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Abstract—This study explores optimal dynamic resource al-
location in mobile reconfigurable intelligent surface (RIS)-aided
wireless networks facing uncertain, time-varying channels. Un-
manned aerial vehicles (UAVs) strategically deploy multiple RIS
to enhance mobility. Addressing uncertainties, a novel causal
reinforcement learning-based online dynamic resource allocation
algorithm is proposed. It features a structural causal model for
crucial parameters in time-varying channels and a Q-learning
Adaptive Dynamic Programming algorithm optimizing mobile
RIS deployment. A causal actor-critic algorithm further refines
transmit power and phase shift control policies. Numerical
simulations validate the approach’s efficacy, underscoring its
potential to maximize spectrum efficiency and enhance dynamic
wireless network performance.

Index Terms—Reconfigurable intelligent surfaces, Unmanned
aerial vehicles, RIS phase shift, energy efficiency, structural
causal model, causal Reinforcement Learning

I. INTRODUCTION

In the past decade, the surge in wireless users, escalat-
ing data demands, and heightened Quality-of-Service (QoS)
criteria have posed significant challenges in the field [1].
Frequencies ranging from 30-100 GHz (millimeter wave) and
above 100 GHz (sub-millimeter wave) have become prevalent,
serving diverse applications such as sensing and communica-
tion for entities like sensors and robots. Existing communi-
cation networks face difficulties in reliably serving numerous
mobile users with varying QoS needs. Recent advancements,
including Reconfigurable Intelligent Surface (RIS) with phase
shifting [2] and relay-assisted networks [3], aim to overcome
these challenges. RIS-assisted wireless networks, in particular,
are favored for expanding coverage and throughput cost-
effectively through passive signal reflection [3].

The Reflecting Intelligent Surface (RIS), composed of con-
trollable passive units requiring no additional power supply
[4], exhibits significantly lower power consumption and higher
energy efficiency compared to conventional amplify and for-
ward (AF) relays [3]. Simultaneously, Unmanned Aerial Ve-
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hicles (UAVs), gaining attention for their mobility and agility
[5], could further enhance RIS flexibility when combined.

Reinforcement Learning (RL) emerges as a key technique
for optimizing resource allocation, especially in uncertain
communication environments. Traditional RL demands exten-
sive datasets and time, presenting challenges in real-world
scenarios. To address this, efficient use of limited real-time
data becomes essential. Leveraging inherent causality in real-
time wireless communication reduces the computational com-
plexity of RL algorithms. This paper proposes integrating a
structural causal model [6] with RL to optimize dynamic
resource allocation in multi-mobile Reconfigurable Intelligent
Surface (RIS)-assisted wireless networks, even in the presence
of uncertain channels.

The paper introduces an optimization framework for UAV
placement and resource allocation in a multi-RIS, UAV-aided
wireless network. Key contributions are summarized below.

• A novel structural causal model is developed for the
wireless communication network.

• A time-varying and uncertain environment has been
considered. Specifically, a new type of state-space model
has been developed to represent the dynamic resource
allocation system

• A finite horizon optimal resource allocation problem
has been formulated along with RIS optimal placement.

• A causal actor critic reinfocement learning algorithm
has been designed to learn the optimal dynamic resource
allocation policies for multiple mobile RIS-assisted wire-
less network in real-time.

II. SYSTEM AND CHANNEL MODEL
A. System Model

In the wireless network depicted in Figure 1, there is a base
station (BS) with N antennas, K UAV-enhanced RIS relays,
where the RIS comprises M element units, and L single-
antenna users (UEs). The harsh communication environment
blocks direct signal links from the BS to users. It operates as a
two-hop communication system, requiring the BS to transmit
signals through the UAV-enhanced RIS relay to reach users.
At time t, the received signal at user l can be presented as
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yl(t) = hRU,l(t)
HΦl(t)HBR,l(t)x(t) + nl(t), (1)

where x(t) denotes the transmitted signal over the l-th
subcarrier, yl(t) denotes the received signal, nl(t) is the
additive white noise following normal distribution CN (0, σ2

l ),
HBR,l(t) and hRU,l(t) represent channel gain matrix from BS
to RIS relay and from RIS relay to user respectively at time t,
Φl(t) is a diagonal matrix applied by RIS reflecting elements.
The transmitted signal x(t) at time t can be further represented
as x(t) =

∑L
l=1

√
pl(t)ql(t)sl(t) with pl(t),ql(t), sl(t) being

the transmit power, beamforming vector at BS and transmitted
data to user l respectively. Transmit power at BS is limited and
needs to satisfy the following constraints, i.e.

E[|x|2(t)] = tr(P(t)QH(t)Q(t)) ≤ Pmax, (2)

where Pmax denotes the maximum transmit power, Q(t) is
defined as Q(t) = [q1(t), ...,qL(t)] ∈ CM×L, and P(t) =
diag[p1(t), ...,pL(t)] ∈ CL×L.

B. Multi-UAV enhanced RIS-assisted wireless channel
There are two types of dynamic wireless channels which

are between base station (BS) to RIS relay, HBR(t),
and from RIS relay to individual user (UE), hRU,l(t).
BS to UAV-enhanced RIS relay channel model:

Fig. 1: UAV-enhanced RIS-assisted wireless network

HBR(t) =
√
βBR(t)× a(ϕR, θR, t)× aH(ϕBS , θBS , t) (3)

where
√
βBR(t) denotes the time-varying BS to RIS re-

lay channel gain, a(ϕBS , θBS , t) and a(ϕR, θR, t) repre-
sent the multi-antenna array response vectors used for
data transmission from BS to RIS relay respectively.
UAV-enhanced RIS relay to UEl wireless channel model:

hRU,l(t) =
√
βRU,l(t)× aH(ϕRU,l, θRU,l, t) (4)

where
√
βRU,l(t) describes the time-vary channel gain from

RIS relay to user l at time t, l ∈ [1, ..., L], a(ϕRU,l, θRU,l, t)
is the multi-antenna array response vector used for data
transmission from RIS relay to user l .

Considering non-line of sight (NLOS) communication sys-
tem, the time-varying Signal-to-Interference-plus-Noise Ratio
(SINR) at user l with l ∈ (1, ..., L) can be obtained as

γl(t) =
pl(t)|(hH

RU,l(t)Φl(t)HBR,l(t))qk(l)|2∑l
j ̸=l pj(t)|h

H
RU,l(t)Φl(t)HBR,l(t))qj(t)|2 + σ2

l

,

(5)
Furthermore,the real-time system Spectral Efficiency (SE) in

bps/Hz can be represented as

R(t) =
L∑

l=1

log2(1 + γl(t)), (6)

C. Structural Causal Model
The wireless environment exhibits ubiquitous causality,

causing the wireless channel to change over time in a causal
manner. Obtaining the causality of the time-varying wireless
channel allows efficient modeling with fewer channel mea-
surements. Representing wireless channel causality involves
developing suitable Structural Causal Models (SCMs) [6]. In
this paper, the developed SCM M is a tuple < U,V,F , P (u) >
where V = V1, ...Vn is a set of endogenous variables, U =
U1, ..., Um is a set of exogenous variables, and F = f1, ..., fn
is a set of structural functions determining V. Formalizing
the multi-Reconfigurable Intelligent Surface (RIS) assisted
wireless system in the causal domain, an SCM is designed
and provided. As the Fig.2 shown,

Fig. 2: Causal Graph G presenting SCM

In the crafted SCM, it encompasses observable vari-
ables—the phase shifting of RIS Φ, transmission power P ,
explicit communication environment, forming the observable
vector (channel measurements) X . Each observable results
from time-based dynamic resource allocation.

Xi := fi(PAi, Ui)i = 1, ..., n (7)

where PA denotes the causal variable of the Xi, fi is a the
function depending on PAi and variables Ui.

III. PROBLEM FORMULATION

A. Multi-UAV Optimal Placement

For optimizing multi-UAV placement, a path planning de-
sign problem is formulated by measuring path gain and time
delays among nodes. A K-means clustering method groups
distributed wireless users, dividing them into clusters with
corresponding centers. UAVs carrying RIS are assigned to
clusters, aligning with centers to maximize coverage. In a
complex environment with interference, designing novel power
allocation and phase shifting becomes crucial to maximize
communication quality.

B. Resource allocation for multi-user within the cluster
The total power operated on the multi-UAV enhanced RIS-

assisted wireless network of o-th downlink cluster is given as

Po−total(t) =

U∑
u=1

(ξpu(t) + PUE,u(t)) + PBS,o(t) + PR,o(t), (8)
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where ξ ∼= ν with ν being the efficiency of the transmit
power amplifier. u = [1, ..., U ] presents the user numbers of
cluster s. The total power for the entire system is

Ptotal(t) =

O∑
o=1

Po−total(t) (9)

Considering (8) as the denominator of the energy efficiency
(EE) function, the EE performance ηEE

∼= (B ·R)/Ptotal can
be obtained using (6) and (8) as

ηEE(t) =
B

∑U
u=1 log2(1 + γu(t))

sumU
u=1(ξpu(t) + PUE,u(t)) + PBS,o(t) + PR,o(t)

, (10)

The goal is to maximize energy efficiency ηEE(t) and
minimize power consumption. Causal factorsH are introduced
to influence state variables, representing the effective causal
factors for the transition st → st+1. Intervening on factor h
in the environment means that applying control ut on an agent
in state st causes the transition to st+1 through a deterministic
transfer function and a subset of causal factors. The dynamics
of system resource allocation can be represented as

P(t+ 1) = P(t,H) + uP (t) (11)

Φ(t+ 1) = Φ(t,H) + uΦ(t) (12)

with P, Φ being UAV-enhanced RIS-assisted wireless network
states, and uP , uΦ being resource allocation control policy.
Next, the cost function can be defined as

V (P,Φ, t) =

TF∑
τ=t

r(P,Φ, uP , uΦ, τ)

=

TF∑
τ=t

(tr(P (τ)Q(τ)HQ(τ))) +
1

ηEE(P,Φ, τ)

+ uT
P (τ)RP uP (τ) + uT

Φ(τ)RΦuΦ(τ)

(13)

where r(P,Φ,uP ,uΦ, t) = L(P,Φ, t) + uT
P (t)RP uP (t) +

uT
Φ(t)RΦuΦ(t) is positive definite finite horizon cost-to-

go function, including L(P,Φ, t) representing the trans-
mit power cost as well as energy efficiency cost and
uT
P (t)RP uP (t),uT

Φ(t)RΦuΦ(t) representing the cost of trans-
mit power control and RIS phase shifts control respectively,
ηEE(P,Φ, t) is positive energy efficiency function that defined
in Eq. (10), RP , RΦ are positive definite weighting matrices,
and TF is the finite final time.

Then, assuming that the channel matrix (HH
RU (t)ΦHBR(t))

has a right inverse, the perfect interference suppres-
sion is achieved by setting zero-force precoding ma-
trix to Q(t) = (HH

RU (t)Φ(t)HBR(t))
+ with HRU (t) =

[hRU,1(t)
T , hT

RU,2, ...hRU,K(t)T ]T ∈ CK×M [7], HBR ∈ CM×N .
Replacing Q(t) in(13), then cost function can be rewritten as

V (P,Φ, t) =

TF∑
τ=t

1

ηEE(P,Φ, τ)
+ uT

P (τ)RP uP (τ)

+ uT
Φ(τ)RΦuΦ(τ) + tr((HH

RU(τ)Φ(τ)HBR(τ))+

P(τ)(HH
RU(τ)Φ(τ)HBR(τ)))−1

(14)

According to the classic optimal control theory [8], the
optimal cost function, optimal transmit power control policy

and RIS phase shifts control policy can be derived as

V ∗(P,Φ, t) = min
uΦ,uP

V (P,Φ, t) (15)

{u∗
Φ,u

∗
P } = argminV (P,Φ, t) (16)

Moreover, according to Bellman’s principle of optimality, the
cost function can be represented dynamically as

V ∗(P,Φ, t) = min
uΦ,uP

{r(P,Φ, t)}+ V ∗(P,Φ, t+ 1) (17)

Optimal control policies, i.e. optimal transmit power and RIS
phase shift, can be solved via dynamic programming [9] as

u∗
P = −1

2
R−1

P

∂V ∗(P,Φ, t+ 1)

∂P(t+ 1)
(18)

u∗
Φ = −1

2
R−1

Φ

∂V ∗(P,Φ, t+ 1)

∂Φ(t+ 1)
(19)

Substituting Eqs. (18) and (19) into Bellman Equation (17),
we obtain the Hamilton-Jacobi-Bellman (HJB) equation as

V ∗(P,Φ, t) = L(P∗,Φ∗, t) +
1

4

∂V ∗(P,Φ, t+ 1)

∂P(t+ 1)

×R−1
P

∂V ∗(P,Φ, t+ 1)

∂P(t+ 1)
+

1

4

∂V ∗(P,Φ, t+ 1)

∂Φ(t+ 1)

×R−1
Φ

∂V ∗(P,Φ, t+ 1)

∂Φ(t+ 1)
+ V ∗(P,Φ, t+ 1)

(20)

IV. TWO-PHASE RIS PLACEMENT AND RESOURCE
ALLOCATION OPTIMIZATION WITH ONLINE

LEARNING

A. Phase I: Deep Q Learning based Intelligent Multi-UAV
Placement for UAV-enhanced RIS-assisted wireless network

Deep reinforcement learning optimizes multi-UAV place-
ment in a UAV-enhanced RIS-assisted wireless network. The
action space, Arelay = [ai,moving,ai, rotation], for i =
1, 2, ...,K includes movement and rotation options. The reward
function, ri(t) = g (

∑
f(relayi,Useri, o), f(relayi, source)),

assesses communication quality through path gain and time
delay. The comprehensive evaluation function f() utilizes data
from channel measurement. The reward evaluation function
g() summarizes overall communication quality. To simplify
training, orientation and relative coordinates, si, t, replace the
entire map image as preprocessing input, using ϕ to stack a
last series of history for sufficient input to the deep Q network.
The detailed is given in Algorithm1.

B. Phase 2: Online Causal Actor-Critic Reinforcement Learn-
ing Based Optimal Resource Allocation Design

Causal Actor-Critic RL structure: As shown in Figure 3, we
have:
Causal Inference Module: fsel(H, st, ut) was executed in
this module. fsel is the Causal Selector Function which
selects the subset of causal factors affecting the transition and
fsel(H, st, ut) ⊂ H. Then applying intervention on the factor
h in the wireless environment, i.e., T (st+1|st, do(hj = v), ut),
where do(hj = v) indicates the intervention.
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Algorithm 1 Deep Reinforcement Learning Based Intelligent
multi-UAV Placement (Phase I)

1: Do K-means clustering for all users positions, get centers
for different clusters center1...centerO

2: Assign all mobile UAV relay and base stations their own
cluster centers.

3: Do Deep Q Network (DQN) learning within each UAV-
enhanced RIS-assisted wireless network relay i network.

4: Set memory pool Di for each UAV-enhanced RIS-assisted
wireless network relay. Set action-value function Qi for
each UAV-enhanced RIS-assisted wireless network relay
with random weights.

5: for episode =1, M do
6: Set sequence si,1=xi,1 and get ϕi,1 = ϕ(si,1)
7: for t=1, T do
8: With probability ϵ randomly get ai,t from Arelay

9: Otherwise select ai,t = maxaQ
∗
i (ϕ(si,t)), a; θ)

10: Execute action ai,t in emulator and get reward ri,t
11: ri(t) = g (

∑
f(relayi, Useri,u), f(relayi, source))

12: Set si,t+1 = si,t, ai,t, xi,t+1 and preprocess
ϕi,t+1 = ϕ(si,t+1)

13: Store transition (ϕi,t, ai,t, ri,t, ϕi,t+1) in Di
14: Sample random minibatch of transitions

(ϕi,j , ai,j , rij , ϕi,j+1) from Di

15: Set yi,j =
{
ri,j for terminal ϕi,j+1

ri,j + γmaxa′Q(ϕi,j+1, a
′
; θ) else

}
16: Perform a gradient descent step on

(yi,j −Q(ϕi,j , ai,j ; θ))
2

17: end for
18: end for

Fig. 3: 2-Phase network structure.

Critic (Cost Function): To learn the optimal cost function
V ∗(P,Φ, t) along with time by using the real-time RIS-
wireless system state P(t),Φ(t). The Critic component will be
tuned through Bellman Equation since optimal cost function
is the unique solution to maintain the Bellman Equation.
Actor 1 (Transmit Power Control): To learn the optimal
transmit power control u∗

P (t) along with time by using Eq.
(18) along with the learnt optimal cost function from Critic.
Actor 2 (RIS phase shifts Control): To learn the optimal RIS
phase shifts control u∗

Φ(t) along with time by using Eq. (19)
along with the learnt optimal cost function from Critic.
Causal Actor-Critic NN based Resource Allocation Design:
Neural Networks can be used to approximate the optimal cost
function and optimal controls as

V̂ (P,Φ, t) = ŴT
V (t)ψV (P,Φ, t) (21)

ûP (P,Φ, t) = Ŵ
T

u,P (t)Ψu,P (P,Φ, t) (22)

ûΦ(P,Φ, t) = Ŵ
T

u,Φ(t)Ψu,Φ(P,Φ, t) (23)

where ŴV (t) ∈ ClV ×1, Ŵu,P (t) ∈ Clu,P×U , Ŵu,Φ(t) ∈
Clu,Φ×M being the estimated NN weights for Critic NN
and two Actor NNs, ψV (t), Ψu,P (t), Ψu,Φ(t) being NNs
activation functions. To ensure the estimated values from NNs
can converge to optimal solutions, the NN update laws are
needed to force estimated NN weights to converge to targets.

According to classic optimal control theory, the optimal cost
function is the unique solution to maintain Bellman Equation,

0 = r(P∗,Φ∗, t) + V ∗(P,Φ, t+ 1)− V ∗(P,Φ, t) (24)

However, by substituting the estimated cost function from
Critic NN into Bellman Equation, Eq. (24) will not hold and
lead to residual error eBE(t) defined as

eBE(t) = r(P,Φ, t) + V̂ (P,Φ, t+ 1)− V̂ (P,Φ, t)

= r(P,Φ, t) + ŴT
V (t)∆ψV (P,Φ, t)

(25)

with ∆ψV (P,Φ, t) = ψV (P,Φ, t+ 1)−ψV (P,Φ, t).
To force the estimated cost function to converge to optimal

cost function, the estimated Critic NN should be updated to
reduce the residual error. Hence, using the gradient descent
algorithm, the update law for Critic NN can be designed as

ŴV (t+ 1) = ŴV (t) + αV
∆ΨV (P,Φ, t){eBE − r(P ,Φ, t)}T

1 + ∥∆ΨV (P,Φ, t)∥2
(26)

where αV is Critic NN tuning parameter with 0 < αV < 1.
Next, using the estimated cost function from Critic NN and
Eqs. (18), (19), two Actor NN estimation errors are given as

eu,P (t+1) = Ŵ
T

u,P (t)Ψu,P (P,Φ, t)+
1

2
R−1

P

∂V ∗(P,Φ, t+1)

∂P(t+1)
(27)

eu,Φ(t+1) = Ŵ
T

u,Φ(t)Ψu,P (P,Φ, t)+
1

2
R−1

Φ

∂V ∗(P,Φ, t+1)

∂Φ(t+ 1)
(28)

Using two Actor NN estimation error, the related NN weights
can be updated as

Ŵu,P (t+ 1) = Ŵu,P (t)− αu,P

Ψ(P,Φ, t)eTu,P (t+ 1)

1 + ∥Ψu,P (P,Φ, t)∥2
(29)

Ŵu,Ψ(t+ 1) = Ŵu,Ψ(t)− αu,Ψ

Ψ(P,Φ, t)eTu,Ψ(t+ 1)

1 + ∥Ψu,P (P,Φ, t)∥2
(30)

where 0 < αu,P , αu,Φ < 1 are Actor NNs tuning parameters.
The structure of the causal actor-critic network is shown in
Figure 3. The detailed is shown in Algorithm2.

V. SIMULATION
A. Efficiency of multi-RIS Deployment

As Fig.4 shown, the developed deep Q-ADP path planning
algorithm optimizes RIS positions for enhanced wireless cov-
erage.
B. Performance of Online Causal Actor-Critic Reinforcement
Learning based Optimal Resource Allocation
1) Spectral Efficiency and Energy Efficiency with Optimal
Resource Allocation vs. number of BS antennas and RIS units

Post RIS deployment, the algorithm optimizes transmit
power control and RIS phase shift. Figure 5 depicts spectrum
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Algorithm 2 Causal Actor-Critic online ptimal power alloca-
tion and phase shift control (Phase 2)

1: Acquire agent number i
2: Initialize NN weights ŴV,i,Ŵu,P,i, Ŵu,Φ,i randomly
3: Initialize eBE,i, eu,P,i, eu,Φ,i to be ∞
4: Initialize Pi, Φi randomly
5: Input UAV position s from step 1
6: while True do
7: Apply do(h = v) to Pi and Φi
8: Update critic NN weights by solving Eq.(26),

ŴV,i = ŴV,i + αV
∆ΨV,i{eBE,i − ri}T

1 + ∥∆ΨV,i∥2

9: Update power actor NN weights by solving Eq.(29),

Ŵu,P,i = Ŵu,P,i − αu,P,i

ΨieTu,P,i

1 + ∥Ψu,P,i∥2

10: Update Phase actor NN weights by solving Eq.(30),

Ŵu,Ψ,i = Ŵu,Ψ,i − αu,Ψ,i

ΨieTu,Ψ,i

1 + ∥Ψu,P,i∥2

11: ûP,i ← Ŵ
T

u,P,iΨu,P,i

12: ûΦ,i ← Ŵ
T

u,Φ,iΨu,Φ,i

13: Execute ûP,i, ûΦ,i and observe new transmitter power
pi and phase shift Φi

14: end while

(a) t1 = 1s (b) t2 = 20s (c) t3 = 60s
Fig. 4: Optimal RIS placement for maximizing coverage with mobile multi-users

and energy efficiency comparisons with varying BS antennas
(N = 16, 32) and RIS units (M = 8, 16) across a power
range of 0 to 50 dBm. Increasing BS antennas and RIS units
enhances spectrum efficiency but may compromise energy
efficiency due to increased energy costs.

(a) Average EE compared with
N=16, M=8 and N=32, M=16

(b) Average SE compared with
N=16, M=8 and N=32, M=16

Fig. 5: The comparison of SE and EE with different number of BS antennas and RIS
elements under equal number of users and UAV-enhanced RIS relays

2) Online Causal Learning Performance In time steps, the

causal learning process of energy efficiency (EE) and spectrum
efficiency (SE) has been evaluated. Figure 6 demonstrates their
increase with P (t), showcasing the causal Actor-Critic RL
algorithm’s ability to learn the optimal solution within a finite
time, even under dynamic environments and limited training
data.
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Fig. 6: The average EE and average SE vs. time steps

VI. CONCLUSION
This paper introduces a novel online Causal Actor-Critic

Reinforcement Learning algorithm to optimize the multi-RIS
aided wireless system with multiple users in a finite time
frame. In contrast to existing algorithms, this approach max-
imizes the potential of UAVs and RIS through online causal
learning for optimal RIS placement and resource allocation.
Leveraging the deep Q-ADP algorithm, UAVs equipped with
RIS determine optimal positions for multi-user coverage. The
online causal actor-critic reinforcement learning algorithm
adapts transmit power and RIS phase shift to enhance wireless
network quality, such as energy efficiency, in real-time under
uncertainties and limited training data. Simulation compar-
isons demonstrate the effectiveness of the developed algorithm.
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