
PythonRepo: Persistent In-Network Storage for
Named Data Networking

Tianyuan Yu∗, Zhaoning Kong†, Xinyu Ma∗, Lan Wang‡, and Lixia Zhang∗
∗UCLA

†Purdue University
‡The University of Memphis

Email: ∗{tianyuan, xinyu.ma, lixia}@cs.ucla.edu, †kong102@purdue.edu, ‡lanwang@memphis.edu,

Abstract—Named Data Networking (NDN) takes a data-centric
design approach to data delivery, which intrinsically enables
asynchronous communication. That is, communicating entities
can exchange data effectively even when they are not directly
connected or online at the same time, as long as everyone
can receive all its requested data. NDN makes data available
through persistent in-network data repository, or repo for short,
which is an integral component in the NDN architecture. In this
paper, we first articulate the important role repos play in an
NDN network, and then present the design of a simple repo
protocol, PythonRepo, which has been used in several NDN
applications. We also identify remaining work to be done to
make PythonRepofullfil the needs of future NDN applications.

I. INTRODUCTION

Today’s Internet applications, by and large, are built on
the client-server model over TCP/IP protocol stack. TCP/IP
networking provides point-to-point connectivity to support the
client-server applications through synchronous communication
(i.e., both parties are online at the same time). While clients
may come and go at any time, application servers must be
online all the time, ready to serve clients whenever needed.

Named Data Networking (NDN) takes a data-centric design
approach [1]. Its basic communication primitive is fetch-
ing named, secured data packets. This design enables asyn-
chronous communication, potentially among multiple parties.
These parties may or may not be directly connected with each
other (i.e., having working paths between them), or even all
online at the same time. They can communicate effectively as
long as each can fetch its desired data whenever needed. Given
not all data producers may be online all the time, persistent in-
network data repositories [2], or repos for short, are designed
to meet the goal of making all data available all the time,
similar to servers in a TCP/IP network being online all the
time.

Up to now, however, not enough attention has been paid
to the repo design and development. Although several repo
prototypes have been developed over the years to meet appli-
cation needs, there is little documentation on their designs, let
alone systematic examination of their design choices to gather
the lessons learned.

This paper is an effort to help fill that void. We make three
contributions. First, we clarify the fundamental differences
between NDN repos and today’s cloud storage. Second, we

describe the design and implementation of PythonRepo, one
of the existing NDN repos that provides secure in-network
storage to support NDN applications. Third, we identify the
remaining work to be done with the current PythonRepo
implementation to strengthen its resiliency and availability.

The remainder of this paper is organized as follows. §II
provides an NDN overview, and highlights the differences
between networked storage systems in NDN and today’s cloud
storage services. §III discusses the design goals of PythonRepo
and how our design achieves the goals. Afterwards, We de-
scribe our initial implementation of PythonRepoin §IV, discuss
the remaining work to be done for PythonRepo in §V, and
conclude the paper in §VI.

II. BACKGROUND

A. Named Data Networking

Instead of translating application layer names to IP ad-
dresses for packet delivery as the Internet works today, NDN
directly uses application layer data names in network commu-
nication. Data consumers request data by putting the names in
NDN Interest packets, and in response, the network returns the
requested Data packets with the matching semantic name and
cryptographic signatures, which are then used by consumers
to authenticate the received data.

To check the authenticity of received Data packets, NDN
lets each application define a set of trust rules, called trust
schema [3], written in a defined schematic language. Be-
cause today’s network security solutions are patched on top
of TCP/IP’s node-centric protocol stack which offers end-
to-end reliable data delivery connections, they authenticate
application servers b manually configured certificates to secure
the connections. Therefore, they do not support elaborated
security policies or fine-grained control over data. In contrast,
NDN’s trust schema enables applications to manage the trust
relationships among multiple entities, where each entity can
be an application process or any communication participant
that produce or consume data. Trust schema defines which
cryptographic key, which also has a semantically meaningful
name, should sign which specific named Data packets.

In order to perform the above functions, each NDN entity
must go through a bootstrapping process [4][5][6] first. We
consider that all entities under the control of the same adminis-
trator constitute a trust domain [7], and each entity obtains the

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 927

following parameters from the bootstrapping process: (i) the
trust domain’s self-signed certificate as its trust anchor, (ii) the
trust schema, and (iii) its own identity certificate. Note that
an individual user, say Alice, can make a trust domain for
her self, DAlice, e.g. having Alice’s phone holds a self-signed
certificate as her trust anchor. If Alice possesses additional
devices, e.g. a laptop in addition to the phone, and each
device may run some apps, then DAlice will contains multiple
entities. Also note that each app is an NDN entity as it can
produce and/or consume data, therefore it must go through a
bootstrapping process as well before it can actively participate
in an NDN system.

B. Networked Storage

NDN repos are application processes themselves running on
the nodes with storage resources to provide persistent storage
for other applications. Repos accept data insertions requests,
fetch the named data objects from requesters and make data
available. Repos are transparent to data consumers, which
simply fetch desired data by names, without needing to know
where the data come from.

Various questions have been raised regarding the differences
between NDN repos and other types of in-network storage.
First, various storage systems are deployed in the cloud and
at edges in today’s TCP/IP Internet. We point out that today’s
cloud storage services are built on top of TCP/IP’s node-
centric protocol stack. Given a TCP/IP network delivers data
to IP addresses, application developers must handle the task of
figuring out where to fetch a requested dataset. Content Dis-
tribution Network (CDN) services offer location-transparent
service to end users by building application layer overlays,
and they only serve a relatively small number of paid content
providers.

In contrast, NDN integrates networking and storage, and
enables all consumer applications to request data by name,
without having to identify specific data containers or locations.
An Interest packet can find and retrieve the requested data from
the nearest location, be it from router cache, repo storage, or
data producer.

One basic reason that NDN can fetch desired data from
anywhere is its design of securing data directly. Data owners
make their data authenticable by cryptographically signing
them, and make the data confidential by encrypting them. This
design puts (i) data access control in the hands of data owners,
independently from data containers; and (ii) data authenticity
validation in the hands of data consumers, independently from
communication channels. Because security is attached to data,
data replication is also made easy. In contrast, the security of
cloud storage relies on TLS connections between user nodes
and cloud servers, and the security of data is bundled with
servers. This makes data replication complex to handle, as
one must ensure trust on all replicas.

Second, within the NDN context, the content store at each
NDN router is already a form of in-network storage. Although
both router content store and repos can store NDN Data pack-
ets, a content store caches passing-by Data packets opportunis-

tically, Data packets can be evicted due to resource constraints,
and thus does not ensure data availability. In contrast, repos
are managed in-network storage system, which ensure Data
packets availability until data are evicted upon request by their
applications. To provide resilient data availability in face of
failures, repos should also replicate all stored data in multiple
servers.

III. DESIGN OF PYTHONREPO

In this section, we first define the basic operations of
PythonRepo, then describe our design assumptions and goals.
Afterwards, we give an overview of PythonRepo workflow,
followed by the PythonRepo operations details.

PythonRepo Operations: PythonRepo runs as an applica-
tion process on nodes with storage resources. It interacts with
users, a generic term we use to refer to NDN entities that
utilize repos by inserting or deleting data objects.

An observation we make from existing NDN applications,
such as those described in [8][9][10][11], produce application
data objects of various sizes, each object may be segmented
to multiple Data packets. We refer application data object as
Application Data Unit (ADU) [12]. PythonRepo uses ADU as
the basic data unit in its operations.

Design Assumptions: We assume that both Users and
PythonRepo go through the NDN bootstrapping process before
they start operations. Therefore, they possess necessary secu-
rity parameters to secure as well as validate the data exchange
between each other. Consumers express Interests to fetch
desired data from the network. They validate received data
following the security policies defined by their applications,
independent from where the data is retrieved.

Design Goals: PythonRepohas the following two design
goals:

• User Authenticity and Authorization: PythonRepo
should accept ADU insertion and deletion requests from
authenticated and authorized Users only.

• ADU Availability: after a User successfully inserts an
ADU, PythonRepo should keep this ADU available per-
sistently.

A. PythonRepo Overview

PythonRepo takes ADU insertion and deletion requests
from the application and perform corresponding tasks. Since
the request must carry the necessary ADU information that
PythonRepo needs to know, it should be a piece of se-
mantically named and secured data that PythonRepo fetches
from the application. Therefore, it is the user application that
initiates the ADU insertion or deletion process by notifying
PythonRepo there is a new request to be processed.

Upon receiving the request, PythonRepo checks whether the
request is produced by an authorized User through validating
the request with the bootstrapped trust schema. If the request
is signed by an authorized User, PythonRepo proceeds to fetch
the ADU from the network with the information provided
within an insertion request, or delete the ADU from its local
storage for a deletion request. After sending an ADU Insertion

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

928

Request to PythonRepo, the User can optionally check whether
the ADU is ready for the Consumer to retrieve.

When PythonRepo is ready to serve the ADU, Consumers
can fetch individual segments of the ADU as fetching normal
Data packets from the network.

B. PythonRepo in Operation

In the rest of this paper, we use an example to demon-
strate PythonRepo’s protocol design. Assuming the building
manager Alice “/edu/ucla/alice” monitors offices with smart
sensors. The monitor system produces sensor data every hour,
and pushes sensor data to a PythonRepo named “/repo”, to
be fetched by a remote data analytics application.

Inserting ADU into PythonRepo: In order to insert data
to PythonRepo, Alice first prepares an ADU Insertion Re-
quest that informs “/repo” what are the ADU names and
where to fetch ADUs. The naming convention of the re-
quest is “/<user-prefix>/<repo-prefix>/<operation>/msg
/<nonce>”. The prefix “<user-prefix>” and “<repo-prefix>”
are the User prefix and PythonRepo prefix, respectively,
and “<operation>” represents the operation name which is
“insert” for insertion. The name component “<nonce>” is a
32-bit randomly generated number uniquely identifying the
request. As shown in Figure 1, Alice puts two Insertion Re-
quest Parameters blocks into an ADU Insertion Request. Each
parameter block includes the request description for an ADU1.
The first block specifies the ADU prefix of “/eng6/office365
/humid/8am”. The block has segment number range of “0-3”,
indicating that this ADU has four segments in total and the
segment number starts from zero; The forwarding hint “/edu
/ucla/alice” instructs PythonRepo to fetch this ADU from
Alice; The prefix registration field instructs PythonRepo to
register the name prefix “/eng6/office365/humid” in order to
serve this ADU to consumers. Finally, Alice signs the request
with the private key “/edu/ucla/alice/KEY”.

/edu/ucla/alice/repo/insert/msg/0xFB71

Signature
Signed by /edu/ucla/alice/KEY

ADU Prefix:
/eng6/office396/humid/8am

Forwarding Hint:
/edu/ucla/alice

Segment Number Range: 0-2

Prefix Registration:
/eng6/office396/humid

ADU Prefix:
/eng6/office396/temp/8am

Forwarding Hint:
/edu/ucla/alice

Segment Number Range: 0-2

Prefix Registration:
/eng6/office396/temp

Insertion Request
Parameters

Insertion Request Parameters

Insertion Request Parameters

ADU Insertion Request

Insertion Request
Parameters

Figure 1. ADU Insertion Request and Insertion Request Parameters

After preparing the request, Alice initiates the ADU inser-
tion process by first expressing a notification Interest I1 to

1Deletion Request Parameters follow a similar structure, but without the
forwarding hint [13] and prefix registration fields.

PythonRepo’s insertion prefix “/repo/insert” with the appli-
cation parameters carrying Alice’s prefix “/edu/ucla/alice”
and request nonce “0xFB71”.

/edu/ucla/
alice

/repo
I1: /repo/insert/notify/<param-digest>
Parameter: {/edu/ucla/alice, nonce=123}

I2: /edu/ucla/alice/repo/insert/msg/0xFB71

D2: /edu/ucla/alice/repo/insert/msg/0xFB71

D1: /repo/insert/notify/<param-digest>

ADU Insertion Request
Trust

Schema

Enforcing
Authorization

Interests to fetch ADU segments

Figure 2. Alice sends Object Insertion Commands to PythonRepo

On receiving I1, PythonRepo learns Alice’s prefix and the
nonce “0xFB71” that uniquely identifies her request, expresses
Interest I2 to fetch Alice’s ADU Insertion Request D2, and
validates the request’s authenticity and legitimacy using its
trust schema. For example, if the trust schema allows keys
under the prefix “/edu/ucla/<user>” to be the legitimate
signers for Data under the prefix “/edu/ucla/<user>/repo
/insert”, then Alice is authorized by the trust schema, thereby
a legitimate User to insert ADUs in PythonRepo. If the request
validation succeeds, PythonRepo replies to I1 with D1 with
empty content, and begins fetching the ADU that Alice has
requested to insert.

Checking ADU Availability: Since PythonRepo processes
requests asynchronously, it needs to provide a mechanism for
its Users to check whether an insertion request has succeeded
(i.e., all inserted ADUs have become available), or if the
request has failed due to ADU fetching failure2, unauthorized
requests, or full storage.

To this end, PythonRepo allows the Users to check
ADU availability using commands under the prefix
“/<repo-prefix>/check/<adu-prefix>”, where the suffix
“<adu-prefix>” is the ADU prefix Alice wants to check.

2PythonRepo will perform basic retransmissions up to a certain number of
times to overcome packet losses.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

929

/edu/ucla/alice /repo

Trust
Schema

Response
Validation

seg=0
seg=1
seg=2
seg=3

Figure 3. Checking ADU Availability Status

In the example as shown in Figure 3, Alice checks the ADU
availability “/eng6/office396/humid/8am” by expressing an
Interest I3 following the aforementioned naming convention.
As PythonRepo receives I3, it checks its local database
whether all segments of the ADU are available, and returns the
signed ADU availability status code in D3. Upon receiving
D3, Alice validates it using its trust schema to ensure the
data is indeed produced by PythonRepo. Therefore, if Alice’s
insertion request triggers errors, she is able to learn the reason
from the status code.

Fetching Data from PythonRepo Consumers send Inter-
ests to fetch individual ADU segments from PythonRepo in
the same way as fetching Data packets from the original data
producers. Specifically, Consumers express Interests that are
attached a forwarding hint containing the PythonRepo prefix
“/repo” to the Interests, so that the network is able to steer
the Interests with the ADU Interest prefix to the repo.

Note that attaching forwarding hints to Interests is not en-
capsulation. Encapsulated packets do not benefit from NDN’s
in-network caching. However, even with forwarding hints, the
original Interest name is still visible to the forwarders. Hence,
when the Data packet matching the Interest name follows
the reverse path back to the Consumers, it can be cached by
intermediate routers and match other Interests with the same
name.

This approach requires the original ADU producer (not
necessarily the User who inserts the ADU to PythonRepo) to
inform the Consumers of the PythonRepo prefix out-of-band,
so that the Consumers can attach forwarding hints to Interests.
We argue that applications are responsible for conveying the
forwarding hints for Consumers.

IV. IMPLEMENTATION

PythonRepo is implemented in Python [14]. Since 2020,
PythonRepo has been used in multiple projects, including
smart home data storage [15], power plant sensor data
management, and mobile health applications [8]. The NDN
Testbed [16] also has globally deployed PythonRepo instances
on each site, serving as in-network storage for NDN appli-
cations. The design and implementation of PythonRepo also
inspired an ongoing project Hydra [9], which aims at providing
federated storage for genetic researchers.

V. DISCUSSION

Storage Management: PythonRepo has simple storage
functions: insert and delete ADUs. Our past experiences
indicate that the current two functions serve existing NDN
applications adequately. As NDN applications get developed
further, PythonRepo can benefit from having storage man-
agement functions, such as analyzing storage capacity, and
monitoring new ADU insertions under specific prefixes.

Distributed PythonRepo: A frequently asked question is
whether PythonRepo is designed as a single instance, and
therefore susceptible to single point of failure. Although in this
paper we introduced PythonRepo from the single instance’s
perspective, PythonRepo design is extensible to the distributed
multi-instance case. Benefiting from NDN’s built-in anycast,
deploying a distributed PythonRepo is as easy as starting
multiple PythonRepo instances that advertise the same name
prefix to the routing system and running a synchronization
protocol [17][18] among themselves. Each User’s insertion
requests will be routed to the closest instance, and then
the ADU will be disseminated to all other instances in the
synchronization group.

VI. SUMMARY AND FUTURE WORK

In-network storage is an important component in an NDN
network to support peer-to-peer applications. In this paper,
we first clarified the differences between NDN in-network
storage and today’s storage system, and then introduced the
PythonRepo design which provides secure in-network ADU
storage for NDN by semantically securing each request. We
also explained how PythonRepo can be easily extended to
a distributed design. In the future, we plan to add storage
management function to PythonRepo, enable PythonRepo
to join application synchronization groups to automatically
replicate ADUs in a distributed manner, and explore the idea
of distributed PythonRepo, especially on the deletion request
handling across the system.

ACKNOWLEDGMENT

This work was supported in part by US National Science
Foundation under awards 2019085 and 2126148.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
pp. 66–73, 2014.

[2] L. Zhang, “The role of data repositories in named data networking,”
in 2019 IEEE International Conference on Communications Workshops
(ICC Workshops). IEEE, 2019, pp. 1–5.

[3] Y. Yu, A. Afanasyev, D. Clark, K. Claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in named data networking,” in proceedings of the
2nd ACM Conference on Information-Centric Networking, 2015, pp.
177–186.

[4] T. Yu, P. Moll, Z. Zhang, A. Afanasyev, and L. Zhang, “Enabling plug-n-
play in named data networking,” in MILCOM 2021-2021 IEEE Military
Communications Conference (MILCOM). IEEE, pp. 562–569.

[5] T. Yu, X. Ma, H. Xie, X. Jia, and L. Zhang, “On the security boot-
strapping in named data networking,” arXiv preprint arXiv:2308.06490,
2023.

[6] T. Yu, X. Ma, H. Xie, D. Kutscher, and L. Zhang, “Cornerstone:
Automating remote ndn entity bootstrapping,” in The 18th Asian Internet
Engineering Conference, 2023.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

930

[7] K. Nichols, “Trust schemas and icn: key to secure home iot,” in Proceed-
ings of the 8th ACM Conference on Information-Centric Networking,
2021, pp. 95–106.

[8] S. Dulal, N. Ali, A. R. Thieme, T. Yu, S. Liu, S. Regmi, L. Zhang,
and L. Wang, “Building a secure mhealth data sharing infrastructure
over ndn,” in Proceedings of the 9th ACM Conference on Information-
Centric Networking, 2022, pp. 114–124.

[9] J. Presley, X. Wang, T. Brandel, X. Ai, P. Podder, T. Yu, V. Patil,
L. Zhang, A. Afanasyev, F. A. Feltus et al., “Hydra–a federated data
repository over ndn,” arXiv preprint arXiv:2211.00919, 2022.

[10] J. Thompson, P. Gusev, and J. Burke, “Ndn-cnl: A hierarchical names-
pace api for named data networking,” in Proceedings of the 6th ACM
Conference on Information-Centric Networking, 2019, pp. 30–36.

[11] C. Ghasemi, H. Yousefi, and B. Zhang, “Internet-scale video streaming
over ndn,” IEEE Network, vol. 35, no. 5, pp. 174–180, 2021.

[12] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a
new generation of protocols,” ACM SIGCOMM Computer Communica-
tion Review, vol. 20, no. 4, pp. 200–208, 1990.

[13] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu,
W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto et al., “Nfd
developer’s guide,” Dept. Comput. Sci., Univ. California, Los Angeles,
Los Angeles, CA, USA, Tech. Rep. NDN-0021, vol. 29, p. 31, 2014.

[14] N. Team, https://github.com/UCLA-IRL/ndn-python-repo, 2023, ac-
cessed: 2023-5-27.

[15] Z. Zhang, T. Yu, X. Ma, Y. Guan, P. Moll, and L. Zhang, “Sovereign:
Self-contained smart home with data-centric network and security,”
IEEE Internet of Things Journal, vol. 9, no. 15, pp. 13 808–13 822,
2022.

[16] The NDN Team, “Ndn testbed,” Online at https://named-data.net/ndn-
testbed/, 2022.

[17] T. Li, Z. Kong, S. Mastorakis, and L. Zhang, “Distributed dataset syn-
chronization in disruptive networks,” in 2019 IEEE 16th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS). IEEE,
2019, pp. 428–437.

[18] P. Moll, V. Patil, L. Zhang, and D. Pesavento, “Resilient brokerless
publish-subscribe over ndn,” in MILCOM 2021-2021 IEEE Military
Communications Conference (MILCOM). IEEE, 2021, pp. 438–444.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

931

