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Abstract: Wireless body area network (WBAN) is a 

kind of network that provides continuous monitoring 

of health parameters. One of the critical constraints for 

satisfying the quality of service (QoS) in WBAN is the 

limited energy of the sensors implanted in the human 

body. Energy harvesting (EH)- powered WBAN is a 

paradigm that collects the power from surroundings to 

overcome the energy constraint of the sensors. 

However, the heterogeneous and time-varying nature 

of the EH states of the sensors need to be optimized 

while learning the optimal resource allocation 

strategy. In this paper, we propose an actor-critic (AC) 

deep reinforcement learning (DRL) that optimizes the 

transmission mode, relay selection, transmission 

power, and time slots with the energy constraint of the 

sensors to improve the energy efficiency of the EH-

enabled WBAN. The simulation results show that the 

proposed AC technique can efficiently learn the 

optimal resource allocation policy and achieve a 

performance improvement in average delivery 

probability and energy efficiency. 

1. Introduction: 

With the rapid development in wireless network 

paradigm, the wireless body area networks (WBANs) 

are a promising approach that continuously monitors 

the real-time vital signs of the human body and serves 

different applications (e.g., sports, entertainment, and 

military) [1-2]. WBAN architecture consists of 

lightweight and low-power sensors implanted in the 

human body to monitor the physiological data. The 

monitored physiological traffic is further forwarded to 

remote servers using the existing wireless 

infrastructure to analyze various healthcare and 

medical applications. The characteristics of the 

WBAN are highly heterogeneous and dynamic, and 

some physiological parameters, such as 

electroencephalogram (EEG) and electrocardiogram 

(ECG), need continuous data  transmission with 

stringent quality of service (QoS) requirements [3]. 

Consequently, one of the critical constraints in 

limiting the data transmission performance in WBAN 

is the limited energy of the deployed sensors in the 

human body [4]. To address the energy-efficiency 

issue in WBANs, the researchers have investigated 

different energy-efficient schemes in terms of power  

 

 

control, MAC protocol, and cross-layer optimization 

techniques to prolong the lifetime of the WBAN [5-7]. 

The researchers in [8] proposed an optimization 

approach to maximize energy efficiency while 

considering the transmission power, transmission rate, 

and QoS as constraints. In another work, the authors 

proposed a time division multiple access (TDMA) that 

dynamically adjusts the transmission duration and 

order of a TDMA slot to minimize the energy 

consumption [9]. However, one of the challenges of 

keeping the WBAN network uninterrupted in these 

optimization techniques cannot be ensured due to the 

depletion of energy of the nodes, which is a critical 

performance requirement of the WBAN [10]. 

To address the uninterrupted issue in WBANs, the 

emerging concept of energy harvesting (EH) has been 

considered a promising approach to overcome the 

energy efficiency in WBANs and improve the 

performance of the communication systems in terms 

of network lifetime and throughput [11-12]. The EH 

can collect energy from different ambient sources 

(e.g., heat, light, and electromagnetic radiations) or the 

human body and convert it into electric energy to 

continuously supply the power [11]. Moreover, the 

WBAN sensors can collect energy from different EH 

sources and satisfy more stringent performance 

requirements of the applications.  

The EH-powered WBAN resource allocation 

techniques are divided into offline and online schemes 

in the literature. In an offline resource allocation 

strategy, the knowledge of the WBAN network states 

such as data state, channel state, and energy state is 

assumed ideally [12-14]. On the other hand, the online 

EH-powered resource allocation techniques only need 

the statistical information of channel states, data states, 

and energy states [15]. The optimization techniques 

formulated for resource allocation in WBANs require 

a mathematical representation of an environment. 

However, WBANs will have highly heterogeneous 
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and dynamic characteristics, and existing optimization 

techniques formulated for the resource allocation in 

EH-enabled WBANs cannot perform well. As a result, 

a  novel model-free technique is required for achieving 

optimal resource allocation techniques in EH-

WBANs. 

Recently, the novel paradigm of artificial intelligence 

(AI), known as reinforcement learning (RL), has been 

proposed, and it has shown performance improvement 

in heterogeneous and dynamic environments [9]. The 

RL problem is formulated as a Markov decision 

problem (MDP), where an agent interacts with an 

environment and receives rewards, and next state, 

based on the rewards, the agents perform actions that 

can maximize the sum of cumulative rewards. Inspired 

by the RL, the authors proposed a resource allocation 

technique for optimizing the energy efficiency of 

WBAN [16]. There is very little work integrating the 

RL framework in EH-WBANs to achieve energy 

efficiency. In recent work, the authors modeled the 

resource allocation issue in EH-powered WBANs as 

an MDP and proposed a Q-learning technique to learn 

the optimal energy efficiency [17]. The Q-learning 

performs well in the scenarios where the network 

state-space is small. However, the WBANs will 

generate a massive flux of traffic, and Q-learning fails 

to learn the optimal resource allocation policy due to 

discrete state-space in EH-WBANs. The Q-learning 

technique cannot evaluate the actions taken by the 

agent to optimize its policy. To address the issue, we 

propose an actor-critic (AC) based DRL framework 

known as (AC-DRL) that uses a function 

approximator to learn the optimal resource allocation 

policy even in complex scenarios, which is not in the 

case of Q-learning techniques. In the proposed AC-

DRL framework, the actor component performs 

actions, and the critic component evaluates the agent's 

action to further improve the resource allocation 

policy in large and dynamic EH-powered WBANs. 

Based on the evaluation of the actions taken by the 

critic component on the rewa rds, the agent in the critic 

component will take those actions that can maximize 

the sum of cumulative rewards that increase the energy 

efficiency in our framework.  

The following are the paper's primary contributions: 

• We formulate the energy efficiency as an 

actor-critic learning DRL framework to learn 

the resource allocation policy in EH-

WBANs. 

• The simulation results show that the 

proposed AC approach can minimize the 

energy efficiency and speed of convergence 

and outperforms the traditional Q-learning by 

efficiently learning the optimal resource 

allocation policy in EH-WBANs. 

2. SYSTEM MODEL 

The proposed system model consists of an actor-critic-

based DRL framework where multiple EH-enabled 

sensors are in the WBAN. Different types of sensors 

are implanted in the human body to record 

physiological parameters, such as 

electroencephalography sensor (EEG), motion sensor, 

electrocardiogram sensor (ECG), glucose sensor, and 

electromyography sensor (EMG). The traffic from the 

WBAN is forwarded to the server by using the base 

station (BS) or personal digital assistant (PDA) as a 

gateway. The proposed AC DRL framework is 

implemented in the centralized medical server. The 

network states such as time slots, energy queue 

lengths, and the nth body sensor data rate from the EH-

WBAN environment are forwarded to the centralized 

server where the proposed AC framework is 

implemented to learn the resource allocation policy in 

EH-WBAN intelligently. The actor module is 

responsible for taking actions such as varying the time 

slot, relay node, and transmission mode. As the actor 

performs the action, the critic model is used for 

evaluating the performance of the action taken by the 

agent. Based on the critic's evaluation, it updates the 

actor policy so the agent can take the actions that can 

maximize the energy efficiency of the proposed EH-

WBANs. The data can be transferred by using 

cooperative and direct transmission modes. In 

cooperative mode, the data can be forwarded to only 

two hops, and in the case of direct transmission, mode 

traffic can be only forwarded to a single hop. The 

binary variable is defined to select the transmission 

modes. We adopted the network model in [17] to 

validate our approach. The time division multiple 

access (TDMA) is used in the MAC layer, where the 

channel is divided into k time slots. In the case of 

direct transmission mode α 𝑅𝑛 = 1, Two constraints as 

in Eq. (1) and (2) are considered; Eq. (1) indicates that 

the sink can only receive data from one sensor at each 

time slot, Eq (2) indica tes that each sensor assigned at 

most to a one-time slot to forward the traffic in each 

time frame, and is represented as [17], 

∑ 𝐷𝑅𝑁
𝑘 ≤  1, k ∈  ψ,𝑁

𝑛 =1                              (1) 

∑ 𝐷𝑅𝑛
𝑘𝐾

𝑘=1 ≤  1, n ∈ (1, 2, … , N),                 (2) 

Where 𝐷𝑅𝑛
𝑘  represents the data of the nth WBAN sensor 

forwarded on kth time slot time using a binary variable. 

We assume that the WBAN can forward the traffic on 

a single relay, and each relay node can forward the 

traffic from a single source node at a  time, and the 

constraints can be seen in Eq. (3) and (4) as, 

∑ 𝐶𝑅𝑛→𝑠𝑚

𝑘𝑁
𝑚=1,𝑚≠𝑛  ≤ 1, ∑ 𝛿𝑅𝑛→𝑠𝑚

𝑘𝑁
𝑛 =1,   𝑛 ≠𝑚  ≤ 1,   (3)  
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∑ 𝐶𝑅𝑛→𝐻 
𝑘𝑁

𝑛 =1,𝑛≠𝑚 ≤ 1, ∑ 𝛿𝑅𝑛→𝐻 
𝑘𝑁

𝑚=1,   𝑚≠𝑛 ≤ 1      (4)  

Where 𝐶𝑅𝑛
𝑘  represents that the data of nth node can be 

forwarded on kth time slot of the channel. The 

transmission rate of the direct mode and cooperative 

mode, as in Eq. (5) and (6) are used for the 

transmission of the traffic that can be written 

according to Shannon’s theorem as follows [17], 

𝑇𝑛
𝑑 =  ∑ 𝐷𝑅𝑛

𝑘𝐾
𝑘=1 . 𝐵. 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑛,𝑘

𝑑 )              (5) 

𝑇𝑛
𝑐,   𝑠 →𝑟 = ∑ ∑ 𝐶𝑅𝑛→𝑅𝑚 

𝑘𝐾
𝑘=1 .𝑁

𝑚= 1
𝑚 ≠𝑛

𝐵. 𝑙𝑜𝑔2  (1 +

𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘
𝑠  → 𝑟 )                                                            (6) 

Where, 𝑇𝑛
𝑑 shows the data rate of nth sensor in direct 

transmission mode and 𝑇𝑛
𝑐 is the data  rate of the nth 

body in cooperative transmission approach. The data 

is stored as packets in the device's buffer with an 

average rate of λd [18]. We assume the buffer space is 

finite and follows a FIFO. In timeslot k, 𝐼𝑄𝑅𝑛
𝑘   

represents the instantaneous queue length at the nth  

sensor and 𝐼𝑄𝑅𝑛
𝑚𝑎𝑥 denotes the maximum queue length 

of the device that can be written as follows [18], 

𝐼𝑄𝑆𝑛
𝑘 =

𝑚𝑖𝑛 {𝐼𝑄𝑇𝑛
𝑚𝑎𝑥, 𝐼𝑄𝑇𝑛

𝑘−1𝑚𝑖𝑛 {⌊
𝐶𝑇𝑛 .𝑇𝑛

𝑑+(1− 𝐶𝑇𝑛 ).𝑇𝑛
𝑐  

𝑆𝑑𝑎𝑡𝑎
 ⌋ , 𝐼𝑄𝑇𝑛

𝑘−1 } +

 𝐴𝑅𝑛
𝑘−1}                                                                    (7)  

 In the above equation, traffic packet size is denoted 

by  𝑆𝑑𝑎𝑡𝑎, and 
𝐶𝑇𝑛 .𝑇𝑛

𝑑+(1− 𝐶𝑇𝑛 ).𝑇𝑛
𝑐  

𝑆𝑑𝑎𝑡𝑎
 is the instantaneous 

service rate of transmission in the (k – 1)th timeslot of 

the nth sensor, and 𝐴Sn
𝑘−1 is the arriving traffic packet. 

The proposed system model utilizes the EH model as 

in [19], where the energy harvested in the k time slots 

by the nth WBAN sensor is denoted by {EHn, 1, EHn, 2, 

. . . , EHn, t, . . . , EHn, K} that shows the sequence of 

energy harvested in a transmission frame. As a result, 

the instantaneous energy with a queue length can be 

represented as, 

𝐼𝑄𝑇𝑛
𝑘 = min {𝐼𝑄𝑇𝑛

𝑚𝑎𝑥, 𝑄𝑇𝑛
𝑘−1 −

𝑚𝑖𝑛 {⌊
𝑃𝑛.𝑘−1

𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦
 ⌋ , 𝐼𝑄𝑇𝑛

𝑘−1 } +  𝐼𝑛, 𝑘 − 1}                    (8)                                                 

where 𝐼𝑄𝑇𝑛
𝑘  is represented as instantaneous energy 

sequence length. 𝐼𝑄𝑇𝑛
𝑚𝑎𝑥  is denoted for the max energy 

sequence length of body sensors. 𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦  is the 

energy packet size. 𝑃𝑛 . 𝑘 − 1 denotes the transmission 

power of the body sensor in the k − 1th time slot. I𝑛, 𝑘 

− 1 shows the time sequence of energy harvested in a  

transmission frame at the k-1 time slot.  

we outline the energy efficiency of the network as the 

ratio of the transmission rate to the consumed 

transmission power. The objective function (OF), 

which is the energy efficiency of the nth sensor in the 

k time slots for the proposed system, can be 

mathematically represented as, 

𝑂𝐹𝑅𝑛
𝑘 =  

𝐶𝑆𝑛 .𝑇𝑛
𝑑+(1− 𝐶𝑆𝑛).𝑇𝑛

𝑐

𝑃𝑛,𝑘
 ∀𝑛∈ (1,2, … , 𝑁), ∀𝑛∈  𝜑 

(9) 

We define average efficiency problem as, 

                  𝑂𝐹 =  
1

𝑁
 . ∑ ∑ 𝑂𝐹Sn

𝑘𝐾𝑁
𝑁 =1

𝐾
𝑘 =1           (10) 

Finally, the proposed energy-efficiency in EH-

WBAN can be formulated as, 

                              max   OF, 

subject to: 

∑ 𝐷𝑇𝑁
𝑘 ≤  1, k ∈  ψ,𝑁

𝑛 =1                           (10 a) 

∑ 𝐷𝑇𝑛
𝑘

𝐾

𝑘=1

≤  1, n ∈ (1, 2, … , N), (10 b) 

𝑅n
𝑑 =  ∑ 𝐷𝑇𝑛

𝑘𝐾
𝑘=1 . 𝐵. 𝑙𝑜𝑔2 (1 + 𝑆𝐼𝑁𝑅𝑛 ,𝑘

𝑑 ) (10 c) 

 

𝑇n
𝑐,   𝑠 →𝑟 = ∑ ∑ 𝐶𝑇𝑛→𝑇𝑚 

𝑘𝐾
𝑘=1 .𝑁

𝑚= 1
𝑚 ≠𝑛

𝐵 .𝑙𝑜𝑔2 (1 +

𝑆𝐼𝑁𝑅𝑛,𝑚,𝑘
𝑠  → 𝑟 )                                                    (10 d) 

 

∑ 𝐶𝑠𝑛→𝑠𝑚
𝑘𝐾

𝑘=1  ∑ 𝐶𝑠𝑛→𝐻 
𝑘𝐾

𝑘 =1 ≤ 1 𝑛 ≠ 𝑚        (10 e) 

 

∑ 𝐶𝑠𝑛→𝑠𝑚

𝑘𝐾
𝑘=1  ∑ 𝐶𝑠𝑛→𝐻 

𝑘𝐾
𝑘 =1 ≤ 1 𝑛 ≠ 𝑚       (10 f) 

∑ 𝐶Sn→Sm
k𝑥

𝑘=1  −  ∑ 𝐶 Sm→H 
𝑘𝐾

𝑘=𝑥+1 ≥  0        (10 g) 

∑ 𝐼𝑄Sn
𝑘𝐾

𝑘=1 − ∑ ⌈
𝑃𝑛,𝑘−1

𝑃𝑆𝑒𝑛𝑒𝑟𝑔𝑦

⌉𝐾
𝑘=1  ≤  𝐼𝑄Sn

𝑚𝑎𝑥      (10 h) 

3. PROPOSED AC-DRL FRAMEWORK 

The RL problem is formulated as an MDP and is based 

on four components {at, st, rt, Pt}, where at is the 

actions taken by the agent, st shows the state-space, rt 

represents the rewards, and Pt is the transition 

probability. The existing RL , such as Q-learning fail 

to perform well when the network state-space grows 

exponentially. As a result, we formulated the problem 

of resource allocation in EH-WBAN as an actor-critic 

(AC) framework. The AC DRL is divided into two 

components; actor and critic. The agent's 
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responsibility in the actor is to take those actions that 

can maximize the sum of cumulative rewards, and this 

process is known as policy improvement.  

On the other hand, the critic evaluates the action taken 

by the actor by using a function approximator under a 

policy π, and this process is called policy evaluation.  

The function approximator in the critic is used to 

adaptively update the parameters of the actor 

component policy to learn the optimal resource 

allocation in EH-WBAN. Next, we discuss in detail 

the actor and critic components and their formulation 

in detail. In a nutshell, the states from the WBAN 

sensors denoted as wn
k ∈ w, such as Dn

k  and En
k 

denoting the data and sensors' data and energy queue 

length, are forwarded to the actor-component. The 

actor part performs actions by varying the relay node, 

transmission mode, and time slots. As the actor takes 

action, the reward, which is our framework's energy 

efficiency, is forwarded to the critic part. Based on the 

reward function, the critic evaluates the actor's action 

and updates the actor's parameters to take those actions 

with the highest reward. 

A. Actor part 

The objective of the actor part is to search for the best 

𝜃 under a given policy π 𝜃 to maximize the expected 

reward J(π 𝜃). The policy gradient technique is used 

to update the policy of actor with respect to varying 

𝜃 as, 

             𝜃𝑡 +1 =  𝜃𝑡 + 𝑎 ∇𝜃𝑡  𝑙𝑜𝑔𝜋𝜃𝑡  (𝑠𝑡 ,𝑎𝑡
)𝛿𝑡 .          (11) 

The expected total reward while following a policy π 

can be mathematically written as, 

     ∇𝜃 𝐽 (𝜃) = 𝐸𝜋𝜃
[∇𝜃 log 𝜋𝜃  (𝑠, 𝑎)  𝛿𝑡

]                 (12) 

B. Critic part 

The function of the critic component is to approximate 

the actions taken by the actor part and update the 

policy π. The state-action value function used for 

function approximation can be written as, 

                     𝑄𝜋(s,a)∑ 𝜃𝑖 𝛼𝑖(𝑠, 𝑎)                         𝑛
𝑖=1 (13) 

The approximation function used by the critic follows 

a temporal difference (TD) that is used for updating 

the value of   𝑄 𝜋(s,a)  and is written as, 

       𝛿𝑡 =  𝑅𝑡 +  𝛾𝑉  (𝑉𝑡 +1
) − (𝑉𝑡

)           (14)                   

The problem of EH-WBAN is formulated as an MDP, 

and its details can be seen as follows: 

States: The states from the WBAN sensors  Dn
k  and 

En
k which show the data and energy queue length of 

the sensors in the nth body sensor, are generated from 

the EH-WBAN environment. The states are forwarded 

from the WBAN environment to the actor-critic 

framework.  

Actions: The action at  ∈ A taken by the agent is to 

vary the resource allocation variables, αRn is the 

transmission mode, δkRn shows the relay selection, pn,k 

is the power allocation and βkRn is the allocation of 

time slot.  The actor component can take the actions to 

maximize the energy efficiency of the network. 

Rewards:  The objective of the proposed AC is to 

maximize the energy efficiency as shown in Eq. (10) 

of the network. 

Algorithm 1 

1. Initialize the parameters of the AC 

framework 𝜃, 𝛾, 𝑎𝑛𝑑  𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔  𝑟𝑎𝑡𝑒𝑠  

2. for t=1.. T :  do  

3.         Generate action according to π 𝜃(𝑎|s) 

4.         Observe the reward rt and next state st+1 

5.         Store the observations in tuple (at, st, rt, 

Pt) 

6.         Select mini-batch from samples 

7.         Update parameters of critic 

                𝛿𝑡 =  𝑅𝑡 +  𝛾𝑉  (𝑉𝑡 +1
) − (𝑉𝑡

) 

8.          Update parameters of actor 

                                 ∇𝜃 𝐽 (𝜃)

=  𝐸𝜋𝜃
[∇𝜃 log 𝜋𝜃  (𝑠, 𝑎) 𝛿𝑡

] 

9.   end for 

  

Algorithm 1 shows the proposed AC framework for 

resource allocation in EH-WBANs. Initially, the agent 

in the actor part explores the environment and 

performs actions randomly, such as relay node, 

transmission mode, time slot, and transmission power 

without, considering the queue and data state of 

WBANs. The learning rate α, weights 𝜃, and discount 

factor γ of the AC framework are initialized (line 1). 

The agent initially takes random action following a 

policy π 𝜃(𝑎|s) (line 3),  and receives a reward value 

EE in our framework and next-state (line 4),. The 

agent's experience with the EH-WBAN framework is 

stored in a tuple form as in (line 5). After sufficient 

samples are collected, the AC framework takes a mini-

batch of the samples for the training.  The critic uses a 

function approximator and, based on reward, 

minimizes the error by using the TD as in (line 7). The 

critic forwards the updated weights to the actor as in 

(line 8), and the agent tunes its weight. After training, 

the agent will try to take those actions ( relay node, 

transmission mode, time slot, and transmission power) 
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that can maximize the EE considering the data and 

queue state of the sensor in the EH-WBAN. 

4. SIMULATION RESULTS 

The simulation parameters for the proposed actor-

critic framework for the training of the EH-WBAN 

can be seen in table 1.  We compared the proposed AC-

framework with the benchmark scheme [17] which 

uses a Q-learning RL technique to learn the resource 

allocation policy in EH-powered WBAN. The energy 

efficiency and average probability are the metrics used 

to compare for evaluating the effectiveness of the 

proposed scheme with benchmark paper 

Parameters Actor  Critic 

Hidden layers 2 2 

Nodes 32 32 

Activation function 

(hidden layer) 

ReLU ReLU 

Activation function 

(output layer) 

Sigmoid Linear 

Learning rate 0.9 0.9 

Batch size 64 64 

Discount factor 0.5 0.5 

Number of episodes 200 200 

Simulator Python 3.6 

Library Keras 

 

 

Fig. 2 Energy efficiency comparison with increasing 

number of episodes. 

 

a) Energy efficiency per episode 

Fig 2 shows the performance of the proposed AC with 

the benchmark schemes in terms of energy efficiency 

with increasing the number of episodes. It can be 

clearly seen from Fig. 2 that the proposed AC 

technique can explore the WBAN environment well 

and learn the optimal resource allocation policy. The 

agent can select actions that can maximize the energy 

efficiency of the EH-WBAN network and achieve an 

improvement of 24% compared to the benchmark 

paper. 

The performance of the proposed AC technique is 

evaluated by increasing the size of the WBAN 

network as intelligent healthcare networks will be 

based on emerging IoT applications that will generate 

a massive amount of healthcare traffic for WBAN 

sensors. So, to evaluate the scalability, we analyzed 

the proposed AC algorithm in terms of energy 

efficiency with increasing the WBAN nodes. 

 

Fig. 4 Energy efficiency comparison with varying 

energy harvesting rate 

b) Energy efficiency with varying harvesting rate 

Fig. 4 shows the performance of the proposed AC 

technique with increasing the effect of the harvesting 

rate. It can be clearly seen that when the energy 

harvesting rate is increased beyond eight packets per 

second, the energy efficiency performance is 

significantly outperformed compared to the traditional 

Q-learning technique. The proposed AC framework 

achieves an improvement of 20% in terms of 

efficiency than Q-learning. The AC technique can 

efficiently learn the correlation between the 

transmission mode, power allocation, transmission 

mode, and energy harvesting by exploring the EH-

WBAN environment. On the other hand, the actions 

taken by the agent in the Q-learning cannot be 

evaluated, and it always chooses the action with a 

higher cumulative reward in the Q-table. As a result, 

for an extensive EH-WBAN network where the 

number of network state-space is very high, Q-

learning fails to learn the optimal energy efficiency 

when the network state-space is increased 

exponentially. 
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Fig. 5 Average delivery probability  

 

c) Average delivery probability 

The WBAN will generate traffic with diverse quality 

of service requirements, and as a result, the proposed 

algorithm needs to satisfy the traffic requirements and 

achieve a higher delivery probability. Fig. 5 shows the 

performance of the AC technique compared to Q-

learning in terms of delivery probability. It can be 

clearly seen that the AC technique can explore and 

learn the resource allocation optimally and achieves a 

higher delivery probability than Q-learning. The Q-

learning performs initially well; however, when the 

size of the network is increased, it fails, and its 

performance is reduced drastically. As a result, the 

proposed approach is scalable and can achieve higher 

performance. 

6. CONCLUSION 

In this paper, we proposed an actor-critic based DRL 

technique to address the resource allocation issue in 

EH-powered WBAN. The proposed algorithm is able 

to learn the dynamic and heterogeneous network 

parameters of the EH-WBAN and outperforms the 

benchmark scheme in terms of optimizing the energy-

efficiency. Moreover, the AC is also able to perform 

well when the network state-space is increased. Thus, 

proposed algorithm can be deployed in practical EH-

WBAN systems. In future work, we will try to 

investigate the federated learning to improve the 

generalization issue in EH-WBANs. 
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