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Abstract—This paper considers an unmanned aerial vehicle 

(UAV)-assisted millimeter-wave cellular network system. This 

system can provide a high frequency communication area 

around a user equipment (UE) by moving a relay station (RS) 

mounted on the UAV to an appropriate position and relaying 

signals. The RS communicates with the UE and a base station 

using narrow beams to compensate for large propagation loss in 

high frequency bands. Accurate prediction of the propagation 

environment is important for determining where to move the 

UAV-RS in this system. Therefore, we propose a radio 

propagation prediction method that utilizes received power 

information for multiple beams. The proposed method estimates 

the propagation conditions and parameters for measurement 

data by considering not only the relationship between distance 

and received power but also the power ratio between the beams. 

Subsequently, a blockage map indicating where a signal is 

blocked is constructed based on the estimated results. The 

propagation condition and the channel gain at a given position 

pair can be predicted using the estimated parameters and the 

constructed blockage map. Computer simulation results, 

assuming an urban environment, demonstrate that the proposed 

method can accurately predict the propagation environment 

even when there is a large variation in the received power. 

Keywords—UAV, relay communication, radio propagation 

environment prediction, millimeter-wave, beamforming 

I. INTRODUCTION 

Wireless communication on high frequency bands such as 
millimeter-wave bands has been specified for the fifth-
generation (5G) New Radio and large capacity cellular 
systems utilizing large bandwidth in the high frequency bands 
have been realized [1]. In the sixth-generation (6G) era, many 
use cases that require much larger system capacity such as a 
holographic communication, a digital twin and an extended 
reality are expected to be enabled [2]. Therefore, the use of the 
high frequency bands is still an essential component to 
accommodate the huge traffic required in the 6G era [1] [2]. 

However, coverage enhancement is challenging in the 
high frequency band communication due to large propagation 
loss and a blockage effect by obstacles such as buildings. In 
particular, since it is hard for a user equipment (UE) to 
increase transmission power considering its portability, unlike 
a base station (BS), an area where high data rate can be 
achieved at uplink is limited [3]. Although the received signal 
power can be improved by densely BS deployment, it is not 
desirable to deploy a large number of BSs from the viewpoint 
of  installation cost and power consumption.  

Therefore, we have been studying a unmanned aerial 
vehicle (UAV)-assisted cellular network system to improve 
uplink communication performance in the high frequency 
bands [4]. This system can provide a high frequency 
communication area around the user by moving a relay station 
(RS) mounted on the UAV to an appropriate position based on 

the UE position information and relaying signals between the 
BS and UE. The RS has a beamforming architecture and 
communicates with the UE and BS using narrow beams to 
compensate for large propagation loss. In this system, a radio 
propagation environment prediction is key factor to determine 
the destination of UAV-RS. Depending on a position pair of 
the UE and UAV-RS, signal quality may deteriorate due to, 
for example, a blockage of a line-of-sight (LOS) path. 
Therefore, it is important to know the radio propagation 
environment of the destination before moving. 

Radio propagation environment prediction methods have 
been studied in [5]-[10]. In [5], a Gaussian process based 
prediction method was proposed. In [6], a deep learning 
approach was studied to predict the propagation conditions, 
such as LOS and non-LOS (NLOS), and the channel gain. In 
[7]-[10], methods to estimate propagation parameters, such as 
path-loss exponent, for each propagation condition and then 
predict the channel gain based on the estimation results were 
proposed. Authors in [7] proposed a method to estimate the 
propagation condition for each measurement result and the 
propagation parameters by using the expectation-
maximization (EM) algorithm. In [8], a method to construct a 
blockage map indicating where a signal is blocked based on 
the propagation condition estimation results was proposed to 
predict the propagation condition at a given position pair. In 
[9], a method to alternatively optimize the propagation 
parameters and the blockage map was proposed. In [10], 
authors utilized not only radio-related information but also 
depth image information to construct the blockage map. 

However, beamforming has not been considered in any of 
the above papers. In our system where the beamforming 
technology is applied to the UAV-RS, different received 
power information can be obtained for each beam even if the 
position pair of the UE and UAV-RS is the same. Therefore, 
we propose a radio propagation prediction method that utilizes 
received power information for multiple beams. The proposed 
method estimates the propagation conditions and parameters 
for the measurement data by considering not only the 
relationship between distance and received power but also the 
power ratio between the beams. The estimation accuracy can 
be expected to improve by utilizing the relationship between 
the power ratio and the propagation condition, for example, 
the power is concentrated in the beam pointing in the direct 
wave direction in the LOS case. Subsequently, the blockage 
map is constructed based on the estimation results, similar to 
[10]. The propagation condition and the channel gain at a 
given position pair can be predicted using the estimated 
parameters and the blockage map.  Computer simulation 
results, assuming an urban environment, demonstrate that the 
proposed method can accurately predict the propagation 
environment even when there is a large variation in the 
received power.  
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The rest of this paper is organized as follows: Our assumed 
system model is described in Section II. The proposed method 
is introduced in Section III. The evaluation results are shown 
in Section IV and conclusions are presented in Section V. 

Notation: a is a vector, A is a matrix, AH is the conjugate 
transpose of matrix A. 

II. SYSTEM MODEL 

This paper considers the communication between a UAV-
RS and 𝑁𝑈𝐸  outdoor UEs in an urban environment where 
users are surrounded by square-shaped buildings as shown in 
Fig. 1. The RS has a uniform rectangular array (URA) for 
beamforming, and the UE has an omni-directional antenna. 

The RS collects reference signal received power (RSRP) 
information from all UEs at each of the 𝑁𝑅𝑆  measurement 
positions. At each measurement position, the RS transmits a 
reference signal using each of the B beams, and the UE reports 
the RSRP information measured for each beam to the RS. The 
RS stores a set of the RSRP information for all beams and the 
position information of the UE and RS, for each RS-UE 
position pair. The number of measurement position pairs  is 
denoted by N and 𝑁 = 𝑁𝑅𝑆𝑁𝑈𝐸.  

A received signal for the b-th beam at the n-th position pair 
is given by 

 𝑟𝑛,𝑏(𝑡) = 10
𝑃𝑇𝑋+𝛾

20 𝐡𝑛
𝐻𝐰𝑏𝑠(𝑡) + 𝜉(𝑡),  (1)  

where 𝑃𝑇𝑋, 𝛾, 𝐡𝑛, 𝐰𝑏 , 𝑠, and 𝜉 denote the transmission power 
in dB, the channel gain in dB including path-loss and 
shadowing effect, the channel vector, the beam weight vector, 
the reference signal which satisfies 𝐸[|𝑠(𝑡)|2] = 1, and the 
zero-mean additive white Gaussian noise, respectively. The 
channel vector can be modeled as 

 𝐡𝑛 = ∑ 𝑐𝑛,𝑙𝐚(𝛟𝑛,𝑙)
𝑁𝑝𝑎𝑡ℎ

𝑙=1 ,  (2)  

where 𝑁𝑝𝑎𝑡ℎ  and 𝐚(𝛟)  denote the number of path 

components and the array response vector, respectively. 𝑐𝑛,𝑙 

and 𝛟𝑛,𝑙 denote the complex path gain and the departure angle 

vector, which consists of the azimuth angle of departure 
(AoD) and the zenith angle of departure (ZoD), of the l-th path 
at the n-th position pairs, respectively. The AoD and ZoD of 
the direct wave path is given based on the direction to the UE 
from the RS, and those of the other paths are given by the 
wrapped-Gaussian distribution and Laplacian distribution 
based on the channel model in [11], respectively. The path 
gain is given by a zero-mean complex Gaussian distribution 
and the mean power of each path is normalized that the sum 
of the power is equal to one. 

The RSRP for the b-th beam at the n-th position pair is 
given by the following equation, according to [12]. 

 𝑅𝑆𝑅𝑃𝑛,𝑏 = 10
𝑃𝑇𝑋+𝛾

10 ∑ |𝑐𝑛,𝑙|
2

𝐺𝑏(𝛟𝑛,𝑙)
𝑁𝑝𝑎𝑡ℎ

𝑙=1
,  (3)  

where 𝐺𝑏(𝛟) denotes the beamforming gain of the b-th beam 
and is written by 

 𝐺𝑏(𝛟𝑛,𝑙) = |𝐚𝐻(𝛟𝑛,𝑙)𝐰𝑏|
2

,  (4) 

Note that we assume that the noise is eliminated owing to 
long-term measurement. Let 𝛒  be the 6-dimension vector 
which indicates the pair of the RS and UE positions. Generally, 
as described in  [7], the channel gain is modelled as  

 𝛾 = −𝛼 ∙ 10 log10 𝑑(𝛒) + 𝛽 + 𝜁,  (5) 

where 𝛼, 𝛽, 𝜁 , and 𝑑(𝛒)  denote the path-loss exponent, the 
mean channel gain at a reference point, the shadowing 
component, and the RS-UE distance, respectively. The 
shadowing effect is modeled as the Gaussian distribution with 
zero-mean and variance 𝜎2. Here, the propagation parameters 
(𝛼, 𝛽, 𝜎) are different for each propagation condition.  

In this study, we assumed an environment where a LOS 
path was blocked only by buildings and a propagation 
condition was uniquely given according to an RS-UE position 
pair, similar to [7]. Under this assumption, the  probability 
density function of the channel gain is given by 

 𝑝(𝛾) = 𝒩(𝛾|𝛼𝑘(𝛒), 𝛽𝑘(𝛒), 𝜎𝑘(𝛒), 10 𝑙𝑜𝑔10 𝑑(𝛒)),  (6)  

where 𝑘(𝛒)  and 𝒩(𝛾|𝛼, 𝛽, 𝜎, 𝐷)  denote the propagation 
condition for 𝛒  and the probability density function of the 
Gaussian distribution with mean �̅� = −𝛼𝐷 + 𝛽 and variance 
𝜎2. The number of propagation conditions is denoted by K, 
and K = 2 in this study (i.e., LOS/NLOS).  

 The problem in this paper is to predict the channel gain 
for a given position pair based on the measurement data. Note 
that we assumed the position information can be obtained with 
high accuracy by the global navigation satellite system and 
treated it as known value.  

III. PROPOSED METHOD 

This section describes the details of the proposed 
propagation environment prediction method. The proposed 
method learns the propagation environment based on the 
measurement data and then predicts. First, the propagation 
condition for each position pair and the propagation 
parameters for each condition are estimated. Next, the 
blockage map is constructed based on the estimated results. 
After that, the propagation condition and the channel gain at a 
given position pair can be predicted by using the estimated 
propagation parameters and the constructed blockage map. 
The overview of the proposed method is shown in Fig. 2. 

A. Estimation of the propagaton conditions and parameters 

Let 𝑦𝑛 and 𝐳𝑛 be the measured channel gain and the one-
hot label vector for the propagation condition at the n-th 
position pair, respectively. The k-th element of 𝐳𝑛, which is 
𝑧𝑛,𝑘, is one if and only if the propagation condition is k at the 

n-th position pair, otherwise, 𝑧𝑛,𝑘 = 0 . The conditional 

probability density function of 𝑦𝑛 given 𝐳𝑛 is given as 

 𝑝(𝑦𝑛|𝐳𝑛) = ∏ (𝒩𝑛,𝑘)
𝑧𝑛,𝑘𝐾

𝑘=1 ,  (7) 

where 

 𝒩𝑛,𝑘 = 𝒩(𝑦𝑛|𝛼𝑘 , 𝛽𝑘 , 𝜎𝑘, 𝐷𝑛),  (8) 

 
Fig. 1. Illustration of the system model in the urban environment. 
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 𝐷𝑛 = 10 log10 𝑑(𝛒𝑛).  (9) 

𝛒𝑛 denotes the n-th position pair. In the estimation process, 
since 𝐳𝑛 is unknown, we treat 𝐳𝑛 as a random variable vector 
according to the following probability density function, in 
which the probability that 𝑧𝑛,𝑘 = 1 is denoted as 𝜋𝑛,𝑘. 

 𝑝(𝐳𝑛) = ∏ (𝜋𝑛,𝑘)
𝑧𝑛,𝑘𝐾

𝑘=1 ,  (10) 

where ∑ 𝜋𝑛,𝑘
𝐾
𝑘=1 = 1. Here, the proposed method determines 

𝜋𝑛,𝑘  by exploiting the relationship between the power ratio 

between the beams and the propagation condition. For 
example, in the LOS case, since a strong direct wave path can 
be received, the measured RSRP for the beam pointing in the 
direct wave direction is expected to be much higher than 
others. On the other hand, in the NLOS case where the direct 
wave path is blocked, the measured RSRP is distributed across 
various beams. Therefore, we define the beam power ratio as 
the ratio of the RSRP of the beam pointing to the direct wave 
direction to the total RSRP of all beams, and give 𝜋𝑛,𝑘 as a 

function of the beam power ratio as follows. 

 𝜋𝑛,1 =
1

1+exp(𝜓2𝜔𝑛+𝜓1)
≝ 𝜋(𝜔𝑛 , 𝛙),  (11) 

 𝜋𝑛,2 = 1 − 𝜋(𝜔𝑛 , 𝛙),  (12) 

where 𝛙 = [𝜓1, 𝜓2]𝑇  denotes the weight parameter vector 
and 𝜔𝑛 denotes the beam power ratio at the n-th position pair.  
𝜔𝑛 is calculated as 

 𝜔𝑛 = 10 log10
𝑅𝑆𝑅𝑃𝑛,𝑏𝑛

∑ 𝑅𝑆𝑅𝑃𝑛,𝑏
𝐵
𝑏=1

,  (13) 

where 𝑏𝑛 denotes the index of the beam pointing to the direct 
wave path. 𝑏𝑛 is given as 

 𝑏𝑛 = argmax
𝑏

𝐺𝑏(�̂�𝑛),  (14) 

where �̂�𝑛 denote the vector of the direct wave path directions 
in the azimuth and zenith domains. These directions can be 
calculated from the position pair information.  

The proposed method estimates the parameter set 𝜃 =
{𝛼𝑘 , 𝛽𝑘, 𝜎𝑘 , 𝜓1, 𝜓2}  to maximize the log-likelihood function. 
The likelihood function is given by 

 𝑝(𝑌|𝜃) = ∏ ∑ 𝜋𝑛,𝑘𝒩𝑛,𝑘
𝐾
𝑘=1

𝑁
𝑛=1 ,  (15) 

where Y denotes the set of the channel gain. The problem to 
be solved is written by  

 �̂� = argmax
𝜃

ln 𝑝(𝑌|𝜃).  (16) 

Note that 𝜋𝑛,𝑘  in (11) and (12) is always satisfy the 

constraint that ∑ 𝜋𝑛,𝑘
𝐾
𝑘=1 = 1, thus the constraint is removed 

in the problem. Here, since the channel gain cannot be 
measured directly, we calculate the channel gain from the 
measured RSRP as 

 𝑦𝑛 = 10 log10
∑ 𝑅𝑆𝑅𝑃𝑛,𝑏

𝐵
𝑏=1

∑ 𝐺𝑏(�̂�𝑛)𝐵
𝑏=1

− 𝑃𝑇𝑋.  (17) 

To solve the problem, we introduce 𝑞(𝑍)  as the 
distribution function of Z which is the set of 𝐳𝑛 and define the 
function ℒ(𝑞, 𝜃) as follow. 

 ℒ(𝑞, 𝜃) = ∑ 𝑞(𝑍) ∙ ln
𝑝(𝑌,𝑍|𝜃)

𝑞(𝑍)𝑍   (18) 

Here, according to [13], the following equation is satisfied. 

 ln 𝑝(𝑌|𝜃) = ℒ(𝑞, 𝜃) − ∑ 𝑞(𝑍) ∙ ln
𝑝(𝑍|𝑌,𝜃)

𝑞(𝑍)𝑍   (19) 

In (19), since the second term of the right side is always 
zero or less, ℒ(𝑞, 𝜃)  gives the lower bound of the log-
likelihood. Therefore, the problem (16)  can be solved by 
iterating the expectation step (E-step) and the maximization 
step (M-step) in the well-known EM algorithm [13] as follows.  

Suppose that the current parameter set is 𝜃(𝑡) in the t-th 

iteration. In the E-step, ℒ(𝑞, 𝜃(𝑡)) is miximized with respect 

to 𝑞(𝑍)  while fixing 𝜃 = 𝜃(𝑡) . When 𝑞(𝑍)  is equal to the 
following posterior distribution, the second term in (19) is to 

be zero, then the maximum ℒ(𝑞, 𝜃(𝑡)) can be achieved.  

 𝑝(𝑍|𝑌, 𝜃(𝑡)) =
𝑝(𝑌,𝑍|𝜃(𝑡))

𝑝(𝑌|𝜃(𝑡))
= ∏

∏ (𝜋𝑛,𝑘𝒩𝑛,𝑘)
𝑧𝑛,𝑘𝐾

𝑘=1

∑ 𝜋𝑛,𝑘𝒩𝑛,𝑘
𝐾
𝑘=1

𝑁
𝑛=1 .  (20) 

In the M-step, ℒ(𝑞(𝑡), 𝜃) is maximized with respect to 𝜃 

while fixing 𝑞(𝑡) = 𝑝(𝑍|𝑌, 𝜃(𝑡)). By substituting 𝑞(𝑡) to (18), 

the following equation is obtained. 

 
ℒ(𝑞(𝑡), 𝜃) = 𝑄(𝜃, 𝜃(𝑡)) 

− ∑ 𝑝(𝑍|𝑌, 𝜃(𝑡)) ∙ ln 𝑝(𝑍|𝑌, 𝜃(𝑡))𝑍 ,   
(21) 

where 

 
𝑄(𝜃, 𝜃(𝑡)) ≝ ∑ 𝑝(𝑍|𝑌, 𝜃(𝑡)) ∙ ln 𝑝(𝑋, 𝑍|𝜃)𝑍   

= ∑ ∑ 𝑧�̅�,𝑘
(𝑡+1)

(ln 𝜋𝑛,𝑘 + ln 𝒩𝑛,𝑘)𝐾
𝑘=1

𝑁
𝑛=1 .  

(22) 

Here, 𝑧�̅�,𝑘
(𝑡+1)

 denotes the responsibility of the Gaussian 

mixture model. Since the posterior distribution is independent 

for each data in (20), 𝑧�̅�,𝑘
(𝑡+1)

 is given by 

 
𝑧�̅�,𝑘

(𝑡+1)
≝ ∑ 𝑧𝑛,𝑘𝑝(𝑍|𝑌, 𝜃(𝑡))𝑍 =

∑ 𝑧𝑛,𝑘𝑝(𝑧𝑛|𝑦𝑛, 𝜃(𝑡))𝑧𝑛
=

𝜋𝑛,𝑘𝒩𝑛,𝑘

∑ 𝜋𝑛,𝑗𝒩𝑛,𝑗
𝐾
𝑗=1

.  
(23) 

Since the second term of the right side in (21) does not 
depend on 𝜃, the problem in the M-step can be written by  

 𝜃(𝑡+1) = argmax
𝜃

𝑄(𝜃, 𝜃(𝑡)).  (24) 

The optimum values of 𝛼𝑘 , 𝛽𝑘, and 𝜎𝑘 can be obtained by 
the following equations, similar to [7]. 

 [
𝛼𝑘

(𝑡+1)

β𝑘
(𝑡+1)

] = 𝐀−1𝐛,  (25) 

 

Fig. 2. Overview of the proposed method.  
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 𝜎𝑘
(𝑡+1)

= √
∑ �̅�𝑛,𝑘

(𝑡+1)
{𝑦𝑛+𝛼𝑘

(𝑡+1)
𝐷𝑛−𝛽𝑘

(𝑡+1)
}

2
𝑁
𝑛=1

∑ �̅�𝑛,𝑘
(𝑡+1)𝑁

𝑛=1

,  (26) 

where 

 𝐀 = [
∑ 𝑧�̅�,𝑘

(𝑡+1)
𝐷𝑛

2𝑁
𝑛=1 − ∑ 𝑧�̅�,𝑘

(𝑡+1)
𝐷𝑛

𝑁
𝑛=1

− ∑ 𝑧�̅�,𝑘
(𝑡+1)

𝐷𝑛
𝑁
𝑛=1 ∑ 𝑧�̅�,𝑘

(𝑡+1)𝑁
𝑛=1

],  (27) 

 𝐛 = [
− ∑ 𝑧�̅�,𝑘

(𝑡+1)
𝐷𝑛𝑦𝑛

𝑁
𝑛=1

∑ 𝑧�̅�,𝑘
(𝑡+1)

𝑦𝑛
𝑁
𝑛=1

].  (28) 

For 𝛙, the local optimum value can be achieved by using 
the gradient descent method to the problem that min𝛙(−𝑄). 

The update process is written by 𝛙 ← 𝛙 − 𝜂𝛙′, where 𝜂 is 
the learning rate and  

 𝛙′ =
∂(−𝑄)

∂𝛙
= [

∑ �̅�𝑛
(𝑡+1)𝑁

𝑛=1

∑ 𝜔𝑛�̅�𝑛
(𝑡+1)𝑁

𝑛=1

],  (29) 

 �̅�𝑛
(𝑡+1)

= 𝑧�̅�,1
(𝑡+1)

(1 − 𝜋(𝜔𝑛 , 𝛙)) − 𝑧�̅�,2
(𝑡+1)

𝜋(𝜔𝑛 , 𝛙),  (30) 

The initial value is given by  

 𝛙0 = [ln
∑ �̅�𝑛,2

(𝑡+1)𝑁
𝑛=1

∑ �̅�𝑛,1
(𝑡+1)𝑁

𝑛=1

, 0]

𝑇

.  (31) 

Note that when using 𝛙 = 𝛙0, 𝜋𝑛,𝑘 is independent for 𝜔𝑛 

and is written by substituting (31) to (11) and (12) as the 
following equation, which is the same definition used in [7].  

 𝜋𝑛,𝑘
(𝑡+1)

=
1

𝑁
∑ 𝑧�̅�,𝑘

(𝑡+1)𝑁
𝑛=1 ∀𝑛.  (32) 

After convergence, the propagation condition 𝑘𝑛 for each 
position pair is estimated by  

 𝑘𝑛 = argmax
𝑘

𝑧�̅�,𝑘.  (33) 

Here, which value of k corresponds to LOS is uncertain in 
this process, thus, in the proposed method, the value of k for 
which the path-loss exponent 𝛼𝑘  is the nearest to the free 
space path-loss exponent which is two is regarded as LOS and 

denoted by 𝑘(𝐿𝑂𝑆). The value of k corresponding to NLOS is 

denoted by 𝑘(𝑁𝐿𝑂𝑆). 

B. Constructon of the blockage map 

Based on the estimated propagation conditions, the 
proposed method constructs the blockage map. To construct it, 
the evaluation space is partitioned into individual grids of 
equal volume where each grid is identified by the index m. 𝑝𝑚 
denotes the blockage probability at the m-th grid. 

The basic concept of the map construction is to assign a 
low probability to grids on a straight path between the UE and 
RS where the propagation condition is LOS, assuming that 
there are no obstacles on the path, similar to [10]. However, if 
some of the estimated propagation conditions are incorrect, a 
low blockage probability may be assigned to a grid where 
there is an obstacle and a signal is actually blocked. Therefore, 
the proposed method also considers NLOS data and increases 
the blockage probability at grids on an NLOS path to 
compensate for the negative effect of the misestimation from 
NLOS to LOS. Additionally, the use of incorrect data is 
suppressed by selecting data for the map construction 
according to their responsibility 𝑧�̅�,𝑘.  

The map is constructed as follows. First, the data of which 
responsibility corresponding to the estimated condition is 
equal to or greater than a threshold 𝜆 is selected for the map 
construction. Next, the map is initialized by assigning an 
initial value above 0.5 to all grids. Finally, the map is updated 
according to the propagation condition and the RS-UE path of 
each of the selected data. Similar to [10], for LOS path data, 
all grids above or on the path are updated under the 
assumption that there are no obstacles above the LOS path. 
For NLOS, all grids below or on the path are updated. The 
map updated by the n-th data is given as 

 𝑝𝑚 ← {
(1 +

1−𝑝𝑚

𝑝𝑚
∙

1−𝜇𝑛

𝜇𝑛
)

−1

, (𝑖𝑓 𝑚 ∈ ℳ̅(𝛒𝑛))

𝑝𝑚 , (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
,  (34) 

where ℳ̅(𝛒𝑛) denotes the set of grids above or on the path of 

the n-th data if 𝑘𝑛 = 𝑘(𝐿𝑂𝑆), otherwise, the set of grids below 

or on the path. And 𝜇𝑛 = 𝜇(𝐿𝑂𝑆) if 𝑘𝑛 = 𝑘(𝐿𝑂𝑆), otherwise,
𝜇𝑛 = 𝜇(𝑁𝐿𝑂𝑆), where 𝜇(𝐿𝑂𝑆) and 𝜇(𝑁𝐿𝑂𝑆) denote the updating 
rates for LOS and NLOS, respectively.  

The hyperparameters (𝜇(𝐿𝑂𝑆), 𝜇(𝑁𝐿𝑂𝑆), 𝜆) are determined 

via cross-validation. Note that when 𝜇(𝑁𝐿𝑂𝑆) = 0.5 and 𝜆 ≤
0.5, this process is the same as that in [10]. 

C. Prediction of the radio propagation environment 

The propagation condition and the channel gain at a given 
RS-UE position pair 𝛒 can be predicted using the estimated 
propagation parameters and the constructed blockage map. 
The propagation condition is predicted as follow. 

 �̂� = {
𝑘(𝐿𝑂𝑆)   , max

𝑚∈ℳ(𝛒)
𝑝𝑚 ≤ 0.5

𝑘(𝑁𝐿𝑂𝑆) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  ,  (35) 

where ℳ(𝛒) denotes the set of grids on the RS-UE path. The 
channel gain is calculated using the propagation parameters 
corresponding to the predicted propagation condition. The 
predicted channel gain is given by 𝛾 = −𝛼�̂�𝐷(𝛒) + 𝛽�̂�. 

IV. EVALUATION 

A. Evaluation Assumptions 

We conducted computer simulations to evaluate the 
prediction accuracy of the proposed method in an urban city 
area modeled in [14], where square buildings of width W are 
arranged in a two-dimensional array structure at equal 
intervals S in a square area of length L. We assumed that L = 
200 [m], S = 20 [m], and W = 25 [m] based on the parameters 
in the urban scenario in [14]. The height of the buildings was 
given by the Rayleigh distribution with a mode of 15 [m] and 
restricted from 5 [m] to 35 [m].  

The simulation assumptions are listed in Table I. The 
propagation parameters (𝛼𝑘, 𝛽𝑘 ) were set according to the 
UMi street canyon model in [11], and a common shadowing 
deviation value 𝜎  was used for both LOS/NLOS. The RS 
measurement positions were uniformly distributed in the 
whole area, and the UEs were uniformly distributed in the area 
where there were no buildings. In the evaluation, assuming 
that a sufficient amount of data was collected over time, 𝑁𝑅𝑆 
and 𝑁𝑈𝐸 were given as shown in the table. A study assuming 
a small number of data is a subject for future work.  
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B. Evaluation Results 

First, we evaluated the estimation accuracy of the 
propagation conditions. For comparison, a conventional 
method where the beam power ratio was not considered and 
𝜋𝑛,𝑘 was common for all data as in [7] was also evaluated. Fig. 

3 shows the mean estimation error rate on the propagation 
conditions for the training dataset. Although the error rate of 
both methods is almost the same when 𝜎 is small, the error 
rate of the conventional method becomes much worse as 𝜎 
increases. On the other hand, in the proposed method, the 
propagation conditions can be estimated accurately even when 
𝜎 is large, since the beam power ratio is considered.  

We then evaluated the root mean squared error (RMSE) 
between 𝛾 and �̅� as the prediction performance similar to [7]. 
In Fig. 4, the RMSE for the test dataset for both cases where 
𝜆 was set to a value 𝜆∗  determined via cross-validation and 
where 𝜆 was fixed at 0.5 are plotted. Note that in the case 
where 𝜆 = 0.5, all data were used for the map construction 
without considering the responsibility. From Fig. 4, it can be 
seen that the proposed method can predict the channel gain 
with better accuracy than the conventional one. As 𝜎 increases, 
since the estimation accuracy becomes worse as shown in Fig. 
3, the prediction accuracy also deteriorates greatly if the map 
is constructed using all data. However, by selecting data 
according to the responsibility, the prediction error is 
suppressed even in the case with a large 𝜎. When 𝜎 = 6 dB, 
‘prop. (𝜆 = 𝜆∗)’ can improve the RMSE of the channel gain 
by about 3.6 dB compared with ‘conv. (𝜆 = 0.5)’.  

V. CONCLUSION 

This paper proposed the radio propagation environment 
prediction method based on the received power information 
for multiple beams measured at various RS-UE position pairs 
in the UAV-assisted cellular network systems. The computer 
simulation results, assuming the urban environment, 
demonstrated that the proposed method can accurately predict 
the propagation environment even when there is a large 
variation in the received power.  
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TABLE I.  SIMULATION ASSUMPTIONS 

Parameter Value 

Antenna height RS: 40 [m], UE: 1.5 [m] 

Antenna configuration 8x8 URA (0.5 wavelength spacing) 

Number of beams (B) 64 

Propagation parameters 𝛼1 = 2.1, 𝛽1 = −61.34  
𝛼2 = 3.53,  𝛽2 = −53.22  

𝜎1 = 𝜎2 = �̅�, �̅� ∈ {2,4,6} [dB] 

Channel parameters 𝑁𝑝𝑎𝑡ℎ = 12, K-factor: 9 [dB] 

Azimuth angular spread: 15 [deg.] 

Zenith angular spread: 5 [deg.] 

Number of training data  𝑁𝑅𝑆 = 49, 𝑁𝑈𝐸 = 4096  

Number of test data 𝑁𝑅𝑆 = 10, 𝑁𝑈𝐸 = 1000  

 

 

Fig. 3. The LOS/NLOS estimation error rate vs. �̅�. 

  
Fig. 4. The RMSE of the channel gain vs. �̅�. 
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