, such as G-PCC/GeS-TM, to compress
3DGS and contributions [66] [67] in the recent MPEG-INVR
activity made such efforts. Both methods first pre-process
to quantize the Gaussians attributes to integer representation
since G-PCC and GeS-TM both process point cloud in integer
format. [66] uses GeS-TM, a variant of G-PCC for coding
solid point cloud, as an anchor which has octree for geometry
coding and RAHT for 3-dimensional attribute coding. With
this approach, the Gaussian mean is coded with octree and
rest of the attributes are grouped to be 3-dimensional and
coded with RAHT. SH coefficients are converted to YUV
color space. The attributes which are not multiple of 3 are
padded with 0 for chroma (U and V) components. However,
[67] has G-PCC as an anchor, so it treats each attribute as
single channel reflectance and encode them with RAHT. [68]
provides analysis of 3DGS compression utilizing GeS-TM
proposed in [66] but reduces the SH coefficients from 48
components to just 18. After SH conversion to YUV color
space, the higher degree coefficients corresponding to U and V
components are discarded as they carry almost no information.

VI. FUTURE TRENDS AND CONCLUSION

The field of 3DGS has witnessed rapid advancements,
driven by increasing interest and developments across various
domains. In this article, we focus on recent progress in three
key areas: representation, optimization, and compression. We
highlight the research trends on various alternative representa-
tion formats which enable the functionality to better represent
scene structure, material properties, dynamic scenes, physical
interactions, and scene segmentation. Additionally, we review
the latest optimization techniques designed to improve render-
ing quality and training speed. Finally, we explore emergent
compression techniques aimed at reducing the size of 3DGS
representation and accelerating rendering. This paper provides
a concise yet comprehensive overview of SoTA techniques and
future trends that are shaping the future of 3DGS.
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