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Abstract—Communication systems implemented within ve-
hicles primarily focus on infotainment applications and often
lack concrete specifications designed to ensure the safety of
both drivers and passengers during emergencies. In this work,
we propose and implement an in-vehicle emergency threat key-
words detection system using machine learning and audio signal
processing to classify potential emergency keywords based on
audio waveforms while reducing noise and unprivileged user
voice commands from creating a false positive. This is done by
taking speech commands from users via a microphone array
within the vehicle that is then preprocessed, and features are
extracted from Mel spectrogram images. These mel spectrogram
images are classified using a convolutional neural network
(CNN) that has been previously trained to classify emergency
speech keywords. Experimental results reveal a validation
accuracy of about 90% is achieved in accurately detecting and
classifying the threat keywords. The proposed system can be
used in an emergency protocol within the autonomous vehicle
by pulling over safely to prevent harm or call first responders.

Index Terms—Autonomous vehicle emergency system, ma-
chine learning, audio signal processing.

I. INTRODUCTION

In autonomous vehicles, deep neural networks have been
primarily focused on computer vision applications where the
vehicle labels and tracks objects in its environment, makes a
decision on what that object is and then executes an action
based on that object. Different neural networks can be re-
purposed for audio applications, specifically inside the vehi-
cle. Audio classification using machine learning algorithms
is much more difficult to implement due to data variability
in sound waveforms, the human voice being highly non-
stationary, the unavailability to label images, and a significant
amount of digital audio processing to make the data usable
for the neural network. Due to the variance in speech patterns,
the addition of noise, and numerous other factors that can dis-
tort audio waveforms, advanced signal processing techniques
need to be utilized such as beamforming and sound source lo-
calization (SSL) in order to prevent misclassification or false
positives of emergency keyword detection and classification.
Additionally, autonomous vehicles require precise controls to
execute emergency procedures accurately, ensuring safety for
passengers, pedestrians, and objects on the road.

Related Works: In recent years, audio-based classification
has been explored using machine learning. The majority of
those classification techniques rely on the mel-frequency cep-
stral coefficients (MFCCs), spectrograms, log-mel spectrum,
mel filter bank, and many other types of audio processing
techniques. Based on these sound classification schemes,

the proposed system is capable of predicting emergency
threat keywords in an autonomous vehicle and responding
appropriately by preventing harm or injury to passengers,
bystanders, and/or infrastructure.

Lord et al. [1], suggest a method for vehicular threat detec-
tion through audio signal analysis. This method sends alerts
to both the pedestrian’s wearable device and the vehicle’s
driver in case of a potential collision.

Santos et al. [2], develop an audio-based system that
detects violence in the car. One of the challenges of speech
processing involves identifying violence in speech among the
audio, music, and ambient noise. Santos et al. analyzed the
accuracy of several different deep learning architectures.

Moreover, Purwins et al. [3], discusses the features, data
requirements, and computational complexity for different
deep learning models in audio signal processing applications.
Using this information extracted from a large dataset and
feeding it into a neural network can classify sounds in various
applications such as human speech, music, and environmental
sounds. Purwins et al. argue in favor of utilizing distinct
signal processing information across various applications and
deep learning models, prompting a consideration of the most
suitable approach for each scenario.

Hao et al. [4], design a system using multiple microphone
arrays on a Raspberry Pi for the real-time operation to
train a convolutional neural network (CNN) model using
noisy speech recordings collected from different rooms and
inference on an unseen room to improve SSL. In noisy
rooms or environments such as in a vehicle, traditional speech
quality suffers immensely resulting in poor performance
and/or improper classification of sounds.

Almaadeed et al. [5], combine time-domain, frequency-
domain, and joint time-frequency features extracted from a
specific category of quadratic time-frequency distributions to
perform event detection on roads using audio analysis and
processing.

Jonnadula et al. [6], study different methods used in identi-
fying the emergency vehicle present on the road. Their main
emphasis is on artificial neural networks (ANNs) without
delving into the potential of convolutional neural networks,
which have been proven to offer significantly enhanced
accuracy in detection and classification tasks.

To the best of our knowledge, the detection of emer-
gency keyword threats based on audio signals has not been
addressed sufficiently so far specifically for autonomous
vehicles. One of the use cases that we will discuss in this
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Fig. 1: Theoretical Design of the Experiment in a Vehicle.

manuscript is the emergency situation when a person inside
the vehicle has to make an emergency request, the vehicle
could recognize the command and take appropriate measures
to perform a full stop of the vehicle safely. Additionally,
improving overall sound detection and localization inside a
vehicle can be ported to improve and enhance the safety
of hands-free driving using speech rather than touch on
the infotainment system. The significance of this work will
improve the overall safety of passengers and drivers alike
with a hands-free system to provide redundancies when it
comes to autonomous vehicles. In the instance, that a driver
becomes incapacitated at the wheel or is unable to stop the
vehicle using touch, speech commands are another alternative
in the event of an emergency. Additionally, this system may
enhance machine learning research and applications in speech
and audio processing where less effort has been conducted
as compared to computer vision systems.

The rest of the paper is organized as follows. In Section
II, we present the design methodology. In Section III, we
discuss the digital signal processing performed on the audio
signals. In Section IV, we discuss the emergency keywords
detection experimental results and analysis before presenting
our conclusion in Section V.

II. DESIGN METHODOLOGY

The methodology stated below addresses the problems in-
herent in audio emergency detection in autonomous vehicles.
First, the hardware implementation needs to be set up with
multiple microphone arrays spread out throughout the inside
cabin of the vehicle, as shown in Fig. 1. These microphone
arrays are used for spatial selectivity of sound. Sounds
at different angles experience constructive interference and
destructive interference at other angles. Using beamforming
with these microphone arrays allows for the spatial selectivity
of sound to distinguish sounds from a particular direction and
focus on that sound. In a vehicle environment with substantial
sound signal interference, the task of segregating and priori-
tizing audio waveforms becomes crucial. This prioritization is
aimed at isolating the desired audio waveforms, minimizing
noise, and preparing the digital audio data for utilization in
training and classification models. To properly classify the
data from the vehicle for accurate emergency detection, a pre-
trained model is needed to distinguish emergency detection
sounds from other sounds. This trained model needs to
contain many different types of audio sounds and be classified
accurately. There are a number of different audio training
sets available, such as Youtube-8M. The Youtube-8M dataset

contains 237, 000 human-verified labels with 1000 different
classes of both sounds and images. Other datasets can be
used, but these datasets are used primarily for the verification
of sounds and initial training. A large portion of the training
set needs to be developed in-house by many different types
of people in order to improve accuracy and have a proper
and fair representation of the data to train and validate.

Next, the data from the microphone arrays are processed
using beamforming and noise cancellation to produce a
suitable waveform to be processed into an MFCC for the
neural network. The extracted features from the microphone
data will be fed into the pre-trained neural network to classify
the data to its appropriate class. If it is an emergency class,
then the autonomous vehicle will perform the emergency
procedure. If it is not an emergency class, then the vehicle
will not perform the emergency procedure.

Based on the research conducted, there are no datasets that
are specific to the speech commands such as “Stop the car!”
and “Pull over!” for training our proposed model. Therefore,
our experimental demonstration will be based on some real
constraints such as hardware configurations and audio dataset
of two different male personals.

III. DIGITAL SIGNAL PROCESSING

Through audio processing techniques, information can
be extracted from raw speech waveforms such as MFCCs,
spectrograms, the log-mel spectrum, and the mel-filter bank.
Speech signals from the time domain need to be preprocessed
before being used for feature extraction. Once processed they
are placed in a feature vector that will be used as an input
into the neural network, as shown in Fig. 2. These features
can be used to train and classify sounds to perform an action
inside the vehicle, such as in an emergency situation.

A. Beamforming
In order to process time-domain signals into the necessary

information, there needs to be some digital signal processing

Fig. 2: Audio processing from raw signal into features.
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done before they can be used as input into the neural net-
work. Beamforming is a significant digital signal processing
technique that can make a particular incoming signal on a
specific channel more distinguishable over other signals that
are captured by the microphone array. Specifically, minimum
variance distortionless response (MVDR) beamforming stood
out as one of the more useful spatial beamforming techniques
for our specific application. MVDR beamforming minimizes
array output power and maintains a distortionless response
toward the desired signal. A weighting vector guides a signal
toward a target direction to filter out unwanted external noise,
music, or other speech signals. MVDR was selected due to
the known angular direction of users’ speech input within the
vehicle. The beamforming algorithm prioritizes and enhances
the channel from the direction of known users while reducing
noise from other channels.

B. Noise Cancellation
Noise cancellation is performed with two major compo-

nents: the estimation of the noise power spectrum and the es-
timation of speech. Because speech can be estimated as noise
in certain environments, especially reverberant environments,
we don’t want those important speech signals suppressed.
The speech estimator is performed using an optimally mod-
ified log spectral amplitude (OM-LSA) developed by Cohen
[7]. The noise estimator is performed using a minimum
controlled recursive averaging (MCRA) function [7]. Noise
estimators for speech enhancement are usually performed
by estimating the noise power spectrum over the parts of
a signal that are known to have noise and do not contain
speech or by looking at specific frequencies in a signal that
are known to have noise. However, this severely limits the
ability of the noise estimator to perform in a more dynamic
environment, where there may not be speech and where
noise can occur independently and randomly. Probability and
statistical models perform much better when noise can occur
at any point throughout the signal. Figure 3 shows the linear
time-invariant system of the noise cancellation process from
noisy speech into clean speech.

C. MFCCs Signal Processing
The time-domain signals need to be framed, windowed

and converted to the frequency spectrum to produce spec-
trograms. These spectrograms can be further processed to
obtain information to be used for feature extraction, such as
the MFCCs, the log-mel spectrum, and the mel-filter bank.
We first process the audio by padding the signals in order
to make them all the same length. Then the audio signals

Fig. 3: Noise Cancellation Block Diagram.

are normalized by making the volume of the audio files
to a standard set level for all the audio signals utilized in
our training and data sets. In order to boost the signal’s
high-frequency components and leave out the low-frequency
components in their original states we utilize a finite impulse
response (FIR) as follows,

P (z) = 1− 0.97z + z2. (1)

Framing is done by converting a single audio array into
successive smaller audio arrays. We used Hamming window,

w(t) = 0.5 + 0.5 cos (2πt/T ), (2)

to smooth out audio frames. We perform a short-time Fourier
transform and then convert each frequency to mel scale. More
specifically, the mel scale is used to mimic the non-linear
human ear perception of sound by being more discrimina-
tive at lower frequencies and less discriminative at higher
frequencies. The conversion process from frequency to mel
scale is done as follows,

mel = 1127 log (1.0 + f/700), (3)

where the constants 700 Hz and 1127 Hz are defined for the
mel low and high frequencies. By this process, we actually
increase the power of spectral components of frequencies
within the human speech frequency range and reduce spectral
components in sound signals outside the human speech
frequency range. For the neural network model, we use the
MFCC representation of features. The MFCCs represent the
short-term power spectrum of a sound based on a linear
cosine transform of a log power spectrum on a nonlinear
mel scale of frequency.

MFCCs are useful for extracting features in speech recog-
nition systems. The combination of these different signal
processing techniques can be used as useful information to
be used in a CNN. Additional considerations need to be
taken into account when trying to process these audio/speech
waveforms, especially in noisy environments such as in a car
when music is playing, outside noise around the vehicle, and
with children talking.

IV. EXPERIMENTAL RESULTS

The goal of the subsequent sections is to show the proper
progression of a raw waveform with significant undesirable
signals into a signal that can be properly classified without
significant noise, music, and other human speech present in
the signal. Conditions used for this included a reverberating
environment similar to the cabin of a vehicle with music at
a much higher amplitude than the desired human speech.

A. Recording
A one-second audio waveform was recorded using the

Respeaker USB Mic Array v2.0 connected to the Jetson Nano
using a Python script. The parameters utilized included a
16, 000 sampling rate and 4 separate channels. Each channel
is one of the four microphone arrays on the Respeaker. A
higher sampling rate would have been ideal, but due to the
limitations of the hardware, it can only support up to 16, 000
samples per second. Figure 4 is a typical waveform that
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would be analyzed inside the cabin of a vehicle with multiple
sound sources. Three separate sound sources were producing
sound with two of the sound sources being music/noise and
the other being one person talking with another person. The
third sound source originates from a human user that we
want to focus on saying the speech command “Stop”. The
signal in Fig. 4 is most present between approximately 0.5
and 0.80 seconds. The music being played maintained a
consistent amplitude, as did the undesired background human
speech. Upon direct auditory perception of the unprocessed
audio waveform, the intended human speech lacks clarity and
struggles to be discerned by the human ear, while the music
stands out prominently, along with the undesirable human
speech.

B. MFCCs Results
Figures 5 and 6 portray the MFCCs of the raw and beam-

formed waveforms, respectively. Due to significant power
levels at many different frequencies throughout the time
range of the signal in Fig. 5, the model will not be able
to distinguish the human speech that is required to classify
the signal properly.

The MVDR Python module that we have implemented
focuses in a specific direction, specifically on the location
of the desired human speech command. The chosen direction
for this particular implementation was 225◦. The direction of
arrival (DOA) for each microphone had to be calculated and
validated through a separate program that uses DOA estima-
tion to calculate the particular direction that the Respeaker
recognizes in order to ensure that MVDR beamforming is
performing with accurately chosen parameters. For reference,
each microphone on the Respeaker is separated by 90◦

degrees with MIC1 located at 45◦, MIC2 located at 135◦,
MIC3 located at 225◦, and MIC4 located at 315◦.

C. Beamforming
There is an improvement in the overall spectral compo-

nents of the human speech command desired when analyzing
Fig. 6. More power is present at frequencies from 512 Hz
to 2048 Hz (the human speech frequencies within the mel
scale) in the time window of 0.5 seconds to 0.80 seconds
than in the signal from Fig. 6. Additionally, most of the
power present in the lower and higher frequencies below
and above the mel scale has been reduced, respectively.

Fig. 4: Raw One Second Recorded Waveform.

Fig. 5: Logarithmic mel frequency spectrogram of the raw
one recorded second waveform.

Fig. 6: Logarithmic mel frequency spectrogram of the
beamformed waveform.

The difference in audio quality of the desired human speech
command is more apparent when listening to the audio signal
with the human ear. By listening to the beamformed audio
signal, which is sampled and saved we observe a significantly
improved audio signal with the human speech signal coming
through clearer than before but the music and other noise
in the different focused directions is reduced. However, the
music is still within the signal because of the inherent near
proximity of the microphones on the Respeaker Mic Array.
Fully eliminating all power from undesired sound sources
without physical components attached to the microphone
array is challenging. Nonetheless, beamforming notably en-
hanced audio in specific directions compared to the original
recording. Additionally, digital signal processing can further
refine the extraction of desired audible signals.

D. Noise Cancellation and Representation of Feature Vectors

After beamforming, noise cancellation is utilized and the
MFCC is applied as shown in Fig. 7. The noise cancellation
appears to improve the audio at a degree greater than the
beamforming at first analysis. However, without the beam-
forming, the noise-canceled signal would have a significant
amount of powerful spectral components that affect the noise
estimation and degrade the overall amount of meaningful
speech that may or not be estimated as noise at particular
frequencies.

The MVDR reduces noise in specific channels, while noise
cancellation enhances the overall waveform quality. Despite
extensive testing, complete elimination of high-amplitude
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music and noise wasn’t achieved with MVDR beamforming
and noise cancellation combined.

E. CNN Training Model

Using the “wav” files stored in folders of each word the
MFCC’s are computed and stored in their respective folders.
The next step involves subjecting these input MFCC images
to a feature extraction process using a convolutional network.

Figure 8 shows the training and validation accuracy results
of the classification deep neural network. The results show
a validation accuracy (solid line) of about 90% is achieved
with the given 30 epochs.

F. Real Time Testing
Using the Nvidia Jetson Nano Board and the Mic Array,

the sound was captured at 1 second intervals. This is done
in a Python program with the properly configured settings
for the Respeaker Mic array. A while loop command first
prints “record” to the command prompt to alert the user
that it is about to record. This while loop also has a
record and a predict function. The record function is what
handles the recording which is saved into an “output.wav”
file. Once the sound is recorded then the prediction process
can take the next step. MFCCs are generated from the
sound clip recorded, these are used to predict based on the
trained model. MFCCs are generated from the sound clip
recorded which are used to predict based on the trained
model uploaded to the Nvidia Jetson Nano board. When the
program has finished the user gets a list of predicted words
and corresponding percentages. The program has the greatest
confidence in displaying the word with the highest percentage
as the predicted word. This is followed by an action that
should be taken. The start time and the execution time are
also printed to aid debugging and show the amount of time
it would take to do all of the recording, sound processing,
beamforming, noise cancellation, and then prediction based
on the model. It is to be noted that the overall time range
was not consistent in testing the continuous real-time and
occurred between the range of 3.2 seconds and 5.7 seconds
from observation. The most common occurrence of the
average time of completion of the system was approximately
4.1 seconds. Moreover, the one second of these times was
when the Respeaker Mic Array was recording for one second.
“Stop” and “Off” were chosen as the speech commands that

Fig. 7: Logarithmic mel frequency spectrogram of the
beamformed noise canceled waveform.

Fig. 8: Training (dotted line) and validation (solid line)
accuracy results of the CNN model.

would initiate the interruption for “Emergency, pulling over”.
All other words are classified as non-emergency and the
system keeps repeating. The real-time testing demonstrated
fairly accurate results, as we anticipated from our developed
model.

V. CONCLUSION

In this paper, we introduced and implemented an in-vehicle
system for detecting emergency threat keywords using ma-
chine learning and audio signal processing. This system is
designed to classify potential emergency keywords based
on audio waveforms while minimizing the impact of noise
and unintended user voice commands, reducing the likeli-
hood of false positives. We gathered and processed speech
commands from vehicle users via a built-in microphone
array, extracting key features from Mel spectrogram images.
These images were classified using a specialized pre-trained
CNN for emergency speech keywords. Results show over
90% average validation accuracy, ensuring precise detection
and classification of threat terms. This system seamlessly
integrates into an autonomous vehicle’s emergency protocol,
enabling safe stops to prevent harm or prompt swift response
from first responders.
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