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Abstract—mmWave systems are integral parts of 5G+ wireless
systems. Large bandwidths allocated at above 20GHz translate
to large data rates otherwise unattainable at lower frequencies.
However, signals in the mmWave bands require highly directional
beams to overcome strong attenuation and do not propagate
through objects along Line-of-Sight (LoS) paths. In this work, we
study scenarios with direct LoS and reflected Non-Line-of-Sight
(NLoS) paths, where the LoS paths are blocked temporarily.
The so-called beam selection problem aims to choose beams to
establish communication between two mmWave enabled devices
and determine how long the communication with the chosen
beam should last. Considering the system’s state, defined as the
LoS blockage, is observable in one choice of the beams but
not others, we formulate the problem as a generalized case
of Partially Observable Markov Decision Process (POMDP).
The resulting policies result in the maximization of the reward
(throughput) of the system, which are demonstrated through
numerical examples.

Index Terms—mmWave, beam selection, POMDP, 5G+

I. INTRODUCTION

With the advent of 5G wireless systems, mmWave commu-
nication systems have found their first large-scale deployment
[1]. At these high frequencies, large bandwidths allow high
communication data rates. Line-of-Sight channels provide
the strongest received signal strengths, therefore the highest
data rates, while Non-Line-of-Sight (NLoS) channels utilizing
reflections have smaller gains, hence lower rates. However, the
attenuation in the mmWave bands is also very severe, which
is countered by using highly focused beams, either through
the use of horn antennas or using MIMO antenna arrays.
The resulting directionality of communication is not only
beneficial to overcome strong attenuation, but also isolates out
most interference sources vis-a-vis sub-6GHz communication
scenarios. On the other hand, this makes link maintenance
more challenging as the signals are virtually blocked by any
solid object along the path, requiring dynamic selection of
beams to sustain seamless communication [2].

Over the years, numerous beam tracking and beam switch-
ing approaches have been proposed to overcome this problem
[3]. [4] proposes switching to an NLoS link in the case of
LoS blockages and evaluates two kinds of beam switching
mechanisms for an indoor scenario. [5] scans all possible beam
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Fig. 1: LoS and NLoS Communication Examples

combinations and uses an Extended Kalman Filter (EKF) to
track the Angle of Arrival (AoA) and Angle of Departure
(AoD). [6] takes a similar approach but instead of a full scan,
uses only a single measurement. [7] models the channels using
a Markovian random walk and poses the problem as a POMDP.
[8] models the evolution of AoD as a discrete Markov process
and uses maximum aposteriori (MAP) estimation for tracking.
[9] develops a model free beam tracking algorithm using Q-
learning. The authors utilize auxiliary beam pairs to estimate
AoA and AoD.

In this paper, we explore a case where the strong LoS
path is subject to temporary blockages, requiring switching
over to weaker NLoS paths. A sample scenario is depicted in
Figure 1. The LoS path presents the highest throughput, but
is blocked for random durations. In such cases, the reflective
NLoS path is utilized, during which the availability of the
LoS path remains unknown. The ON/OFF state of the LoS
path can only be observed by switching to the LoS beam.
Sensing the LoS path state is a potential loss of transmission
opportunity over the NLoS path. However, if the transmitter
waits too long before sensing the LoS channel, then the system
stands to lose the opportunity of transmitting at a higher rate
in case the blockage is lifted earlier. Hence, the problem is
finding a policy of estimating the LoS channel availability,
and if unavailable, determining the optimum time to sample it
next.

The state of the LoS channel can be observed at every
transmission attempt when the associated beam is used. When
the alternate beam is used, the LoS channel state cannot
be observed. The system is, therefore, partially observable.
We also consider arbitrary sojourn time distributions for
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state occupancy. For the sake of tractability, we consider
two stationary endpoints with only one alternative NLoS
path which is never blocked. Moreover, it is assumed that
communication occurs over a single beam and multi-beam
combining solutions are not utilized. The resulting system
cannot be directly mapped to well-studied problems such as
POMDP. To this end, we expand the definition of the system
state from ON/OFF (corresponding to the availability/blockage
of the LoS path, respectively) to one that includes both channel
state as well as the time elapsed since the last state change
(sojourn time), discretized and tracked by a counter that resets
at every channel state change. Then, we formulate the problem
as a POMDP on this expanded system state definition. The
resulting policy can be pre-computed and stored for online
usage.

II. RELATED WORK

The idea of utilizing NLoS paths to resolve blockages was
proposed in [4]. The authors consider an indoor scenario
and utilize a random waypoint mobility model for blockages.
Based on this they propose two switching mechanisms. How-
ever, regardless of the switching mechanism, they state that
the devices should keep probing the LoS channel and switch
back to it as soon as it becomes available. This means some
resource must be allocated to monitoring the LoS channel
which otherwise could be used for data transmission. In this
work we address this by adjusting the probing instances using
channel statistics.

[7] considers the problem of selecting pilot beam directions
to detect the LoS and NLoS paths. The authors assume that
the receiver and reflectors move according to some Marko-
vian random walk and formulate the problem as a POMDP.
They also provide a suboptimal greedy algorithm to reduce
the computational complexity of finding an exact solution.
Nonetheless, their main focus is on tracking the LoS and NLoS
channels under user mobility. Therefore, the states (AoDs)
are assumed to be more likely to shift to nearby states. Path
movements with large AoD change is ignored. We, on the
other hand, consider a static transmitter and receiver pair, but
focus on mitigating the blockages of the LoS path. We also
relax the Markovian assumption on state transitions.

When the transmitter probes the LoS channel, it observes
the associated path gain, which is assumed to be continuous
in this paper. POMDPs with continuous observation space
are notorious for their difficulty. Thus, [10] proposes an
observation aggregation method. The main idea behind this
method is that, although the observation space is rich, most
of the good policies select the same course of action for a
range of observations. This enables the observation space to be
discretized implicitly. We employed this method when finding
the value function of the optimal policy.

III. SYSTEM MODEL

In this work we consider a receiver and transmitter pair in a
dynamic propagation environment with a strong LoS path and
another weaker NLoS path. Time is slotted t = 1, 2, . . . and the

transmitter selects a beam in each time slot to communicate
with the receiver. We assume that the LoS channel is subject
to temporary blockages due to the environment but the NLoS
channel is always available. We denote the ON/OFF state of
the LoS channel in slot t with st ∈ {0, 1} where st = 0
corresponds to the OFF case and st = 1 to the ON case.
Moreover, we denote the ON/OFF duration of the LoS channel
with random variables TON and TOFF, respectively. Their
probability density functions (pdf) are given as TON ∼ gON(u)
and TOFF ∼ gOFF(u). Since time is slotted, TON and TOFF are
discretized by sampling with some frequency f .

After selecting a beam xt in time slot t from a set of beams
X , the transmitter observes a noisy reward yt = ft(xt) + nt,
where ft(·) is the reward function at time slot t and nt

is an independent and identically distributed (i.i.d.) noise
term with nt ∼ N (0, σ2). The reward functions condi-
tioned on the channel state are known by the transmitter.
Thus, given st, the transmitter deterministically selects beam
x∗
t = argmaxx∈X f(x|st) and observes a reward yt =

f(x∗
t |st) + nt. We denote the maximum reward conditioned

on the channel state as rs
∆
= f(x∗|s). The reward of the LoS

channel is higher than NLoS channel, i.e., r1 > r0. Then, the
reward observations based on the channel state become

yLoS
t = nt, yNLoS = r0 + nt, st = 0

yLoS
t = r1 + nt, yNLoS

t = r0 + nt, st = 1
(1)

The transmitter cannot observe the state while using the
NLoS channel as yNLoS

t does not depend on the state. Sensing
the LoS channel might cause a loss over the reward of NLoS
channel, if the state is OFF. However, staying on the NLoS
path too long might also lead to losing the opportunity for
higher reward on the LoS channel if the state becomes ON
in the meantime. Therefore, the transmitter senses the LoS
channel after spending some time in the NLoS channel and
determines the channel state and availability duration based on
its past decisions and observations. We call the period between
each decision an epoch. An epoch might encompass a single
time slot or multiple time slots. However, we assume that at
most one state transition can happen during an epoch.

As the state is not always observable, the transmitter retains
a belief vector b regarding the channel state. If the true state
of the system at the beginning of epoch k is denoted by sk,
the associated belief vector bk denotes the state probabilities:

bk =
[
P (sk = 0) P (sk = 1)

]
. (2)

It shows the confidence of the transmitter regarding the true
state of the system. Moreover, since and gON(u) and gOFF(u)
are some arbitrary pdfs, the transmitter keeps a counter which
shows how much time has passed since the last channel switch
by the transmitter. Let ak = (ŝk, τk) be the action taken at
the beginning of epoch k, where ŝk ∈ {0, 1} is the selected
channel and τk is the epoch duration. Then the counter ck at
the beginning of epoch k is computed iteratively as

ck = τk−1 + ck−1I{ŝk−1 = ŝk−2}, (3)
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Fig. 2: Belief MDP evolution with time

where I{·} is the indicator function. The update rule in (3)
states that, given the previous channel decisions ŝk−2, ŝk−1,
epoch duration τk−1 and counter value ck−1, the new counter
value at the beginning of epoch k resets to τk−1 if the trans-
mitter switches channels in the previous epoch. Otherwise,
the counter is incremented by τk−1. The counter value at the
beginning of epoch k can be calculated as soon as the action
ak−1 = (ŝk−1, τk−1) is taken. Hence, the transmitter does not
need to wait until the end of epoch k − 1 to know ck.

The transmitter computes a statistic zk from a series of
reward observations at the beginning of each epoch. If ŝk−1 =
0, i.e., the NLoS path is chosen in the previous epoch,
the transmitter samples the LoS channel for N slots at the
beginning of the epoch and zk is the average of those N
reward observations. Otherwise, zk is the moving average of
the last N samples taken from the LoS channel. We assume
that all samples come from the same distribution. In other
words, we assume that the state doesn’t change during the
sampling period. The transmitter updates its belief bk using
bk−1, ck, ŝk−1, τk−1 and zk according to some update rule
h(.)

bk = h(bk−1, ck, ŝk−1, τk−1, zk). (4)

The goal of the transmitter is to find a policy π ∈ Π that
maps (bk, ck, ŝk−1) to an action ak = (ŝk, τk) such that the
discounted cumulative reward is maximized.

π∗ = argmax
π∈Π

∞∑
t=0

E
[
γtft(xt)

]
, (5)

where γ ∈ (0, 1) is the discount factor, and Π is the set of
policies. We consider stationary policies in this paper.

IV. SOLUTION APPROACH

The POMDP framework [11] is suitable for this problem
except that the state holding times TON and TOFF have arbitrary
pdfs, i.e., they might be non-Markovian. Therefore, we map
this problem to a POMDP by extending the state definition to
include the counter c and previous channel selection ŝp. The
state space of the resulting POMDP is (s, c, ŝp) ∈ {0, 1} ×
N+×{0, 1}, where N+ is the set of positive integers. Similarly,
the action space consists of tuples a = (ŝ, τ) ∈ {0, 1} × N+.
ŝ is the current channel selection and τ is the epoch duration.

The state of the system is unveiled to the transmitter through
rewards obtained from the LoS channel. Each observation is
the average of N i.i.d. reward samples. Using the reward

TABLE I
TRANSITION PROBABILITIES FOR P (s′|s, c, ŝp, a)

s ŝp P (0|s, c, ŝp, a) P (1|s, c, ŝp, a)

0 0 P (TOFF > c+ τ | TOFF > c) P (TOFF ≤ c+ τ | TOFF > c)

0 1 P (TOFF > τ) P (TOFF ≤ τ)

1 0 P (TON ≤ τ) P (TON > τ)

1 1 P (TON ≤ c+ τ | TON > c) P (TON > c+ τ | TON > c)

expressions given in (1) we have the conditional pdf of an
observation z as

p0(z)
∆
= fZ(z|s = 0) = N (0, σ2/N)

p1(z)
∆
= fZ(z|s = 1) = N (r1, σ

2/N).
(6)

Neither the true state s of the system, nor the true counter
c is available to the transmitter. Therefore, the transmitter
constructs a probability distribution called belief over the true
state s by interacting with the environment. The belief vector
b is a two-element vector with each element corresponding
to b(i)

∆
= P (s = i), i ∈ {0, 1}. Since the true counter value

c is unobservable, the transmitter keeps its own counter c. It
counts how many time slots have passed since the decision of
the transmitter changed from 0 to 1 or vice versa. c reflects the
true counter value c to the best of the transmitter’s knowledge
under uncertainty. According to this formulation, given an
action a = (ŝ, τ), c and ŝp deterministically transition to
c′ = τ + c I{ŝ = ŝp} and ŝ′p = ŝ, respectively. The transition
probabilities of the true state P (s′|s, c, ŝp, a) for s′ ∈ {0, 1}
are given in Table I.

The transmitter obtains an instantaneous reward
R(s, c, ŝp, a) after executing action a = (ŝ, τ) when the
true state is s, counter is c and previous decision is ŝp:

R(s, c, ŝp, a) =


(r0 − r1)max{τ − E[VOFF], 0} s = 0, ŝ = 0

−r0τ s = 0, ŝ = 1

(r0 − r1)min{E[VON], τ} s = 1, ŝ = 0

0 s = 1, ŝ = 1
(7)

We set the reward as the negative of the expected regret.
Hence, each line of (7) is equal to the negative of the expected
regret incurred for each case. VON and VOFF denote the residual
life duration of TON and TOFF, respectively. Pdfs of VON and
VOFF can be found by conditioning TON and TOFF on the
counter c and the previous decision ŝp:

P (VON ≤ v|c, ŝp = 0) = P (TON ≤ v)

P (VON ≤ v|c, ŝp = 1) = P (TON ≤ c+ v|TON > c)

P (VOFF ≤ v|c, ŝp = 0) = P (TOFF ≤ v + c|TOFF > c)

P (VOFF ≤ v|c, ŝp = 1) = P (TOFF ≤ v)

(8)

Using b and c, we can formulate the POMDP as a belief
MDP in which the objective is to find a stationary policy π∗

that maps (b, c, ŝp) to an action a = (ŝ, τ) such that the
discounted cumulative reward (5) is maximized.

In order to understand the properties of this belief MDP, we
need to investigate the evolution of the system with time as
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Fig. 3: Functional breakdown of the solution

shown in Figure 2. At the beginning of each slot, the belief
state is updated according to some update rule (4). Resultant
state (bk, ckŝk−1) is then mapped to an action ak = (ŝk, τk)
for that slot. Lastly, the counter ck is updated according to (3).
To solve this problem, we first need to determine the belief
update rule in (4), and then find the optimal policy.

Figure 3 shows the two fundamental blocks of our solution.
State estimator (SE) performs the belief update in (4). It can
be further separated into two functions. The first one, h1(·),
handles the time aspect of belief evolution. We call its output
belief prior and denote it with b̃. Then, b̃k−1 corresponds to
the belief vector at the beginning of epoch k, right before
the observation zk is received. Define b̃k−1(i)

∆
= P (sk =

i|bk−1, ck, ŝk−1, τk−1) for i ∈ {0, 1}. Convert the counter and
epoch duration to seconds as c̄k = ck/f and τ̄k−1 = τk−1/f ,
respectively. Using Bayes’ Theorem

b̃k−1(0) =


P (TOFF > c̄k)

P (TOFF > c̄k − τ̄k−1)
bk−1(0) ŝk−1 = 0 (9a)

1− P (TON > c̄k)

P (TON > c̄k − τ̄k−1)
bk−1(1) ŝk−1 = 1 (9b)

The second function, h2(·), updates b̃k−1, according to zk.
It can also be derived from Bayes’ Theorem as

bk(i) =
b̃k−1(i)pi(zk)

b̃k−1(0)p0(zk) + b̃k−1(1)p1(zk)
i ∈ {0, 1}. (10)

(9) and (10) together make up the belief update rule in (4).
After the belief update, the policy π in Figure 3 maps

(bk, ck, ŝk−1) to an action ak = (ŝk, τk). Since we consider
stationary policies, the epoch index k can be dropped and the
policy can be expressed as a mapping from (b, c, ŝp) to action
a = (ŝ, τ).

In a standard POMDP problem, where the action and
observation spaces are finite, the optimal policy can be found
by solving a set of linear equations [11]. Even then, the com-
putational complexity of the problem grows exponentially with
the number of actions and observations. Both the action and
observation spaces of this problem have continuous elements.
Regarding the former, we focus on stationary deterministic
policies such that the epoch duration τ is a deterministic
function of the state (b, c, ŝp) and the current decision ŝ for
that epoch. While ŝ = 1, the LoS channel is constantly being
monitored. The epoch duration is just 1 slot, or 1/f seconds in
that case. However, when ŝ = 0, the transmitter waits for some
time before sampling the LoS channel again. Had the exact

transition instant from ON to OFF been known, the optimal
(oracle) epoch duration could have been found by minimizing
the expected loss (regret) incurred during that period. Say the
transmitter waits τO1 seconds before probing the LoS channel
again, under this scenario. If it probes early, while the channel
is still OFF, it receives a penalty of r2N/f , where N/f is
the sampling duration in seconds. On the other hand, if it
probes the channel late, it misses the opportunity of higher
reward. Thus, the expected penalty is (r1−r0)(τ

O
1 −E[TOFF]).

We assume that if the channel becomes available during
the sampling period, no penalty is received. Minimizing the
expected penalty with respect to τO1 yields that the optimal
waiting duration τO

∗

1 satisfies

P (TOFF < τO
∗

1 )

gOFF(τO
∗

1 +N/f)
=

r0N

(r1 − r0)f
. (11)

The same method can be applied to any waiting duration τOn
given that TOFF >

∑n−1
i=1 τOi . Thus we can generalize (11) as

P
(∑n−1

i=1 τO
i < TOFF <

∑n−1
i=1 τO

i + τO∗
n

)
gOFF

(∑n−1
i=1 τO

i + τO∗
n

) =
r0N

(r1 − r0)f
, (12)

where
∑n−1

i=1 τOi = 0 for n = 1. In the original problem,
without the oracle, c counts the consecutive time slots during
which the decision of the transmitter has been the same so
far. In other words, it corresponds to how long the transmitter
has been using a certain channel consecutively. Therefore, as
soon as the decision ŝ = 0 has been made, it can be updated
to an intermediate variable c̃ =

(
c/f

)
I{ŝ = ŝp}. Assuming

the information at the transmitter is correct, we can use (12)
and calculate an intermediate variable τO for epoch duration

P (c̃ ≤ TOFF < c̃+ τO)

gOFF(c̃+N/f + τO)
=

r0N

(r1 − r0)f
. (13)

Since b quantifies the uncertainty in the true channel state, we
scale τO by b(0) to get the epoch duration under uncertainty.

τ =

{
max{⌊τOfb(0)⌉, 1} ŝ = 0 (14a)
1 ŝ = 1 (14b)

where ⌊·⌉ represents rounding to nearest integer. This particu-
lar τ choice was motivated by the fact that as the transmitter’s
confidence about the channel state being OFF weakens, it
should check the LoS channel more frequently.

To handle the continuity stemming from observations, we
use the observation aggregation method proposed in [10]. The
authors partition the observation space using the concept of
conditional plans. A conditional plan cp = ⟨a, ν(·)⟩ consists
of an action and an observation strategy. Together they specify
which action to perform and which conditional plan to execute
next, contingent on the observation. The value function of a
conditional plan, Vcp, which is the expected cumulative reward
to be obtained when starting from a state (b, c, ŝp), is linear
with respect to the belief:

Vcp(b, c, ŝp) =
∑
s

b(s)Vcp(s, c, ŝp)

=
∑
s

b(s)αcp(s, c, ŝp).
(15)
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Although the belief space is continuous, the value function of
a conditional plan can be completely characterized by a finite
set of parameters called an α-vector. Note that each α-vector
is associated with an action. By definition, the optimal policy
π∗ achieves the highest return at all states. Thus, Vπ∗(b, c, ŝp)
is the upper surface of the α-vectors.

We define conditional plans 0 and 1 as using the NLoS
and LoS channels, respectively. Since each conditional plan is
associated with an action, am = (m, τ) for m ∈ {0, 1}, where
τ is calculated according to (13) and (14). Let the updated
state after executing an action a = (ŝ, τ) and observing z be
(ba

z , c
a, ŝap). Note that ŝap = ŝ, and ca is given by (3). [10]

partitions the observation space into regions Zm in which the
conditional plan m yields the highest return for (ba

z , c
a, ŝap)

Zm = {z|m = arg max
i∈{0,1}

αi(b
a
z , c

a, ŝap)}. (16)

Define the probability P (Zm|a, s′) as an observation z such
that z ∈ Zm will be made if action a is taken and true state
s′ is reached as a result. In this problem, the observations
only depend on the true state. Hence, it can be calculated by
integrating (6) over the region Zm.

For a one-dimensional observation space, the regions in (16)
are line segments. Two conditional plans have the same value
at the segment boundaries. Hence, the segment boundaries
can be found by solving α0(b

a
z , c

a, ŝap)− α1(b
a
z , c

a, ŝap) = 0.
Notice that the initial state (b, c, ŝp) and action a = (ŝ, τ) are
fixed, i.e., the only variable is z.

The optimal value function Vπ∗(b, c, ŝp) can be computed
by value iteration. At each iteration, the segment boundaries
are calculated and α-vectors are updated by point-based dy-
namic programming backups [10].

αm(b, c, ŝp) =
∑
s

b(s)R(s, c, ŝp, am)

+ γ

1∑
i=0

P (Zi|b, c, ŝp, am)αi(b
am
Zi

, cam ,m),

(17)

where m ∈ {0, 1} and R(s, c, ŝp, a) is the immediate reward
given in (7). P (Zi|b, c, ŝp, am) is the probability that the
observation comes from region Zi for some i ∈ {0, 1}
conditioned on the state (b, c, ŝp) and the action taken is am

P (Zi|b, c, ŝp, am) =
∑
s,s′

P (Zi|am, s′)P (s′|s, c, ŝp, am)b(s).

(18)
The transition probabilities P (s′|s, c, ŝp, a) are given in Ta-
ble I. Similarly, bam

Zi
is the updated belief vector after taking

action am and making an observation z ∈ Zi

bam

Zi
(s′) =

∑
s P (Zi|am, s′)P (s′|s, c, ŝp, am)b(s)∑
s,s̃ P (Zi|am, s̃)P (s̃|s, c, ŝp, am)b(s)

. (19)

Vπ∗(b, c, ŝp) is the highest return achieved by any of the
conditional plans:

Vπ∗(b, c, ŝp) = max{α0(b, c, ŝp), α1(b, c, ŝp)}. (20)

Then, we can identify the best action for each state (b, c, ŝp)
from corresponding α-vectors

ŝ = arg max
i∈{0,1}

αi(b, c, ŝp), (21)

where αi(b, c, ŝp) for i ∈ {0, 1} are obtained through (17).
Once ŝ is determined, τ is calculated using (13) and (14).
Then we form the action a = (ŝ, τ).

V. NUMERICAL EXAMPLES

In this section, we present the α-vectors (17) and
Vπ∗(b, c, ŝp) (20) for two different sojourn time distributions.
We take r0 = 1 and r1 = 2 for the rewards. The transmitter
takes the average of N = 2 samples when computing z. The
noise variance is set to σ2 = 1, the sampling frequency f = 10
Hz and the discount factor γ = 0.9.

First, TOFF is selected as a Gamma random variable with
shape parameter 4 and scale parameter 1.5, i.e., gOFF(u) ∼
Γ(4, 1.5), u ≥ 0. Similarly, TON is taken as a shifted Gamma
random variable with the same shape and scale parameters and
shift factor d = 10. The value functions of the conditional
plans are shown in Figures 4a and 4b. The intersection
between the two surfaces is highlighted with a black line in
both figures. The value function of the optimal policy is the
upper surface of the two curves. Thus, if the red curve is above
the blue one for a given state, then the LoS channel is used
as it yields a higher return. Otherwise, the NLoS channel is
utilized. Figure 4c shows a cross-section of Figures 4a and
4b at c = 200. The first sub-figure is for ŝp = 0, hence
it corresponds to the transmitter being in state 0 for 200
slots. In that case, α1 is above α0 until b(0) ≈ 0.65, which
means, unless the transmitter is confident that the state is 0, the
optimal action is to use the LoS channel. This is because the
average OFF duration is 60 time slots, which is much smaller
than 200. Thus, the probability of true state being 1 is very
high, unless the observations strongly suggest otherwise. The
second sub-figure in Figure 4c shows the α-vectors for ŝp = 1.
This time, the transmitter has been in state 1 for 200 time
slots, which is slightly longer than the average ON duration,
160 slots. Therefore, if b(0) ⪆ 0.4, the optimal action is to
use the NLoS channel.

Next, we perform the same analysis for uniform sojourn
time distributions, gOFF(u) ∼ U [0, 4] and gON(u) ∼ U [10, 30].
The results are shown in Figure 5. The region of the NLoS
channel in Figure 5a is significantly restricted compared to
Figure 4a. The reason is, since TOFF can last at most 40
time slots, the optimal action is to check the LoS channel
after staying in the NLoS channel for more than 40 slots. In
accordance with this, we see that α1 completely dominates
α0 in the first sub-figure of Figure 5c. Meanwhile, the second
sub-figure shows that NLoS channel is optimal for b(0) ⪆ 0.5
for ŝp = 1, because the average ON duration is also 200 slots.
Moreover, r1 and r0 are close enough in these simulations,
such that the risk of getting a 0 reward from the LoS channel
when c = 200 is too high compared to a constant reward of
1 to be obtained from the NLoS channel.
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(a) Value functions, V (b, c, 0) (b) Value functions, V (b, c, 1)

(c) α-vectors for c = 200

Fig. 4: Optimal policy for Gamma sojourn time distributions.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we investigated the beam selection problem in
a mmWave system where a strong LoS path with time-varying
availability and a weaker NLoS always-available path exist.
The problem is then formulated as estimating the state of the
system and the duration of the estimated state (called epoch).
The resulting system is analyzed as a POMDP by expanding
the simple channel state definition (ON/OFF) to include a
discretized representation of the epoch duration. The policy
can be precomputed and stored for online access. Numerical
results reveal non-trivial relationships between prior state
estimation, epoch duration, and sampling results in estimating
the channel state and the duration of the upcoming epoch.

This work constitutes a first step towards the analysis of
a more general system. In our future work, we will first
generalize the solution to a larger number of NLoS paths
and consider time-varying availability of the alternative paths.
Moreover, we will explore unknown distributions of ON/OFF
durations as well as reward functions.
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