
Implementation of Proxy to Make Content Shared
on BitTorrent Retrievable from CCN

Kohei Okazaki
Graduate School of Information Sciences

Hiroshima City University
Hiroshima 731-3194 JAPAN

okazaki@net.info.hiroshima-cu.ac.jp

Junichi Funasaka
Graduate School of Information Sciences

Hiroshima City University
Hiroshima 731-3194 JAPAN

funa@hiroshima-cu.ac.jp

Abstract—In the modern era, it’s widely acknowledged that
the Internet Protocol (IP), originally designed for location-based
communication, is increasingly misaligned with today’s content-
centric network usage. This divergence has led to the emergence
of partial solutions like Content Delivery Networks (CDNs) and
Peer-to-Peer (P2P) protocols such as BitTorrent. While these
technologies address the immediate need for efficient content
delivery, they do not offer a fundamental resolution to the
issues arising from the growing disconnect between IP’s original
design philosophy and contemporary network demands. Recent
years have seen the advent of new networking architectures
like Information-Centric Networking (ICN) and Content-Centric
Networking (CCN). These groundbreaking designs aim to align
network operations more closely with content-centric usage
patterns. However, they struggle with compatibility issues when
interfacing with the existing IP-based systems, a challenge that
hinders their widespread adoption. This study introduces a
proxy implementation that allows content from BitTorrent to
be retrieved by CCN clients, filling a significant gap in the
literature by confirming the feasibility of such an approach.
Our experimental results indicate that the proxy enables content
retrieval at about 85% of BitTorrent’s standalone performance,
accounting for inevitable overheads. Moreover, our data show
that when CCN content caches are available, retrieval speeds
can indeed surpass those of standalone BitTorrent.

Index Terms—Proxy Design, Information-Centric Networking
(ICN), Content-Centric Networking (CCN), Peer-to-Peer (P2P),
BitTorrent, Network Architecture

I. INTRODUCTION

Since its inception, the Internet has undergone significant
developments, becoming an indispensable means of commu-
nication over the last few decades. Initially dominated by
text-based information retrieval and email communication,
modern-day Internet usage now encompasses a myriad of
applications, such as high-definition video streaming, real-time
online gaming, and even Internet of Things (IoT) devices.
Particularly noteworthy is the exponential surge in demand
for large-volume content like videos, a trend corroborated by
Cisco’s recent reports [1].

This evolution has exposed a misalignment between the
original location-centric design of the IP protocol and the
content-centric needs of contemporary Internet usage. To
bridge this gap, technologies like Content Delivery Net-
works (CDNs) and Peer-to-Peer (P2P) protocols have been
developed. However, these technologies introduce their own

challenges. CDNs often differ in architecture depending on
the service provider, leading to operational complexity and
elevated costs. P2P protocols, notably BitTorrent, suffer from
efficiency constraints unless participated in by a large user
base.

Against this backdrop, Information-Centric Networking
(ICN) or Content-Centric Networking (CCN) is proposed as
a new network architecture [2] [3]. This architecture assigns
names to content and performs routing and caching based on
these names, making it highly suitable for today’s content-
driven communication needs. However, this novel architecture
lacks fundamental compatibility with existing IP networks,
a factor that has historically impeded the adoption of new
technologies, as witnessed in the transition from IPv4 to IPv6.

The contributions of this paper are proposing a proxy
which enables CCN clients to retrieve the contents shared by
BitTorrent on the IP network, designing and implementing a
proxy program on a real operating system, and evaluating the
performance of the implementation to confirm the effective-
ness of our proposal. Our proxy provides a measure bridging
the existing gap between ICN/CCN and conventional IP-based
P2P protocols like BitTorrent.

The remainder of this paper is organized as follows: Section
Ⅱ presents an overview of related work in the field. In Section
Ⅲ, we elaborate on the design considerations for the proxy.
Section Ⅳ describes the experimental evaluation conducted to
assess the proxy’s performance, followed by a discussion of
the results. Finally, SectionⅤ concludes the paper and outlines
future directions for research.

II. RELATED WORK

In the realm of network protocols, Content-Centric Net-
working (CCN) stands out as a groundbreaking shift. Unlike
traditional IP networking, which concerns itself with where to
send the data, focusing on the destination IP address, CCN
changes the narrative to what is being sent̶ the content.
This mechanism is especially fitting in our data-hungry world
where large volumes of content̶videos, texts, images̶are
disseminated across vast geographical locations. Notably, the
naming scheme in CCN is content-focused, assigning a unique
identifier to each content piece, which forms the basis for
request and transfer.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 938

Fig. 1. Naming conventions for identifying BitTorrent content within CCN

Contrastingly, BitTorrent is another giant but in the realm
of P2P file-sharing protocols. Its design optimizes the distri-
bution of large files across distributed networks. It employs
a hybrid architecture that incorporates a centralized server
called a tracker, which aids peer coordination. One of the
distinguishing features is the fragmentation of large files into
smaller parts called ’pieces,’ typically ranging from 256KB
to 2MB. Each of these pieces is verified through unique hash
values, maintaining the integrity of the downloaded content.

While both CCN and BitTorrent offer unique attributes
that cater to the specific needs of content distribution, they
inherently function based on different sets of protocols, mak-
ing integration a challenge. Bridging this gap is an area of
ongoing research. Fahrianto and Kamiyama [4] proposed a
dual-channel translation gateway between IP and NDN, with
NDN being one of the instantiations of Information Centric
Networking (ICN). Their innovation lies in enabling seamless
bi-directional accessibility between IP and NDN. However,
their design is not straightforward; mutual conversion between
IP packets and NDN ones presents challenges since a computer
can store multiple contents, meaning one content name does
not necessarily correspond to one computer or IP name. In
contrast, BitTorrent has torrent information uniquely identify-
ing each content, demonstrating a high degree of compatibility
with ICN/CCN concepts.

Notable studies like [5] and [6] have made strides in inte-
grating HTTP-based systems with CCN. While these works
offer efficient means of data transfer by converting HTTP
requests to CCN Interest packets and vice versa, they face
challenges in handling dynamic content. Moreover, HTTP-
based systems frequently struggle with scalability issues,
particularly when dealing with large-capacity contents. These
limitations make CCN an attractive alternative for handling
such content efficiently, which is the focus of our approach.

Our work takes a step further to fill this integration void.
We aim to design and implement a proxy mechanism that can
successfully integrate the high efficiency of CCN’s content-
centric design with the robustness and widespread adoption of
BitTorrent in P2P file sharing. To the best of our knowledge,
this is the first attempt to make shared contents among
BitTorrent peers accessible from CCN.

Fig. 2. Sequence Diagram

III. PROXY DESIGN

BitTorrent and Content-Centric Networking (CCN) serve
as effective paradigms for content distribution, albeit with
divergent methodologies. While BitTorrent excels with its ef-
ficient content-sharing mechanism, CCN offers the advantage
of name-based addressing. The challenge lies in integrating
these fundamentally different protocol semantics to harness the
strengths of both. This section presents a proxy design aimed
at this integration, assuming that routing is pre-configured
and the proxy retains relevant torrent files for conversions.The
implementation code is publicly available on GitHub12.

A. Role of the Proxy

The proxy serves as a mediator between CCN and Bit-
Torrent networks. Upon receiving an Interest packet from
CCN, the proxy joins the corresponding BitTorrent swarm to
begin fetching content ”pieces”. Each fetched piece undergoes
integrity verification before being relayed back to the CCN
network as a Data packet.

The process of retrieving content from a BitTorrent peer by
a CCN client is depicted in the sequence diagram presented
in Figure 2. When joining a BitTorrent swarm, if the proxy is
not already a participant, it initiates the download process by
querying the tracker for peer information. Subsequently, after
performing handshakes with the proxy and the introduced peer,
the proxy requests the first piece from the BitTorrent peer. It
is important to emphasize that the time required to access the
tracker and complete the handshake with the BitTorrent peer
is unavoidable during the initial content access phase. Once
the first piece is retrieved, subsequent pieces can be directly
requested from the BitTorrent peer.

B. Protocol Conversion Mechanisms

1) Name Mapping: BitTorrent uniquely identifies content
using an info hash. By retaining this info hash as a part of the
CCN content name, we establish a direct mapping between

1https://github.com/Marie673/Torrent Proxy.git
2https://github.com/Marie673/ccn torrent client.git

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

939

BitTorrent and CCN semantics. Additionally, the piece number
is also incorporated into the CCN name to facilitate efficient
content retrieval. The CCN naming follows the pattern:
ccnx:/BitTorrent/{info_hash}/{piece_index}.
Figure 1 shows a concrete example of name mapping.

2) Content Verification: Stored within each torrent file are
the hash values corresponding to individual pieces of content.
Upon receipt of a piece, the proxy uses these hash values to
verify the integrity of the data. Should the verification succeed,
the data is then forwarded into the CCN network as a Data
packet.

C. Client Design and Role

Beyond serving as a proxy, the system also involves the
development of a specialized client. The client is responsible
for parsing torrent files and subsequently issuing Interest
packets to retrieve content. This essentially makes the client
an active requester in the CCN network, targeting the proxy to
fulfill its content requirements. Additionally, the client imple-
ments CCN’s congestion control using the CUBIC algorithm,
ensuring efficient and stable data flow within the network.

D. Data Chunking and Efficiency

BitTorrent typically deals with content pieces that are
further divided into smaller blocks, usually of size 32KB.
However, aligning this directly with CCN’s chunk size would
be inefficient. Following previous research [6], our approach
delivers piece data in 4096B units, which better suits the CCN
architecture for optimal data flow.

E. Implementation

The implementation of this research is based on cefore
(v0.9.0b), a communication software for ICN/CCN devel-
oped by NICT. Cefore is advantageous in enhancing inter-
operability between protocols as it adheres to the specifications
of CCN.

1) Software and Packages Utilized: For the actual develop-
ment of the proxy and client, Python 3.10 is employed along
with the cefore application development package, cefpyco
(v0.6.3). Cefpyco provides functionalities to easily send and
receive CCN Interest and Data packets, allowing seamless
integration with cefore.

2) Detailed Implementation of Proxy: Upon receiving an
Interest from CCN, the proxy joins the corresponding BitTor-
rent network to fetch the required content pieces. This process
also involves protocol translation between CCN and BitTor-
rent, facilitated by cefpyco. The APIs provided by cefpyco
make packet parsing, and data generation and transmission
straightforward.

3) Detailed Implementation of Client: The client also uti-
lizes cefpyco for its operations. Through cefpyco, the client
parses the torrent files and issues Interest packets for the re-
quired content. Again, API functionalities simplify the efficient
retrieval of the needed content pieces.

Fig. 3. Experimental Environment (Node Configuration 1)

Fig. 4. Experimental Environment (Node Configuration 2)

4) Data Integrity and Chunk Size Optimization: After
verifying the integrity of the retrieved content, the proxy
transmits it as CCN Data using cefpyco. Additionally, based
on existing research, the chunk size is optimized to 4096B,
thereby enhancing the efficiency of data transfer.

Through the utilization of cefore and cefpyco, the efficient
integration of CCN and BitTorrent is made possible, realizing
the implementation of the proxy and client proposed in this
research.

IV. EXPERIMENT AND DISCUSSION

To utilize BitTorrent content from CCN, we prepare a test-
bed network as shown in Figure 3. The test-bed includes
three nodes: CCN client, proxy node involving CCN router
and proxy functions, and BitTorrent peer. The proxy node has
CCN router function which inherently holds caching ability
and proxy function which is mainly focused in this paper and
convert BitTorrent pieces into CCN packets, and the BitTorrent
peer has the whole content and provides its pieces for the
proxy node. In addition, the node also functions as a tracker.

The experimental environment and implementation details
are as follows. We set up the test-bed using Oracle VM
VirtualBox VM Selector v6.1.38 Ubuntu. Each node is a
Ubuntu 20.04 virtual machine connected through an internal
network. Both the peer-proxy link and the CCN router-CCN
client link have a bandwidth limit of 100 Mbps and a latency of
10 ms. Our BitTorrent implementation is based on qBitTorrent
(v4.5.5) 3. For the CCN infrastructure, we use cefore.

The hardware specifications of the experimental machine are
as follows: CPU is an Intel Xeon W-2295 with an operating
frequency of 3.0GHz, consisting of 18 cores and 36 threads,
and the system memory is 192GB DDR4-2933.

3https://www.qbittorrent.org/

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

940

Fig. 5. Comparison of data acquisition times

Fig. 6. Comparison of throughput

In an experiment, the CCN client parses the torrent file
for the target file and requests each piece in order by an
Interest packet. When the Interest packet reaches the proxy,
the proxy retrieves the corresponding data from the BitTorrent
peer, converts them into CCN packets, and sends them into
CCN as Data packets. It should be noted that the torrent file
is pre-obtained and Interest packet routing is directed towards
the proxy for this experiment.

Regarding the measurement of retrieval time, the measure-
ment starts when the CCN client issues the first Interest packet
after completing the analysis of the torrent file. The measure-
ment concludes when all the content has been retrieved and
its integrity has been verified by the client. This approach
provides a comprehensive measurement of the time required
for complete data retrieval and verification.

For measurements, we share content sizes of 128MB,
256MB, 512MB, 1024MB, and 2048MB and take the average
retrieval time over five trials.

We also measure the content retrieval time on a traditional
IP network using BitTorrent, as illustrated in Figure 4, to
compare it with the case using the proxy. In Figure 4, each
link is set to have a bandwidth limit of 100Mbps and a latency
of 10ms.

Through the experiments, we have confirmed that our pro-
posed proxy can convert BitTorrent pieces into CCN packets
and the CCN client can retrieve the content shared within the
BitTorrent peers without any failure. We compare the retrieval

cefore BitTorrent Proxy

Fig. 7. Comparison of enhanced throughput

time for cefore, BitTorrent, and proxy in Figure 5. Moreover,
by dividing the content size by each retrieval time, we compare
the calculated throughput in Figure 6. In these figures, the
legend ”proxy” corresponds to the scenario where content is
retrieved from CCN through the proxy that we designed and
implemented for this study. The ”BitTorrent” label represents
the case where content is retrieved solely using BitTorrent over
IP. Lastly, the ”cefore” label indicates the scenario where all
the content is retrieved from CCN (cefore) and all necessary
caches are present in the network.

From Figure 5, it can be observed that the data retrieval
time is shortest when utilizing CCN’s caching, followed by
traditional BitTorrent, and lastly content retrieval via the proxy.
Based on retrieval times, the throughput comparison in Figure
6 shows that the throughput is consistently around 90Mbps
when cache exists in CCN. In both BitTorrent and proxy-
mediated data retrieval, the throughput tends to increase in
proportion to the data size, especially for smaller (128MB)
and larger data sizes (1024MB, 2048MB). This is because
the communication overheads associated with trackers in Bit-
Torrent and peer handshaking significantly affect the total
communication time for sharing content. Additionally, the
throughput performance when using a proxy is 72% of that of
BitTorrent for 128MB content and 89% for 2048MB content.

Following the release of the new version of cefore and
cefpyco in 2023, we have continued to advance our proxy
program to augment system performance. Figure 7 illustrates
the improved performance for Cefore alone, BitTorrent alone,
and our proxy. As depicted in Fig. 7, the performance of
cefore experiences an increase due to the version update. In
addition, the performance in the topology employing our proxy
is as close as that of BitTorrent alone. This can be because
enhancements in our asynchronous processing in Python3
were effective to apply the new functionalities introduced in
the updated cefpyco. In this case, the throughput performance
achieved when utilizing our proxy is 94% of that observed

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

941

Fig. 8. Time Required for Proxy to Receive Interest and Send Data When
Content Exists in Cache

with BitTorrent for a 2048MB content.
Figure 8 shows the time elapsed from the reception of the

Interest packet to the transmission of the corresponding Data
packet when the proxy holds the content. This was tracked
over 1000 chunks. The average time for this operation is 0.294
ms, with a standard deviation of 0.301 ms. The large standard
deviation can be attributed to the presence of significant
outliers. These results indicate that the time required to decode
the Interest packet and return the corresponding Data is around
0.3 ms. This latency is considered negligible, especially when
compared to other operational latency in networking tasks.

The experimental results demonstrate that when retrieving
content shared via BitTorrent through a proxy, it is possible to
achieve approximately 94% of the performance compared to
traditional BitTorrent sharing. Furthermore, it was also shown
that if caching exists in CCN, data retrieval can be carried out
more efficiently than with BitTorrent. Based on these findings,
we conclude that the BitTorrent content, which cannot be
retrieved without our proposed proxy, can be successively
provided for CCN world at a practically acceptable perfor-
mance under the conditions our experiments investigated. Our
proxy can enrich the shared contents within CCN worlds by
retrieving extensive contents shared via BitTorrent in the IP
world. Additionally, our proxy has the potential to mitigate
redundant content delivery between Autonomous Systems
(ASes) generated by BitTorrent. By introducing our proxy
at the boundary of ASes to provide contents for CCN nodes
within an AS and replacing BitTorrent nodes in an AS with
CCN nodes, we can realize efficient content delivery by CCN
cache trees.

In this paper, we have proposed a novel proxy solution de-
signed to make shared contents on BitTorrent swarms available
from CCN. We discuss access load to contents in this context.
Within a P2P network like BitTorrent, access to content hold-
ers is inherently distributed across a multitude of peer nodes.
Conversely, in a CCN, the burden on content holders can be
alleviated, particularly as downstream caches accumulate a
substantial content repository. However, when a substantial
demand arises for a lot of content sourced from different
BitTorrent swarms via CCN, a single instance of our proposed
proxy may prove insufficient for practical application. In such

Fig. 9. Multiple instances of proposed proxies to manage a substantial influx
of accesses to contents shared by BitTorrent peers

scenarios, we present the option to deploy multiple instances
of our proposed proxy, as illustrated in Figure 9. As depicted in
Figure 9, we can establish two or more proxies, such as (A) or
(C), to retrieve diverse content from BitTorrent swarms staying
over the IP world. Furthermore, when the target content
within a BitTorrent swarm is currently being shared and each
proxy possesses only partial content, we present alternative
strategies, involving simultaneous content retrieval through
the upper layer of the routing tree (C) and the intermediary
layer (B). Note that proxy (B) accepts interests from CCN
clients and forwards them to the upper layer. Note that our
current implementation does not support the functionality of
an intermediate content router within CCN. It should be worth
noting that multiple proxies may host duplicated content if
they are independently deployed by various organizations. We
do not view this as a critical issue; that must be solved by CCN
researchers as an ”interest routing” issue for multiple content
sources if it is challenging. However, cooperative deployment
of multiple proxies stands as a prospect within our future
research plan.

We plan to extend our proxy functions to adapt to Web
applications. Despite the existence of previously proposed
HTTP-CCN gateways [5] [6], enhancing our proxy to fetch
shared content from web servers for CCN users is a valu-
able extension. Furthermore, considering that popular content
shared by Content Distribution Networks (CDN) can be treated
as identifiable copies, it is better to retrieve the contents
through our proxy for CCN users in the future. In such
scenarios, the conversion function currently handled by DNS
(Domain Name System) should be partially addressed by our
proxy.

V. CONCLUSION

In this study, through the design and implementation of a
proxy, we successfully harnessed BitTorrent content within
CCN infrastructure. We state that this technology holds the
potential to enhance network traffic efficiency, lower devel-

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

942

opment and operational expenses on each CCN client, and
facilitate the dissemination of larger content within the CCN
world. This, in turn, addresses the scarcity of content resulting
from the current limited prevalence of CCN.

The experimental evaluation also demonstrates the utility
of this proxy. As shown in the experiment section, the perfor-
mance of retrieving BitTorrent content via CCN reaches about
80% of the retrieval performance when using BitTorrent alone.
These results suggest that the overhead introduced by the pro-
tocol conversion is within an acceptable range. Additionally,
we confirmed that when caching exists within CCN, content
retrieval can be more efficient than using BitTorrent alone.

The efficiency and flexibility of the proxy demonstrated
in this study represent an important first step towards the
coexistence and collaboration between IP and CCN. Further
improvements in proxy design and algorithmic refinement are
expected in the future. We plan to further extend this proxy
to accommodate a wide range of network environments and
content formats.

REFERENCES

[1] Cisco, “VNI Complete Forecast Highlights,” https://www.cisco.com/
c/dam/m/en us/solutions/service-provider/vni-forecast-highlights/pdf/
Global 2021 Forecast Highlights.pdf, 2021.

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman,
“A Survey of Information-Centric Networking,” IEEE Communication
Magazine, Vol. 50, No. 7, pp. 26-36, 2012.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
R. L. Braynard, “Networking Named Content,” Proc. of CoNEXT ’09,
pp. 1 ‒ 12, 2009.

[4] F. Fahrianto and N. Kamiyama, ”Migrating From IP to NDN Using
Dual-Channel Translation Gateway,” IEEE Access, vol. 10, pp. 70252-
70268, Jun. 2022.

[5] S. Wang, J. Bi, J. Wu, Z. Li, “On adapting HTTP Protocol to content
centric networking,” Proc. of CFI ’12, pp. 1 ‒ 6, 2012.

[6] Z. Li, J. Bi, S. Wang, “HTTP-CCN gateway: Adapting HTTP protocol
to Content Centric Network,” Proc. of ICNP 2013, pp. 1-2, 2013.

[7] H. Asaeda, A. Ooka, K. Matsuzono, R. Li, “Cefore: Software platform
enabling content-centric networking and beyond,” IEICE Trans. Com-
mun., Vol. E102-B, No. 9, pp. 1792-1803, 2019.

[8] Y. Liu, X. Piao, C. Hou, K. Lei, “A CUBIC-Based Explicit Congestion
Control Mechanism in Named Data Networking,” Proc. of CyberC 2016,
pp. 360-363, 2016.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

943

