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Abstract—Securely managing Internet of Things (IoT)
devices is a fundamental challenge. Management proto-
cols for IoT must be scalable and extensible, especially
when dealing with device heterogeneity. Because of device
resource limitations in IoT and the sheer size of such
networks, traditional management protocols are not well-
suited. In this paper, we propose our HTTP/3 publish-
subscribe architecture to meet the ends of en masse device
configuration, on-boarding, and monitoring. We compared
our solution to industry-standard protocols by collecting
data from real traffic in networks of up to 500 clients. We
found our solution to excel in ease of use and performance,
while having slightly higher CPU utilization compared to
the other protocols.

Index Terms—Management Protocols, IIoT, QUIC,
MQTT

I. INTRODUCTION

In an industrial setting, the Internet of Things (IoT) is
capable of reducing operational overhead – thus maxi-
mizing productivity, sustainability, and bottom lines [1].
In order to reap these benefits however, expertise is
needed to overcome the challenges of planning, config-
uration, and maintenance of any Industrial IoT (IIoT)
solution in a lightweight way.

These networks can be complex: comprised of many
resource-constrained devices from different vendors and
supporting varying technologies. Devices may have lim-
ited In/Out (I/O) capabilities and can be deployed in
unforgiving locations, further complicating diagnostic
and maintenance tasks.

A definitive standard with matured and easy to use
tools does not exist in the industry [2]. This is true
of communication protocols as well as data models
conveying configurations. Because of their wide-ranging
applications and heterogeneity, a de facto taxonomy
for describing an IIoT solution can also be difficult to
produce [2].

The purpose of this paper is to address the chal-
lenges related to configuration and maintenance of het-
erogeneous IIoT systems in a scalable, extensible, and

operator-oriented way. Specifically, our aim is to provide
a means whereby devices can be i.) logically grouped
together by common attributes, ii.) configured en masse,
iii.) monitored for debugging or fault, and iv.) efficiently
on-boarded into the network.

Contributions of this paper include an updated view
on the state of IoT management protocols as well as
the proposal of our solution, evaluated against industry-
standard protocols in terms of performance, overhead,
and ease of use.

We propose an IoT management protocol which is
tooled from our QUIC-based HTTP/3 publish-subscribe
(pub-sub) implementation [3]. Although we focus on an
IIoT use case in this paper, we note that this protocol can
be applied in IoT deployments without any loss for gen-
erality. Our implementation has been tuned specifically
for IoT and tested on the Raspberry Pi Zero [4]. In this
paper, we have adapted our implementation to execute
configuration commands received on subscribe channels
and subsequently provide diagnostic information through
publishing channels.

In our evaluation, we took advantage of Docker to
scale to network sizes of up to 500 clients. Our solution
was found to be the most scalable in terms of per-
formance, memory consumption, and data transmitted.
On the other hand, clients required slightly more CPU
compared to the other techniques.

The rest of this paper is organized as follows: Section
II discusses management protocols in IoT. Related work
in this area is highlighted in Section III. Our proposed
architecture and evaluation approach are detailed in Sec-
tions IV and V, respectively. The experimental setup is
defined in Section VI. The collected results are presented
in Section VII. Finally, this paper’s conclusions are
drawn in Section VIII.

II. MANAGEMENT PROTOCOLS IN IOT

Sinche et al. surveyed the landscape of management
protocols and frameworks for IoT [2]. The full list
of protocols they identified and reviewed is provided
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TABLE I
IOT MANAGEMENT PROTOCOLS SURVEYED BY SINCHE et al. [2]

Simple Network Management Protocol (SNMP) [5]
LowPAN Network Management Protocol (LMNP) [6]
Network Configuration Protocol (NETCONF) [7]
Representational State Transfer Configuration (RESTCONF) [8]
Lightweight Machine-to-Machine (LwM2M) [9]
Device Management Protocol (DM) [10]
CoAP Management Interface (CoMI) [11]
Message Queue Telemetry Transport (MQTT) [12]

in Table I. By their account, a management protocol
must cover authentication, provisioning, configuration,
monitoring, and maintenance.

Open challenges identified by Sinche et al. in this
space include an absense of: i.) a unified taxonomy for
describing IoT deployments, ii.) a widely accepted IoT
management architecture, iii.) common data models for
object representation, iv.) matured (and user-oriented)
tools and resources, v.) rigorous security and privacy
research.

In the literature surveyed by Sinche et al., re-
sults showed that traditional management protocols like
SNMP, NETCONF, and RESTCONF lacked compatibil-
ity across the spectrum of IoT devices. In cases where
they could run, they did not scale well and had a large
footprint on device resource consumption. Conversely,
protocols like CoMI, LwM2M, and MQTT (although
not specifically developed as a management protocol)
were highlighted as state-of-the-art for IoT device man-
agement. Their investigation into industry platforms
(like Microsoft Azure, Google Cloud, etc.) showed that
LwM2M and MQTT were the most widely adopted.
Both protocols have lightweight yet rich feature-sets and
open-source availability, attributing to their popularity.
CoMI had little use because its specification was still
under draft, and no open-source implementations existed
at the time.

Since Sinche et al.’s survey, CoMI was renamed to
CORECONF [11] and its working group have a GitHub
project1 which does not appear to be ready for production
use. Version 1.2 of LwM2M has also been released as of
late 2020 [9]. In addition to the client-server model of
previous versions, LwM2M v1.2 allows for a gateway
to maintain client instances of devices which may not
natively support LwM2M – thus, further addressing com-
patibility. Another key enhancement in v1.2 is support
for additional transports: MQTT and HTTP.

1https://github.com/core-wg/comi

III. RELATED WORK

Parmigiani and Dettmar [13] compared the perfor-
mance LwM2M and MQTT in low-power wide area
networks with different levels of security. The metrics
monitored in their analysis were packets and bytes
transmitted, packet loss, and energy consumption. The
scenarios they studied were i.) initial connection, ii.)
single client-to-server message, and iii.) steady-state
update. Their testing took place over live LTE-M and
NarrowBand-IoT (NB-IoT) networks: Orange Slovakia
and Vodafone Italy, respectively. Version 1.0 of LwM2M
(running over CoAP and UDP) was compared against
MQTT (over TCP). A Raspberry Pi 3 connected point-
to-point with a cellular modem ran both clients. Energy
consumption was analyzed with a separate board. They
found that LwM2M transmitted up to 82% fewer bytes
than MQTT during connection setup. For larger payload
sizes, MQTT used 20% less energy, but the opposite was
true for smaller payloads. At steady state, LwM2M also
consumed up to 40% less energy.

Eggert [14] showed that constrained devices like the
Particle Argon and ESP32-DevKitC V4 development
boards are capable of running QUIC, using the Quant
and picoTLS libraries. Eggert analyzed storage space,
battery consumption, memory, and CPU utilization of the
boards by executing file downloads of 5KB. The major
finding was that these boards had sufficient resources to
run QUIC – and that with further optimizations, 16-bit
processors could be supported as well.

Since then, other researchers have integrated QUIC
with popular IoT protocols such as CoAP [15], Advanced
Message Queuing Protocol (AMQP) [16], and MQTT
[17]. To our knowledge, our paper is the first to con-
sider QUIC as a transport-layer solution for IIoT device
management.

IV. PROPOSED ARCHITECTURE

Our proposed architecture for managing IIoT devices
is a RESTful pub-sub system which makes use of the
widely known APIs and semantics of HTTP/3. Pub-
lishing is accomplished by encoding a topic’s name
in an HTTP POST request’s header and enclosing the
message contents in the POST’s body. Subscriptions
are maintained through long-lived GET requests. Topics
can also be explicitly created or deleted via PUT and
DELETE requests, respectively.

Much akin to MQTT, clients connect to a broker
which manages authentication and the dissemination of
information. The broker accepts data published to a topic
and forwards the information to all clients subscribed
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BROKER

ZONE 2

Topic: Zone 1 Topic: Zone 2

OPERATOR

Topic: Humidity Sensor #1
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Topic: Vibration Sensors Topic: Vibration Sensors

Fig. 1. Heterogeneous and Multi-Zone Network under Management

to said topic. Our solution only supports a Quality of
Service (QoS) mode equivalent to MQTT’s Assured
Delivery [12]. We note that for the case of device
management, Assured Delivery is necessary to guarantee
that configurations are received reliably.

Our architecture has key features which make it ro-
bust for heterogeneous networks. QUIC transport-layer
support offers integrated security, stream awareness, and
proven performance gains over TCP and TLS [18]. Be-
cause QUIC operates in user-space, any device capable
of UDP communication can run our solution without any
dependencies. This makes our solution highly compatible
and easily upgradeable. Moreover, the hierarchy of topics
facilitates in logically grouping devices based on any set
of features that an operator requires.

With the option to keep a specific topic’s history on the
broker, we are also able to streamline on-boarding of new
devices entering the network. Once initialized, a new
device can automatically apply previously committed
configurations.

Figure 1 shows how our QUIC-based pub-sub ar-
chitecture uses topics to realize a hierarchy of devices
under management. Each device is capable of publishing
information back to the broker node for diagnostic and
monitoring purposes.

The QUIC-GO2 v0.25.0 library powered our imple-
mentation. In our previous work [4], we tuned QUIC-
GO for efficient performance and resource management
within IoT. This included design of a high-watermark
scheme for the transmission of QUIC MAX STREAM
frames as well as connection-level basic authentication
(basicAuth). We found a key performance savings of one

2https://github.com/quic-go/quic-go

Round-Trip Time (RTT) in favor of our implementation
when compared to MQTT-over-QUIC [17]. We also
found that while our implementation was more resilient
to Head-of-Line Blocking (HoLB), it used slightly more
device resources.

For this paper, we adapted our implementation into a
solution which can resolve many of the challenges of
mass device configuration in IIoT. We also investigate
scalability due to increasing network sizes, which was
not previously tackled in our past works. We have ex-
tended our client-end program to treat received messages
as executible configuration commands. The GOLANG
os/exec package is leveraged to provide this function-
ality. Commands received over subscription channels are
thus executed and the stdout and stderr are published
back to the broker over a topic name unique to each
device.

V. EVALUATION APPROACH

Our evaluation goal was to compare our architecture
to the industry leading IoT management protocols [2].
We focused on both quantitative (performance, overhead,
and scalability) as well as qualitative (ease of use, and
automation potential) factors towards configuration of
IIoT devices en masse.

Neither CORECONF (CoMI) nor LwM2M were in-
cluded in our evaluation. At the time of writing, CORE-
CONF does not have a production-ready implementation
and, thus, we were unable to consider it. Regarding
LwM2M, we experimented with release 2.0.0-M11 of
Eclipse’s Leshan3: an open-source project which has
been widely used in the literature [2], [13]. Leshan is
written in Java and includes client and server libraries
supporting LwM2M v1.1. In our experimentation, we
found several factors working against this paper’s goal
of mass configuration of IIoT devices: i.) there is no
way to logically cluster or group like devices and ii.)
automation of management tasks via a script or other
means does not seem to be possible. Our understanding
is that these functionalities, critical to the goals of
this paper, are neither explicitly supported as part of
LwM2M’s specification [9] nor are they offered by open-
source implementations of the protocol.

In our evaluation, we have made two important as-
sumptions which we find reasonable for an IIoT setting:
devices are 1.) pre-installed with the relevant software
executables, and 2.) pre-configured with the names of
topics to subscribe to.

3https://github.com/eclipse/leshan
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We used version 5.8 of the net-SNMP package to
provide comparison against a traditional management
protocol. Commands were sent over SNMPv3 using AES
encryption and SHA1 hashing. We also used MQTT-
over-QUIC [17], which employs the same QUIC library
as our solution. The clients and broker are adapted
from Eclipse Paho4 and VolantMQ5, respectively. MQTT
versions 3.1 and 3.1.1 are supported. We used Assured
Delivery QoS in our testing. Transport layer tuning of
MQTT-over-QUIC and our implementation were identi-
cal – full details of this can be found in [4].

Metrics collected from the experimentation with our
solution, SNMP, and MQTT-over-QUIC are defined in
Table II. Each experiment was run for 20 iterations
and box and whisker plots were generated for statistical
reporting. Packet captures were also taken during each
iteration using tshark.

We note that, unlike SNMP, the pub-sub architectures
under evaluation are connection-oriented. It is intended
that such connections be long-lived for the use case of
device management. Thus, we view the connection es-
tablishment as a one-time cost. For fairness, the metrics
in Table II are not inclusive of connection establishment
for either pub-sub solution.

VI. EXPERIMENTAL SETUP

We believe that an industrial application would typ-
ically be more time sensitive, consist of many more
nodes, and may span a larger physical area. Given these
characteristics, we consider an IIoT deployment in this
paper. Furthermore, envision a deployment consisting
of devices located in a secure premises and operating
over a private network. Ergo, our setup is realized as a
controlled environment.

To model a heterogeneous network of devices, we
consider three classes of devices deployed into two
distinct physical zones. We envision scenarios where
an operator may wish to configure devices of typex
differently depending on the zone of deployment. Fur-
thermore, the configuration of typex devices would be
different from typey and typez .

While we have experimented with our pub-sub system
running on hardware IoT devices in a previous work [4],
we have deployed our software in a Docker environment
in this paper in order to scale to large network sizes.
Docker version 23.0.1 ran on a Ubuntu 20.04.6 Virtual
Machine (VM) which was allocated 20 cores and 32GB

4https://github.com/pgOrtiz90/paho.mqtt.golang
5https://github.com/fatimafp95/volantmq 2

TABLE II
EVALUATION METRICS

Execution
Time

The time from when a configuration command
is issued to each client executing it and reporting
back to the broker

Bytes
Transmitted

The total number of bytes transmitted to config-
ure all devices (from the server end)

CPU
Utilization

The amount of time the program occupied the
container’s CPU, reported as a percentage by
docker stats

Memory
Usage

The peak memory used by any one container, as
reported by docker stats

of memory. By default, a single Docker container can use
as much host resources as the kernel scheduler allows6 –
which is why we continuously monitor CPU and memory
during our experimentation and report these values in our
results.

In terms of software deployment, the broker code
ran on the VM itself and Docker containers represented
devices which were subject to management. Containers
and the VM were all networked together using the
bridged network mode.

We used Alpine7 Linux as a base image for the
Docker containers: a lightweight and secure distribution,
typically used in embedded systems. The Docker con-
tainer ID was used to uniquely identify each client. We
used Docker Compose to describe the network topology,
which dictated the topics each client would subscribe to.
Docker Compose also instructed containers to run our
software on boot-up.

NetEm was leveraged between the VM and containers
to emulate a network profile according to the 3GPP
Release 13’s Extended Coverage GSM IoT (EC-GSM-
IoT) standard [19]. It is a long range, low cost, and
low energy technology which offers higher bandwidth
and lower latency than NB-IoT. Compared to NB-IoT
and LTE-M, EC-GSM-IoT is also more easily integrated
with existing networks [20]. As such, rate throttling of
474 kilobits per second was applied on each container’s
uplink and downlink. An RTT of 700ms was also applied
with a uniform distribution.

VII. RESULTS

Figure 2 shows the execution time for each man-
agement protocol as the network size increased. One
command was sent to each container, eliciting a 12-
byte response. SNMP commands were sent in parallel, as

6https://docs.docker.com/config/containers/resource constraints/
7https://www.alpinelinux.org/about/
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Fig. 2. Execution Time of Different Solutions

Fig. 3. Bytes Transmitted of Different Solutions

sequential execution took far too long. Even with parallel
execution, SNMP was the least scalable, as the execution
time disproportionately grew with the network size. Our
HTTP/3 solution fared the best: having the most bounded
performance and finishing almost 5 times faster than
SNMP at the largest network size.

The bytes transmitted of each solution is shown in
Figure 3. We had to tune the SNMP timeout option
because we initially saw packet retransmissions before
the client had a chance to respond, given the high RTT.
SNMP produced the most bytes with slight variability, as
indicated by the plot’s whiskers and inter-quartile range.
Our solution produced the fewest bytes.

Figures 4 and 5 show each management protocol’s
resource consumption in terms of memory and CPU,
respectively. The command docker stats was used
to collect memory and CPU data from every container
in each iteration. We generated these whisker plots by
taking the container with the peak utilization from each

Fig. 4. Memory Consumption of Different Solutions

Fig. 5. CPU Utilization of Different Solutions

iteration. MQTT-over-QUIC and our solution were quite
competitive in terms of memory and stayed relatively flat
no matter the network size. Still, HTTP/3 consistently
had the lowest average usage. At a network size of 500,
SNMP required almost double the memory.

Although there was no discernible trend, SNMP
was the most frugal in terms of CPU. We hy-
pothesize that this disparity was due to SNMP’s
more primitive encryption and hashing methods: AES
and SHA1. Both MQTT-over-QUIC and our solu-
tion used the TLS_CHACHA20_POLY1305_SHA256
cipher-suite. Furthermore, we previously found static
table QPACK to be an additional consumer of CPU
in our solution [4]. QPACK [21] is HTTP/3’s header
compression mechanism, which aids in its resiliency
against out-of-order data delivery. Lastly, we note that
both pub-sub architectures experienced much more CPU
variability.
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VIII. CONCLUSIONS

In this paper, we sought out to address the challenge
of scalable and extensible configuration of heterogeneous
devices en masse in an IIoT setting. We proposed a
pub-sub architecture fueled by HTTP/3 and compared
our solution to industry-standard management protocols.
Data collected from actual traffic with realistic network
conditions shed light on performance, resource consump-
tion, and other qualitative factors. We showed how our
architecture can be used for device monitoring and on-
boarding as well.

In our experimentation, our proposed solution was
the most scalable in terms of execution time. As the
network size increased, its performance was bounded,
and the broker was able to disseminate the data about
5 times faster than SNMP. Our solution also had the
smallest memory and byte transfer footprint on the
constrained devices, which is significant given their
limited computing resources. While CPU consumption
for each container didn’t produce an apparent trend
with increasing network sizes, HTTP/3 and MQTT-
over-QUIC had higher average utilization. We noted
that QUIC transport and, specifically for our HTTP/3
solution, header compression attributed towards this.

We conclude that our QUIC-based approach would
be a good candidate for further exploration in IIoT
configuration and management – especially for larger
scale networks. The flexibility in grouping devices as
an operator sees fit and ease of use are important
practical factors. This is coupled with its low overhead
and fast convergence time of pushing configurations to
large numbers of devices. Future work items that we
are interested in are i.) expounding on the device on-
boarding process through practical examples as well
as ii.) dynamic device configuration based on device
monitoring.
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