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Abstract—One major threat to Software Defined Network
(SDN) environments and other computing systems is Distributed
Denial of Service (DDoS) attacks. For the longest time, con-
ventional Machine Learning (ML) techniques have been used
for DDoS detection, but they have limitations because of their
centralised training requirements, which can lead to excessive
bandwidth utilization, increased latency, and server overhead.
Moreover, end-user data privacy and confidentiality are jeopar-
dised by transferring the data to a central server. We present
Federated Learning (FL) as a way to counteract DDoS attacks
in SDN. FL reduces the need for centralised servers and lessens
the limitations of conventional ML techniques by enabling
decentralised training of ML models on distributed devices.
FL lowers the possibility of data breaches and protects the
privacy of sensitive data by training models locally on devices.
We used FL to train three classifiers: Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), and Long Short-
Term Memory (LSTM) to classify three classes of DDoS attacks,
namely: UDP Flood, TCP SYN, and DNS Flood. The results
demonstrate how well our FL models perform and how they
can replace centralized and conventional methods for identifying
DDoS attacks in SDN environments while protecting the privacy
of users.

Index Terms—DDoS, Federated Learning, Machine Learning,
Deep Learning, Software Defined Networking, Security

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks are widely
recognized as one of the most lethal attacks against digital in-
frastructure. Software-Defined Networks (SDNs) have recently
emerged as an integral architecture in implementing scal-
able, reliable, and efficient performing networks [1], replacing
legacy networks that have proven insufficient over the years in
handling the ever-growing number of Internet devices and the
massive traffic they generate. SDNs provide programmability
and dynamism for efficient network configuration via a central
controller, hence optimizing network performance.

While the SDN paradigm increases convenience and better
control over a network, its centralized architecture leaves
room for cyberattacks such as DDoS attacks. Recent work on
Intrusion Detection Systems (IDSs) focuses on the application
of Machine Learning (ML) and Deep Learning (DL) instead
of the native signature-based IDS which are no longer able
to keep up with the increasing complexity of modern cyber-
attacks [2], [3]. IDSs powered by ML and DL are known for
rapidly identifying and countering sophisticated cyber threats

because they can analyse vast volumes of data, spot anomalies
in network traffic, and adapt to new threats.

Even though ML-based IDSs have proven to be highly
accurate, they are also associated with a number of limitations.
Traditional ML, for instance, relies on a ”Gather and Analyze”
approach that requires moving large datasets from their origi-
nal location to a centralised server [4]. Because of the massive
volume of data created by consumer devices and delivered to
the centralised server, this process results in increased latency,
significant communication overhead, high bandwidth use, and
power consumption. Furthermore, end-user data privacy and
confidentiality are compromised by transferring the data to
the server [5].

Federated Learning (FL), a novel ML-based technique that
enables knowledge sharing while protecting the privacy of
client’s data [6], [7], was developed to address the short-
comings of standard ML techniques. This is accomplished by
enabling edge devices to use their own data to locally train
the shared model rather than sending it to the server. In order
to improve the overall model, the edge devices only transmit
the weighted training model parameters to the central server
for aggregation. In addition to protecting data privacy, this also
reduces the strain on the central server and improves the IDS’s
detection accuracy. The participating edge servers and clients
then receives the updated global model from the aggregation
server [8].

SDN’s programmability and flexibility makes it an ideal
technology for deploying FL solutions, thus enabling effi-
cient communication and coordination between edge devices.
Hence, this paper proposes the use of FL to design a cost-
effective DDoS IDS for SDN networks. By training local
models on the edge servers, we are able to address some of the
key challenges, such as data privacy preservation, distribute
the workload, thus reducing the strain on the main SDN
controller, and improving the responsiveness of the system.
This is particularly important in the context of DDoS attacks,
where rapid detection and response are critical to mitigating
the impact of the attack.

The remainder of this paper is organized as follows: Section
II reviews the literature, and the proposed FL models are in
Section III. In Section IV, we go over the experiment and
performance evaluation of the proposed models, and Section
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V concludes the paper.

II. BACKGROUND

A. SDN Architecture and It’s Susceptibility to DDoS Attacks

SDNs are managed by a programmable and a centralised
controller which has a global view of the network and gathers
network traffic information from distributed devices [1]. It then
makes intelligent decisions from this information warranting
the efficient use of network resources and a timely response
to the ever-changing network requirements. The centralised
controller resides on the control plane, which is one of the
three planes in SDN. The data plane and the application plane
are the other two planes. The data plane is made up of for-
warding devices like switches and routers. Unlike traditional
networks, the switches on the data plane lack intelligence and
must rely on the controller for instructions and forwarding
rules on how data should be passed throughout the network.
The OpenFlow protocol [1] facilitates communication between
the control plane and the data plane via the South-Bound APIs.
The application plane, which includes all network applications
such as load balancers, firewalls, and bandwidth optimization
software, is the third plane. The North-Bound API facilitates
communication between the applications on the application
plane with the controller. In a multi-controlled topology, the
East-West Bound API facilitates communications between
different controllers.

While the flexible architecture of SDN makes it a promising
technology that drives innovation, it also introduces new threat
vectors and vulnerabilities. The abstraction of the data plane
and control plane for example, introduces a single point of
failure in case of a DDoS attack which can be exploited by
attackers to compromise the whole SDN network. Authors
in [9] highlighted several threat vectors that make SDN
susceptible to cyber-attacks. We refer the reader to [10], and
[11] for an extensive review of security challenges in SDN.

B. Taxonomy of DDoS attacks

DDoS attacks adds a many-to-one feature to Denial of
Service (DoS). They accomplish viability by utilizing mul-
tiple compromised computer systems (also known as bots) as
sources of attacks against a targeted server [12]. They break
down applications and processes by executing a combination
of exploits to overwhelm the victim. DDoS attacks prevent
normal traffic from arriving at its destination by consuming
much-needed resources such as memory, CPU, and bandwidth.
While DDoS attacks are simple to carry out, they are difficult
to entirely remove and could cause significant financial and
reputational harm to businesses when successful.

DDoS attacks are broadly classified into three categories:
1) Bandwidth depletion attacks which aim to exhaust the
available bandwidth of the victim system. In SDN, such attacks
saturate the communication channel between the forwarding
devices and the controller. The most common attacks in this
category are UDP flood, ICMP flood, and DNS amplification
attacks. 2) Resource depletion attacks which targets the mem-
ory, CPU, and application ports of the victim server. Common

examples of resource depletion attacks are TCP SYN, HTTP
Flood, and Ping of Death attacks. In SDN, these type of
attacks exploits the Openflow protocol which is used by the
controller to communicate with devices on the Data plane, and
3) Zero-day attacks which exploit software vulnerabilities that
the software vendor is not aware of, leaving users vulnerable
to exploitation [13]. Examples include the 2016 Mirai botnet
[14], the 2017 IoT Reaper botnet [15], and the Memcached
DDoS attack [16] which exploited Github in early 2018. These
attacks can be particularly dangerous as they occur before a
patch or update is released to address the vulnerability.

C. Overview of FL

Unlike traditional ML methods which requires data gener-
ated by the different devices to be gathered and moved to a
central place for processing and training, FL is a distributed
and a collaborative approach which is based on the idea of
keeping the data where it originated and train it there. E.g. data
generated in a hospital is processed and trained in the hospital.
The FL training process involves multiple clients who receives
and exchange model parameters with the central server. In
so doing, FL allows knowledge sharing while preserving the
privacy of the client’s data. It also overcomes bandwidth and
latency limitations for resource-poor organizations. Horizontal
Federated Learning (HFL) [17], Vertical Federated Learning
(VFL) [18], and Federated Transfer Learning (FTL) [19] are
the three ways that one can use to train a FL model.

III. RELATED WORK

The authors of [20] designed RL-Shield, which is a defence
system to mitigate persistent link flooding attacks in SDN.
They introduced a Detection algorithm (DA) which closely
observe source IPs behaviours, thus tracking the network load
at various links and ultimately reacting to link-flooding events.
DA achieves this by using two Reinforcement Learning (RL)
based statistic techniques, namely: the Dirichlet distribution
and Bayesian statistics. In an event that a flooding attack is
detected, the DA algorithm triggers traffic engineering to re-
direct normal traffic to new routes using their routing algo-
rithms, Efficient Routing Algorithm (ERA) and the Detective
Routing Algorithm (DRA). IPs sources that attempts to change
their destinations after a new route has been defined are
marked as link flooding bots and traffic from such sources
is blocked and discarded.

The ATMoS framework in [21] leverages Deep RL to
separate legitimate hosts from compromised hosts by placing
them into different Virtual Networks (VNs). ATMoS consists
of a security-monitoring module that inspects the status of the
network by collecting data from all hosts in the network and
sends alerts to the DRL agent as input. Based on these inputs,
the DRL agent then makes a decision as to which virtual
network a particular host should be placed. Every time the
agent places a compromised or a legitimate host in the correct
virtual network, it receives an award using an appropriate
reward function. Their proposed has proved capable of defend-
ing the network not only from DDoS attacks, but from other
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attacks as well. Although ATMoS performs well, it is limited
in the sense that it uses static neural networks; this implies
that the number of hosts in the network must not change
throughout the training and the deployment stages. This limits
the DL agent in ATMoS from being used in arbitrary networks.
As an improvement, the authors proposed ATMoS+ in [22]
which extends the ATMoS framework making it suitable for
deployment in arbitrary networks.

In the work of [23], a hybrid machine learning model
for SDN-based cloud environments was proposed. The model
aims at improving the performance of classification in network
traffic, and it is a combination of Support Vector Machines
(SV) and Self-Organising Maps (SOM). They further intro-
duced eHIPF – a history-based IP filtering scheme, which
focused on increasing the speed and detection rate of sus-
picious traffic targeting the cloud system. eHIPf and the two
ML algorithms (SVM and SOM) were then merged to create
a higher-performing security system that defends SDN-based
cloud environments against DDoS attacks.

Another hybrid solution is found in [24] which combines
Recurrent Neural Network (RNN) and Long Short-Term Mem-
ory (LSTM) to detect various DDoS attacks in SDN networks.
The model achieved an impressive accuracy of 99.33% on
the CICIDS-2017 dataset and 99.93% on the CICIDS-2019
dataset.

While the models given above performed well, they all
used a centralized strategy that required delivering the datasets
to a central server for training.This technique is expensive
in resource-constrained contexts. Secondly, leaving everything
to the server can result in higher overhead and excessive
latency, which can be troublesome in detecting DDoS attacks
in real time. [25] presents FELIDS, a FL-based intrusion de-
tection system that secures agricultural IoT infrastructures.The
proposed IDS beats centralized versions of ML in terms of
protecting the privacy of IoT device data while obtaining good
detection accuracy.

Authors in [26] used four Feed Forward Neural Networks
(FFNN) to classify Syn, Portmap, NetBIOS, LDAP, UDP, and
UDPLag in distributed IoT environments. They trained their
FL models on the CIC2019 dataset, and the best model with
129 neurons obtained an accuracy of 84.8% which is extremely
poor compared to recent approaches. Similar to [25], they also
used all features in the dataset which is not recommendable in
a practical setup as it increases the complexity of the model.
Additionally, using FNNs for DDos detection is not an ideal
as FNNs are not well-suited to handle time-series data, which
is crucial in DDoS attack detection.

Lastly, in [27] a technique called PCC FS that aids in the
classification of DDoS attacks in SDN-enabled IIoT networks
is presented. It uses a minimal-complexity CNN-MLP model
that addresses the gradient disappearing problem and enhances
learning efficacy through the use of residual connectivity and
factorized convolution. The model surpasses previous methods
with an accuracy of 98.37% on the CICDDoS2019 dataset, and
a loss of 0.0639. They used twenty-five distinct features from
the dataset.

IV. PROPOSED APPROACH

A. Description of the Proposed Federated Architecture

In our study, we used the Horizontal FL approach, which
involves training models on the same set of features across
all clients to ensure compatibility with the global model. We
experimented with three different classifiers: CNN, DNN, and
LSTM. CNN uses 1D convolutional layers to capture local
patterns in the input data, which is effective for analyzing
sequential data and detecting specific types of DDoS attacks.
DNN consists of multiple dense layers with increasing units
and an ReLU activation function, making it suitable for
capturing complex patterns in the input data. LSTM on the
other hand utilizes RNNs to capture long-term dependencies
in the data, making it ideal for analyzing network traffic as
time-series data. Our proposed federated learning architecture
is presented in Fig. 1.

Fig. 1. Proposed Federated Learning Architecture

The steps of the FL process are described below:

1) The SDN Master Sever specifies the number of clients
N = 5, to participate in the Federated Learning process.

2) The Master Server defines the global model GB, also
known as the model template and specify the pa-
rameters(batch size, the neural network model, initial
weights, weight vectors,...).

3) It then compile the GB and share it with the clients -
the SDN Local servers.

4) For each round t = 1, 2, ..., 5:
a) For each client n=1,2,. . . , N = 5:

i) Client n trains the shared model on its own
partition of the dataset with a batch size of 32
for 10 epochs, and for 5 rounds.

ii) At the Master server, an empty list
client weights, is created to store the
weights of client n model.

iii) The Master server gets the client model’s
weights wn and append them to the list of
weight vectors client weights:

client weights.append(wn)
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b) Update GB using FedAvg - a popular algo-
rithm used in Federated Learning that averages
the weights of the local models to create a global
model.
i) Compute the weighted average

server weights of the clients weights
and store it:

server weights =
1

N

N∑
n=1

wn

where wn is the weight tensor of client n.
ii) Update the weight vector wGB of GB,

to be equal to server weights using the
set_weights() function:

wGB = set weights(server weights)

5) Return the final global model parameters, wGB,N .
The training stopped when we achieved a good convergence

of the global model on the testing set at round five. By
using FedAvg, we were able to create a global model that
was representative of the local models on each client while
maintaining data privacy of the participating clients.

TABLE I
CENTRALIZED MODEL’S PERFORMANCE USING 5 FEATURES

Central
Model

DDoS Type Accuracy Precision Recall F1-
Score

DNN
UDP Flood 99.99% 100% 99.99% 99.99%
TCP Sync 99.97% 99.97% 100% 99.98%
DNS Flood 99.99% 100% 99.99% 99.99%

CNN
UDP Flood 99.99% 100% 99.99% 99.99%
TCP Sync 99.97% 99.97% 100% 99.99%
DNS Flood 99.99% 100% 99.98% 99.99%

LSTM
UDP Flood 99.93% 99.99% 99.93% 99.96%
TCP Sync 99.99% 99.99% 99.99% 99.99%
DNS Flood 99.99% 100% 99.99% 99.99%

V. EXPERIMENTS AND RESULTS

A. Datasets Used

We used the Canadian Institute of Cyber-Security’s (CIC)
flow-based CICIDS 2019 dataset [28]. This dataset comprises
of benign traffic as well as updates on new network assaults,
and it fulfills real-world attack requirements. It comprises a
total of 80 features that were retrieved from network traffic
using the CICFlowMeter application. Botnets, Brute Force,
DoS and DDoS attacks are all covered in this dataset. What
distinguishes this dataset from others is that it includes popular
DDoS attacks such as DNS, LDAP, MSSQL, and TFTP, as
well as UDP, UDP-Lag SYN, and NetBios. Web, HeartBleed,
and Infiltration attacks are also included.

B. Features Selection and Data Prepossessing

As DDoS attacks are executed differently and have different
behavioral patterns, it is crucial to use the right features
when building classification models for these attacks. For each

DDoS type, we used the best five features adopted from [28],
which were selected based on their importance scores/weights.
By selecting only the most significant features, the models
are simplified, and made more interpretable, their accuracy is
improved, and overfitting is minimised.

For data preprocessing, we replaced null values with zero
using the fillna() method, and unnecessary columns were
dropped using the drop() method. We then used the Standard-
Scaler technique to normalize the data. Afterward, we applied
Label Encoding to convert categorical labels into numerical
labels - this step is crucial as it makes it easier for the models
to process the labels. We then split the data into training (80%)
and testing sets (20%) to evaluate the performance of the
models on unseen data. Lastly, the perfomance of the models
were evaluated based on the following matrices: accuracy,
precision, recall, and f1-score.

C. Experiment Setup

The simulations were done on a Linux-based high-
performance computing server running Centos 7.82003 and
powered by an Intel® Xeon® E5-2603 v4 CPU running at
1.70 GHz. TensorFlow and Keras were used to construct, test,
and train our deep learning models, while Pandas and other
essential libraries were used for data processing and analysis,
and Matplotlib and Seaborn were used for data visualization.

D. FL Model’s Performance

As seen in table II, all three FL classifiers (DNN, CNN, and
LSTM) exhibit high performance in detecting different DDoS
attacks. The classifiers demonstrate high accuracy, precision,
recall, and F1-score, with accuracies ranging from 99.93%
to 99.99%. We observed that the perfomance of the global
models improves with each round of training. This shows
that the global models were able to aggregate the knowledge
learned by each of the five clients over time, so as more rounds
of training are completed, the global models becomes more
accurate and are better able to generalize to new data.

The DNN classifier performs best in detecting DNS Flood
attacks, with an accuracy of 99.99%, while the CNN classifier
performs best in detecting TCP SYN and DNS Flood attacks,
with accuracies of 99.99% as well. The LSTM classifier
also performs greately in detecting all three types of DDoS
attacks, with accuracies ranging from 99.96% to 99.99%. The
heatmaps in Fig. 2 indicates the perfomance of the global
models by comparing the predicted values with the actual
values on the test data in the final round, round five.

In table I, we performed centralised training using the same
classifiers and the same dataset. We did this so that we could
compare the perfomance of different classifiers when trained
in a centralised way, and when trained in a federated way.
We observed that in most cases, the federated global models
achieved similar accuracy as the centralised models, proving
yet again that there is no need to risk the privacy of the client’s
data by sending it to the central controller, consequently
burdening it when we could achieve silimar perfomance with
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TABLE II
FL MODEL’S PERFORMANCE USING 5 FEATURES WITH 5 CLIENTS

FL Global Model DDoS Type First Round Final Round - Round 5
Accuracy Precision Recall F1- score Accuracy Precision Recall F1 - score

DNN
UDP Flood 99.94% 99.99% 99.94% 99.97% 99.95% 99.95% 99.99% 99.98%
TCP Sync 99.99% 99.99% 99.99% 99.99% 99.97% 99.97% 100% 99.99%
DNS Flood 99.99% 100% 99.99% 99.99% 99.99% 100% 99.99% 99.99%

CNN
UDP Flood 99.75% 99.97% 99.78% 99.84% 99.98% 99.99% 99.99% 99.99%
TCP Sync 99.98% 99.98% 100% 99.99% 99.97% 99.99% 99.99% 99.99%
DNS Flood 99.99% 100% 99.99% 99.99% 99.99% 100% 99.99% 99.99%

LSTM
UDP Flood 99.93% 99.99% 99.93% 99.96% 99.96% 99.96% 99.99% 99.98%
TCP Sync 99.97% 99.99% 100% 99.99% 99.97% 99.97% 100% 99.99%
DNS Flood 99.98 % 100% % 99.99% 99.99 % 99.99% 100% 99.99% 99.99%

Fig. 2. Confusion Matrix for the FL Global Models on Three DDoS Types after the Final Round - R5)

federated learning. In the cases where the centralised models
performed better, the difference was relatively small.

E. Proposed FL models Vs State-of-the-Art solutions

Our proposed FL models outperform some existing solu-
tions as follows: the FFNNs in [26] which achieved 84.8%
accuracy and trained with all features in the dataset, PCC FS
introduced in [27] with 98.37% accuracy using 25 features.
Training models with too many features only increases the
complexity of the model, and not necessarily its performance.
In contrast, we were able to achieve good results in few rounds
by using the best but minimal 5 features for each DDoS type,
as adopted from [28]. These features were selected based
on their importance scores, which quantify the contribution

of each feature towards the model’s overall accuracy. The
recent work in [29] studies the limitations of the FEDAVG
algorithm and proposes a new approach called FLAD which
could be used as a guideline in proposing better FL solution for
detecting DDoS attacks and other cyber attacks in networks
today. While some existing solutions achieved good perfor-
mance with more complex models and longer training times,
our approach demonstrates that good results can be obtained
with minimal features and fewer training rounds.

VI. CONCLUSION

Detecting DDoS attacks in SDN is crucial for ensuring the
availability and reliability of network services and addressing
the security challenges introduced by SDN’s centralised ar-
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chitecture. This paper contributes to addressing this issue by
proposing a FL-based approach to detect DDoS attacks in SDN
environments while preserving data privacy. Our comparison
of federated global models with centralised models shows that
there is no need to risk the privacy of the client’s data by
sending it to the central server. By decentralizing the training
process and only allowing the main controller to do model
aggregation, we reduce the burden of the main SDN controller,
minimize latency, reduce bandwidth usage, and allow for fast
detection of malicious attacks. The LSTM classifier performs
the best in detecting all three types of DDoS attacks, with
accuracies ranging from 99.96% to 99.99% on the CIC2019
dataset and 99.20% on the CIC2017 dataset. While the current
paper focuses on the performance of Federated deep learning
models, future work will look deeper into the challenges and
limitations of Federated learning in SDN environments. We
also plan to enhance this work by safeguarding the training
data of individual clients against data poisoning attacks using
various privacy-preserving techniques. Additionally, we intend
to explore the use of Vertical Federated learning to investigate
how the results will differ from our current approach.
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