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Abstract—Traditional machine learning typically requires
training datasets on local machines or data centers. However,
this approach may raise concerns related to data privacy and
security. To address these issues, federated learning was proposed.
However, federated learning, which involves a server commu-
nicating with multiple client devices, can significantly burden
the server. Even when using hierarchical federated learning,
there is still a considerable cost associated with communication
at intermediate nodes. To further alleviate the communication
cost burden on intermediate nodes, the most direct approach is
to have each intermediate node select a subset of clients for
training and accept their model parameters. However, client
training data distributions are not uniform, leading to a state
known as Non-Independent and Identically Distributed (Non-
IID). Unthinkingly selecting clients for training may result in
more imbalanced data selection and bias the model training in
specific directions. Therefore, we propose the “post-clustering
selection”, where clients with similar data distributions are
grouped together, and a certain proportion of clients are selected
as representatives for training. This approach allows intermediate
nodes to reduce communication costs while avoiding the selection
of clients with highly imbalanced data distributions. Finally, we
integrate differential privacy and secure aggregation to enhance
privacy protection and present a framework called ‘Cluster-based
Privacy-Enhanced Hierarchical Federated Learning Framework
with Secure Aggregation (CPE-HFL).” From experiments, we
reduce the communication volume by up to 29% while main-
taining accuracy. Additionally, the accuracy improves more in
cases with clustering than those without clustering. The proposed
framework can reduce communication costs and effectively
protect clients’ privacy while maintaining model accuracy.

I. INTRODUCTION

The 2016 enactment of the General Data Protection Regu-
lation (GDPR) by the European Union significantly impacted
machine learning. Traditional machine learning, which typi-
cally involves centralizing training data on machines or data
centers, began to raise concerns about data privacy and security
in light of this regulation. Thus, federated learning (FL) [1]–
[3], which is a distributed learning framework in which multi-
ple clients jointly train a global model under the supervision of
a server, was proposed. In each round of federated learning, the
server selects several clients, utilizes their private local data to
train the global model, and collects the trained model weights
from them. Finally, the server aggregates the model weights

submitted by all clients to form a new round of the global
model. To achieve the goal of protecting client privacy, clients
only submit model weights without the need to disclose their
private data, thus mitigating privacy concerns to some extent.
However, in real-world scenarios, the FL architecture with one
server overseeing multiple clients faces significant challenges.
Servers receive models trained by all clients, resulting in
significant network communication traffic due to the large
size of these models. This, in turn, necessitates substantial
storage capacity on servers to store parameters from each
client’s model, ultimately reducing training efficiency. As the
number of participating clients increases, the communication
cost burden on the server also escalates.

To address the communication cost issues faced by Feder-
ated Learning (FL), hierarchical federated learning (HFL) [4]is
emerged. In HFL, clients upload their models to their respec-
tive regional nodes, known as zone aggregators. These zone
aggregators perform an initial aggregation to create regional
models. Consequently, the server doesn’t need models from
every client; it only needs to receive regional models from
multiple zone aggregators, which can then be aggregated into
a global model. This can significantly reduce the storage
and communication costs required by the server. Additionally,
because the client’s model parameters have already been
aggregated into a regional model, even if the regional model is
subjected to an attack, it cannot accurately reflect the data used
by the client. This enhances the privacy of client data during
the upload process from the zone aggregator to the server.

However, while HFL can alleviate the burden on servers, it
may shift the load to zone aggregators. With many clients
participating in training, zone aggregators may require en-
hanced computational capabilities and increased hardware
capacity to manage the influx of client models and associated
communication costs. Furthermore, recent research [5], [6]
has pointed out potential privacy concerns related to the
model weights uploaded by clients after training. Attackers
may attempt to reverse-engineer the original data used for
training by analyzing the model weights. Even if the client’s
training weights are aggregated into a regional model at the
zone aggregator, providing privacy during subsequent model
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Fig. 1. The architecture of CPE-HFL.

transmission between the zone aggregator and the server,
privacy leakage remains possible when clients upload their
weights to the zone aggregator.

To further mitigate the communication costs at the zone
aggregator and enhance privacy, we propose a “Cluster-based
Privacy-Enhanced Hierarchical Federated Learning Frame-
work with Secure Aggregation (CPE-HFL),” which integrates
post-clustering selection, differential privacy, and secure ag-
gregation into HFL. The overall structure is shown in Fig 1:

1) Differential Privacy (DP): About federated learning
clustering, current research focuses on clustering based
on post-training model weights. However, these weights
are not endowed with protective measures, meaning
that even the model weights returned by clients could
leak privacy. In the proposed CPE-HFL, clients return
their data distribution instead of sending the model
weights. We then apply differential privacy to this data
distribution, preventing the server from discerning the
exact data distribution of individual clients while still
effectively clustering them.

2) Clustering: Once the participating clients are deter-
mined, they submit their data distributions, which have
been processed with differential privacy, from the zone
aggregator to the server. Subsequently, the server em-
ploys clustering algorithms such as K-means, Hierarchi-
cal Clustering, and Affinity Propagation based on these
data distributions to cluster the clients, allowing clients
with similar data distributions to be grouped under the
same zone aggregator. Because the data distributions
within each cluster are similar, not all clients must
participate in training. During each training round, the
zone aggregator only needs to randomly select a few
clients as representatives, thus reducing communication
costs. In real-world scenarios, client data often exhibits
the Non-Independent and Identically Distributed (Non-
IID) characteristic. If clients are randomly selected to
participate in training, it may lead to an imbalanced data
distribution, resulting in a global model biased towards
specific directions. Therefore, by selecting clients after

clustering, each specific data distribution direction can
participate in training, reducing the risk of obtaining
imbalanced data distributions when selecting clients.

3) Secure Aggregation (SA): Clients add a two-layer mask
before returning their post-training model weights. This
method ensures that even after aggregating the models,
the zone aggregator cannot discern the exact model
parameters of individual clients, thwarting any attempts
by attackers to infer original data from model weights.

Based on the experimental results, we reduce communica-
tion volume by up to 29% while maintaining accuracy. Further-
more, the application of clustering led to even greater improve-
ments in accuracy compared to when not using clustering.
The framework reduces communication costs and effectively
protects clients’ privacy while maintaining training accuracy.

II. RELATE WORK

Since the Federated Learning (FL) concept was introduced,
many scholars have contributed much research and innovations
in this field. Li et al. [3] detailedly reviewed FL’s current
challenges and evolution and explored its applications. In
[4], Liu et al. proposed a hierarchical federated learning
structure of Client-Edge-Cloud. This structure’s primary goal
is to mitigate network congestion’s impact, which can lead to
inefficient training when there are many participating clients.
The foundational architecture of this study primarily consists
of three layers, as depicted in Fig 2. These are the server
(Core Aggregator), the regional nodes (Zone Aggregator), and
the clients (FL Client). The basic workflow among these three
entities is as follows:

1) The server sends training tasks to the regional nodes in
the second layer.

2) Regional nodes then sample the clients who will partic-
ipate in the training.

3) Once the clients are determined, the regional nodes
send training commands to their respective clients. Upon
completing the training, each client sends its post-
training model weights back to its regional node for
model aggregation.

4) Each regional node returns its aggregated model to the
server, which performs the final aggregation to update
the global model for that round.

Regarding clustering, [7] proposed the WSCC clustering
method, which dynamically clusters clients using affinity
propagation and cosine distance. In [8], the FLIS algorithm
is introduced, where clients return their trained models to the
server, and the server obtains inference results on its small
dataset. Clients are then clustered based on the similarity of
these inference results. The approach in [9] utilizes Hierarchi-
cal Clustering for clustering under FL (referred to as FL+HC).
During training, clients are clustered based on the similarity
between their local model updates and the global model, and
each cluster trains a specialized model.

In terms of security measures in federated learning (FL),
the secure aggregation (SA) method proposed in [10] is a
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Fig. 2. The flow chart of CPE-HFL.

prevalent approach. It is an encryption protocol incorporating
techniques such as Diffie–Hellman key exchange and Shamir’s
secret sharing. Additionally, it utilizes a Pseudo Random
Generator to generate two types of masks. After client training
is completed, these two masks are added to the model weights
before being transmitted. Consequently, the model weights
received by the server are in an encrypted state. During the
model aggregation process, the second mask is removed, and
then the server retrieves the first mask from each client. This
enables the server to decrypt the already-aggregated global
model for the new round. In summary, the server can complete
updates for the new round of the global model without
knowing the actual model weights returned by each client.
Moreover, suppose a client departs midway, as long as the
remaining clients exceed a certain threshold (complying with
the t-out-of-n condition in Shamir’s secret sharing). In that
case, they can still fully decrypt the global model under the
SA protocol. This further enhances the security and stability
of the participating clients in the training process.

Regarding differential privacy, the idea is to introduce a
small amount of noise into the data, preserving its character-
istics while minimizing privacy leak risks. Attackers cannot
deduce accurate client information by examining computation
results, making this one of the widely-used data protection
methods today. Kang Wei et al. applied this technique in [11],
proposing a Noise-before-Aggregation FL (NbAFL) method.
The concept is to add noise to the model on the client side
before uploading. However, aggregating models that already
have noise affects the convergence speed and accuracy of
the model. Hence, this study mainly adds differential privacy
to the clients’ data distribution for clustering, as expressed
in equation 1, and uses secure aggregation during the initial
model aggregation phase to ensure model upload security.

Pr[M(Di) ∈ S] ≤ eϵ Pr[M(D′
i) ∈ S] + δ (1)

III. CLUSTER-BASED PRIVACY-ENHANCED
HIERARCHICAL FEDERATED LEARNING

We propose a cluster-based privacy-enhanced hierarchical
federated learning (CPE-HFL), which encompasses secure
aggregation, differential privacy, and clustered federated learn-
ing.

1) Data processing: We use open dataset such as CIFAR-
10. Since these datasets are all independently and identi-
cally distributed, we generated multi-dimensional arrays
of the same number as the data categories using the
Dirichlet distribution. We used this array as the basis
for partitioning the data, resulting in a proportionally
scaled data distribution.

2) Add noise: The server sends a training task to the
second-layer local area, and then the local area requests
the data distribution from all clients below. Clients, in
turn, protect data privacy by adding Gaussian noise
to the data distribution using differential privacy tech-
niques. Finally, the processed data is sent back to the
server through the local area for clustering.

3) Clustering: During the clustering phase, we use the
data distribution that has already been noised to perform
clustering. We employ three clustering algorithms to
cluster the clients: K-means, Hierarchical Clustering,
and Affinity Propagation. We then select the algorithm
with the best silhouette scores from this clustering.
Based on the clustering result, all clients are reconnected
to the appropriate local area.

4) Start training: Once clustering is complete, each zone
aggregator will have well-defined groups. At this point,
we commence federated learning while incorporating a
secure aggregation mechanism. In this context, we have
referenced the secure aggregation protocol from [10] and
integrated Salvia [12] to deploy SA within our frame-
work. Before each training round, each zone aggregator
selects a certain proportion of clients from its client
group to participate. Subsequently, the selected clients,
in addition to receiving the global model broadcast
by the zone aggregator, are required to independently
generate public-private key pairs based on the secure
aggregation protocol. Then, clients within each group
can share and obtain partially encrypted information
from other clients using the t-out-of-n mechanism from
Shamir’s secret sharing and the key agreement algorithm
from Diffie-Hellman. Afterward, each client uses this
encrypted information to generate two layers of private
masks through a Pseudo Random Generator (PRG).
Finally, before returning the model, each client adds the
two newly generated layers of private masks.

5) Model Secure Aggregation: During the model aggrega-
tion phase, each zone aggregator receives all the model
weights that have undergone double-masking process-
ing. It then combines all the encrypted models to obtain
the regional model. According to the Secure Aggregation
algorithm, even though the aggregated model parameters
are still in an encrypted state, the second mask of each
model will be effectively eliminated after summing up
all the models. In other words, at this point, the regional
aggregated model contains the sum of the first masks of
all client’s models. The zone aggregator only needs to
obtain the first mask information from each participating
client to eliminate it and obtain the correct sum of the
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client model. Afterward, a weighted average is applied
to form the regional model. It is worth noting that during
this process, the zone aggregator can only acquire either
the first or second mask from each client to decrypt
the regional model. For the clients, this ensures that
even if one mask is lost, another mask still protects
the trained model. Furthermore, during the process, the
zone aggregator can only obtain the sum of the models
from the participating clients but cannot access the
exact individual client models. This safeguards client
model privacy and prevents any potential leaks. In the
end, all zone aggregators then send their respective
regional models back to the server for a second round
of aggregation to form the global model for that training
round, prepared for broadcasting to the zone aggregators
as the initial model for the next training round.

IV. EXPERIMENT

A. Dataset

Data distribution is typically Non-Independent and Identi-
cally Distributed (Non-IID) in real-world federated learning
scenarios. This means that the dataset of each participating
client may have a different distribution. However, in some
commonly used datasets, such CIFAR-10, the number of
samples in each category is almost the same. Thus, in our
experiment, we must create Non-IID datasets based on the
actual data to simulate real-world scenarios.

CIFAR-10 consists of 10 distinct categories: airplanes, cars,
birds, cats, deer, dogs, frogs, horses, and ships. Each category
contains 6,000 images, totaling 60,000 images with a size of
32x32. Of these, 50,000 images serve as training data and
10,000 as test data. To simulate Non-IID scenarios, we adopted
two segmentation approaches:

1) We utilized the Dirichlet method to emulate Non-IID
conditions. The Dirichlet distribution is commonly used
when the sum of probabilities of multiple components
is one. This can replicate situations where each train-
ing participant might have more samples from specific
categories and fewer from others.

2) Apart from the first method, we also tried an extreme
segmentation approach by randomly selecting 2 out
of the ten categories. One category’s dataset contains
only about 80% of One category’s total samples in this
method, while the other has around 20%, simulating
extreme real-world scenarios.

B. The Experiment setting and method

Under a setup of one server and 50 clients, we use CIFAR-
10 as our dataset. CNN, ResNet18, and VGG16 models are
employed for each dataset with a batch size 128. In addition,
each federated learning round has three local epochs, with a
default total of 50 federated learning rounds. The exception
is the second Non-IID dataset of CIFAR-10, which, due to
its extreme distribution, requires more rounds to converge
and thus has 200 federated learning rounds. To observe the
accuracy performance of model training at various filtering

levels, we have set filtering levels at 100%, 75%, 50%, and
25%, representing the ”proportion of clients selected within
each group” (with 100% meaning no filtering). For example,
if a group contains seven clients post-clustering, 50% implies
that four clients (rounded from 3.5) are randomly selected
from the 7 for that training round. However, due to secure
aggregation constraints, at least two clients must be dispatched
from each group for training; otherwise, key exchange in
secure aggregation cannot proceed.

Initially, the 50 clients add noise to their individual data
distributions and submit them to the server for clustering. In
the clustering phase, three clustering algorithms, k-means, hi-
erarchical clustering, and Affinity Propagation, are calculated,
yielding corresponding silhouette score values. This score
ranges from -1 to 1. A silhouette score close to 1 indicates
that data points within a cluster are very similar, and there is
a significant difference between clusters, implying excellent
clustering results. A score near -1 suggests that cluster data
points are not similar, and cluster differences are minimal,
indicating suboptimal clustering results. A score near 0 means
the similarity within a cluster and differences between clusters
are nearly identical, indicating ambiguous clustering results.
Hence, the clustering algorithm with the highest score of the
three is chosen for that specific experiment.

After clustering all clients, training commences. Before
each training round, based on the chosen filtering level for
the current experiment (100%, 75%, 50%, 25%), a subset of
clients is randomly selected from each cluster to participate in
that round. During training, secure aggregation ensures that the
server remains unaware of the models returned by individual
clients, obtaining only the aggregated model and completing
one training round. This process is repeated to examine the
communication cost savings at different filtering levels while
maintaining data balance without significantly compromising
training efficacy.

V. EXPERIMENT RESULT

In our experiments, we used the CIFAR-10 datasets and
divided them into Non-IID forms, as mentioned earlier. The
explanations for the experimental result tables are as follows:

1) Fraction: This refers to the number of clients partici-
pating in each round of federated learning from every
cluster. A minimum of 2 clients from each cluster is
required for training. Also, when the number of selected
clients after filtering is not an integer, it will be rounded.
Hence, a slight difference might exist between the actual
ratio of clients participating in the training and the
proportion stated in the table.

2) Accuracy: This is the model accuracy at the point of
convergence.

3) Round: Convergence is considered when the accuracy
does not increase by more than 1% over ten rounds.

4) Traffic: The communication cost is calculated as twice
the number of convergence rounds multiplied by the
sum of the server broadcasting the global model to
n zones and m participating clients, further multiplied
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by M. Here, the factor of two accounts for both the
broadcasting of data and its return, while M stands for
the size of the model.

5) Benefits: Calculated based on the 100% client partic-
ipation ratio, this indicates the percentage reduction
in communication overhead achieved with the current
filtering.

A. CIFAR-10

1) Using Dirichlet to Simulate Non-IID: From Table I, in
experiments using the CNN model, as the proportion of
clients participating in training in each group decreases,
the number of rounds required for convergence increases
compared to the unfiltered scenario. However, the com-
munication overhead before reaching the converging
round decreases noticeably, and the accuracy drops at
most by 2.74%. For VGG16 and ResNet18, although the
savings in communication costs are not more significant
than using the CNN model, the accuracy only drops
slightly, even at the smallest client participation rate of
25%.

2) Randomly Selecting two classes from ten: From
Table II, this experiment used data that’s even more
imbalanced than that from the Dirichlet distribution.
Of the ten categories in CIFAR-10, each client only
possesses images from 2 of these categories, with one
comprising about 80% and the other about 20%. Due to
the extreme imbalance, the training accuracy is consider-
ably reduced compared to the dataset from the Dirichlet
distribution. However, regarding benefits, most models
can reduce communication overhead through filtering,
although VGG16’s performance could be better. The
accuracy drops as the filtering ratio decreases, and the
benefits are less pronounced. However, ResNet18 per-
forms exceptionally well, maintaining nearly the same
accuracy as the unfiltered 100% scenario while reducing
communication overhead.

3) Comparison between Clustered and Non-clustered:
We use the second Non-IID dataset of CIFAR-10 for
the experiment. In Fig. 3, and Fig. 4 and Fig. 5, the red
line represents training after clustering using our system,
while the blue line represents training by randomly
selecting an equivalent number of clients as the clus-
tered scenario. The results show that using our system
maintains higher accuracy while reducing the number
of participating clients. Compared to the potential data
skew of random selection, our system ensures more
consistent data after filtering, thereby mitigating Non-
IID effects.

VI. CONCLUSION

This study introduces a “Cluster-based Privacy-Enhanced
Hierarchical Federated Learning Framework with Secure Ag-
gregation (CPE-HFL).” We employ clustering to alleviate the
impact of Non-IID data on hierarchical federated learning.
This helps ensure that training accuracy is not compromised

TABLE I
USE DIRICHLET TO SIMULATE NON-IID

Model Fraction Accuracy Round Traffic Benefit

CNN

100% 62.2% 15 2× 15× (50 + 9) M 0.0%
75% 61.7% 17 2× 17× (37 + 9) M -11.63%
50% 61.8% 19 2× 19× (24 + 9) M -29.15%
25% 59.5% 23 2× 23× (18 + 9) M -29.83%

ResNet18

100% 89.3% 12 2× 15× (50 + 9) M 0.0%
75% 88.9% 15 2× 17× (37 + 9) M -2.54%
50% 89.0% 19 2× 19× (24 + 9) M -11.44%
25% 88.5% 22 2× 23× (18 + 9) M -16.1%

VGG16

100% 89.0% 14 2× 15× (50 + 9) M 0.0%
75% 88.5% 16 2× 17× (37 + 9) M -10.8%
50% 88.6% 21 2× 19× (24 + 9) M -16.1%
25% 88.8% 27 2× 23× (18 + 9) M -11.7%

TABLE II
TAKE TWO OUT OF TEN CLASSES.

Model Fraction Accuracy Round Traffic Benefit

CNN

100% 43.2% 36 2× 36× (50 + 10) M 0.0%
75% 43.0% 45 2× 45× (36 + 10) M -4.16%
50% 41.7% 52 2× 52× (24 + 10) M -18.14%
25% 41.3% 56 2× 56× (20 + 10) M -22.22%

ResNet18

100% 65.5% 60 2× 60× (50 + 10) M 0.0%
75% 64.8% 73 2× 73× (36 + 10) M -6.72%
50% 65.3% 76 2× 76× (24 + 10) M -28.22%
25% 65.2% 106 2× 106× (20 + 10) M -11.66%

VGG16

100% 43.2% 103 2× 103× (50 + 10) M 0.0%
75% 43.0% 127 2× 127× (36 + 10) M -5.46%
50% 41.7% 183 2× 183× (24 + 10) M +0.67%
25% 41.3% 200 2× 200× (20 + 10) M -2.91%

when selecting clients for training, even in data imbalance.
Furthermore, we incorporate differential privacy and secure
aggregation techniques to safeguard the data distribution used
for clustering and the models clients return in the federated
learning process. In other words, in the experiment results,
we achieved a communication volume reduction of up to 29%,
all while preserving accuracy. Notably, accuracy demonstrated
more significant improvements when incorporating clustering.
This framework can effectively reduce communication ex-
penses and safeguard clients’ privacy while upholding training
accuracy.
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