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Abstract—End-to-end network slicing is a new concept for 5G+
networks, dividing the network into slices dedicated to different
types of services and customized for their tasks. A key task,
in this context, is satisfying service level agreements (SLA) by
forecasting how many resources to allocate to each slice. The
increasing complexity of the problem setup, due to service, traffic,
SLA, and network algorithm diversity, makes resource allocation
a daunting task for traditional (model-based) methods. Hence,
data-driven methods have recently been explored. Although
such methods excel at the application level (e.g., for image
classification), applying them to wireless resource allocation is
challenging. Not only are the required latencies significantly
lower (e.g., for resource block allocation per OFDM frame),
but also the cost of transferring raw data across the network
to centrally process it with a heavy-duty Deep Neural Network
(DNN) can be prohibitive. For this reason, Distributed DNN
(DDNN) architectures have been considered, where a subset of
DNN layers is executed at the edge (in the 5G network), to
improve speed and communication overhead. If it is deemed that
a “good enough” allocation has produced locally, the additional
latency and communication are avoided; if not, intermediate
features produced at the edge are sent through additional DNN
layers (in a central cloud). In this paper, we propose a distributed
DNN architecture for this task based on LSTM, which excels
at forecasting demands with long-term dependencies, aiming to
avoid under-provisioning and minimize over-provisioning. We
investigate (i) joint training (offline) of the local and remote
layers, and (ii) optimizing the (online) decision mechanism for
offloading samples either locally or remotely. Using a real dataset,
we demonstrate that our architecture resolves nearly 50% of
decisions at the edge with no additional SLA penalty compared
to centralized models.

Index Terms—Network Slicing, Resource Allocation, Dis-
tributed Deep Neural Network, LSTM Model, 5G Networks

I. INTRODUCTION

5G networks are expected to support a large number of
tenants simultaneously with different Quality of Service (QoS)
requirements and services with different service level agree-
ments (SLA). Satisfying these expectations makes optimal
resource allocation a key to the success of 5G networks.
However, traditional optimization approaches for this task are
often impractical, paving the way for data-driven approaches
proposed in recent AI literature [1]–[4]. Specifically, data-
driven algorithms are expected to execute at various network
locations, leveraging the computational capabilities at MEC,
RAN, and the core in modern cellular networks. Slice resource
allocation using deep learning has been a popular recent

research direction in the context of 5G networks [5]–[9].
Also, reinforcement learning has recently been applied to the
problem of resource orchestration [6], [8], [10].

Nevertheless, optimization objectives in this context are
based on the SLAs and are often asymmetric: i.e., the cost
of under-provisioning (penalty paid to the tenant) might differ
from the cost of over-provisioning (opportunity cost of wasted
resources). To this end, the seminal works of [11], [12] have
demonstrated how to (i) predict the allocation that properly
balances over-/under-provisioning penalties for each slice and
(ii) leverage correlations between resource and slice demands
using a proposed centralized CNN-based (Convolutional Neu-
ral Network) architecture.

However, running a centralized heavy duty DNN faces two
key challenges in (5G+) wireless architectures: (i) a number
of network optimization tasks, especially those at the RAN,
have stringent latencies compared to UE-level applications
often offloaded to the cloud. (ii) the overhead of sending
raw data over potentially congested edge/wireless links can
often be a major hurdle in the application of such solutions.
Implementing a decentralized algorithm might offer a potential
solution [13], [14], [15]. A promising solution is that of [13],
where the authors propose a Distributed Deep Neural Network
that attempts to strike a trade-off between “good enough” local
image classification for most samples and “stronger” cloud-
based classification for only a few. Motivated by this work,
we have recently investigated in [16] a distributed version of
the architecture proposed in [11], where a 3D-CNN is used
for slice resource allocation.

In this paper, we attempt to further show the generality of
this methodology by investigating how to distribute a more
sophisticated DNN architecture for the same task, based on
LSTM (Long Short Term Memory) units. Specifically, the
main contributions of this work are the following:

• We propose a distributed LSTM architecture for the prob-
lem of balancing under-/over-provisioning of resources to
different slices and investigate how the methodology of
DDNNs can be applied to such larger, more sophisticated
architectures (compared to that of [11]). Such an archi-
tecture contains a few LSTM units and a “local exit” (i.e.
a prediction layer) at the edge, and a larger number of
units and “remote exit” at the central cloud.
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• (Offline Optimization) We demonstrate the impact of
properly tuning the joint training hyperparameters of local
and remote “exits” (i.e., predicted allocations and related
SLA costs) to achieve a good balance between: (i) making
the local layers powerful enough to correctly make a
large enough number of allocation decisions, while (ii)
producing useful features that the remote layers could
leverage, when improved allocation decisions are deemed
necessary.

• (Online Optimization) We propose a mechanism that
measures the confidence in the local exit, and predicts
whether the remote exit (that requires additional la-
tency and communication) would improve the SLA costs
enough to justify the extra overhead (i.e., a type of
unsupervised learning).

The rest of this paper is structured as follows: Section II
covers the problem setup, while Section III details our LSTM-
based DDNN architecture. In Section IV, we delve into offline
joint training and online offloading. Section V validates the
architecture with real traffic data. Section VI outlines future
work and conclusion.

II. PROBLEM SETUP

A. Slice Resource Allocation with DNN

Assume we have a set of K network functions (e.g., VNFs)
or network element slices (e.g., BSs). Each network func-
tion/element requires some resources which will be allocated
according to its traffic demand (e.g., we might need to allocate
some resource block at a given BSs). In the remainder, we will
assume that a DNN-based architecture is used to determine
the amount of resources allocated to each of the K network
functions. We stress here that our goal is not to match these
resources exactly to the future (currently unknown) demand of
those VNFs, but to strike a trade-off between the given under-
and over-provisioning costs.

We can consider the DNN as a black box and model it with
an approximation function with some parameters that takes an
input vector and gives the predicted value. Therefore we can
write:

ŷit = F(di
t,N ;θ), (1)

where di
t,N is the input vector for the DNN. The input

vector di
t,N = {dit−N , ..., dit−1} consists of the N past traffic

samples of BS i ∈ K before the time t. N is the input vector
size and is constant during the model training. F(;θ) is the
approximation function with θ as parameters. The vector θ
represents the model parameters (i.e., weights of the DNN).
ŷit will be the allocated resource to the network element i at
time t, which is forecasted by the DNN to balance under-/over-
provisioning costs in relation to the (unknown) demand dit at
that time.

B. Resource Allocation Objective Functions

In a standard forecasting problem, one wants to predict the
traffic value at time t using the past N traffic samples dt,N =
{dt−N , ..., dt−1}. The goal is that the predicted value ŷt to be

as close as possible to the real traffic dt. To achieve this, we
can train a DNN with a least squares objective function.

f(ŷt, dt) = (ŷt − dt)
2. (2)

An important difference in our work is that the cost of
being under or over the true demand is not symmetric, unlike
in Eq. (2). If the predicted traffic is less than the needed
traffic, not enough resources will be allocated to the slice
(under-provisioning, ŷt < dt), which could violate the SLA
with the slice tenants. If the predicted traffic is more than
the needed traffic, then more resources than are needed will
be allocated to the slice (over-provisioning, ŷt > dt), which
will waste some resources. Depending on the SLA violation
cost (under-provision) and the “wasted” resources cost (over-
provision), different objectives can be used that the DNN will
try to optimize. Without loss of generality, we’ll assume the
following objective.

f(ŷt, dt) =

{
c1 · (ŷt − dt)

2 if (ŷt − dt) ≤ 0

c2 · (ŷt − dt) if (ŷt − dt) > 0,
(3)

in other words, higher violations of the SLA lead to significant
(quadratic) penalties, while the “opportunity cost” of wasted
resources is linear (e.g., the money that another tenant would
be willing to pay per unit). Note that other non-symmetric
objectives (e.g., the ones used in [11], [12]) readily apply
to our architecture. In our experiments, we put the quadratic
coefficient c1 = 50 and linear coefficient c2 = 1 (It is
important that the quadratic coefficient is high, as all traffic
demands time series have been normalized to [0,1]).

III. PROPOSED DISTRIBUTED DEEP NEURAL NETWORK

A. System Model

We assume a 5G network in which a set of BSs re-
quires some resources. Each BS at time t demands an
amount of resources (e.g., BW), di

t, to fulfill its corresponding
user’s SLAs. We have the past N demand values di

t,N =
{dit−N , ..., dit−1}. Traffic demand samples are random and
possibly non-stationary. The vector di

t,N is given to the DDNN
to determine the allocated resources for each BS at time t, ŷit.
We can describe the DDNN with the following equation:

(ŷiL,t, ŷ
i
R,t) = F(di

t,N ;θDDNN ), (4)

where the F(;θDDNN ) is the approximation function that
models the DDNN, and θDDNN represent the model param-
eters. Observe that, compared to the standard DNN of Eq.
(1), the DDNN function here has two outputs: ŷiL,t and ŷiR,t,
which are the output of the local exit and the remote exit,
respectively.

Our DDNN architecture is based on LSTM components
that can naturally capture long-term dependencies between
samples. The detailed architecture can be found in Fig. 1. This
architecture can be seen as the first (very small) DNN module
residing at the edge and making a local allocation decision:

ŷiL,t = FL(di
t,N ;θL), (5)
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Fig. 1. LSTM network is distributed over Edge and Cloud. In the Online
mode, the time series is given to the local DNN then the output is passed
to the confidence mechanism which determines whether the sample will be
inferred locally or remotely.

where FL(;θL) corresponds to the local DNN layers, with
θL (the respective parameters). For some samples, this local
decision might not be deemed appropriate (e.g., it is not a
confident one). In such cases, the output of the local LSTM
(e.g., z in Fig. 1) is sent to a second, much larger DNN module
assumed to reside far from the location (e.g., BS) for which
the decision is needed. This second module takes the output of
the local LSTM block as input and provides its own allocation
decision as follows:

ŷiR,t = FR(zit,N ;θR), (6)

where zit,N is the output of the LSTM block in the local
component that is given as the input to the remote part.
FR(;θR) corresponds to the additional DNN layers at the
remote cloud, with θR as its parameters.

B. Local Exit

At the local part, there is one LSTM block. This LSTM
block has just 1 hidden unit. Compared to the remote part,
the local LSTM is very simple. In the Training phase (offline
mode), the output of this block (zit) will be sent to the Fully
Connected (FC) block in local and also to the remote layers
(see Fig. 1 assume there is no Confidence). In the Inference
time (online mode), the output of the local LSTM, i.e., zit,
will be given to the Confidence block, which decides whether
this intermediate signal goes to the local FC or to the remote
layers. The FC block in the local component is linear, the
output of this block is called the local prediction or local exit
inference, i.e., ŷiL,t.

C. Remote Exit

The intermediate signal zit is the input data of the remote
DNN. At the remote DNN, first there is a LSTM block with
256 hidden units followed by a dropout block. Then, there
is the last LSTM block with 128 hidden units which is also
followed by a dropout block. Then, there are four FC blocks.
The first three FCs have 128, 64 and 32 hidden neurons and
each with ReLu activation function. The last FC block is linear
to make the predictions. The output of this block is called the
remote prediction or remote exit inference, i.e., ŷiR,t.

IV. JOINT TRAINING AND ONLINE INFERENCE

A. Offline DDNN Training

While training a centralized DNN is quite straightforward,
DDNN training requires jointly training the local Eq. (5) and
remote Eq. (6) DNN modules towards achieving a common
goal. Joint training means weighing both the local and remote
exits in the objectives as follows and allowing the error of
both to backpropagate through their respective DNN layers
(we will elaborate shortly on this).

LossDDNN =

M∑
m=1

wL · f(FL(d;θL), dm)

+wR · f(FR(z;θR), dm)

=

M∑
m=1

wL · f(ŷL,m, dm) + wR · f(ŷR,m, dm).

(7)

The idea of jointly training the local exits, together with
the (standard) remote/final exit, has been first proposed in
GoogleNet [17] and BranchyNet [18]. However, the use of
local exits there was meant as an additional regularization
method and not to be used at inference time1. Unlike that
work, in our architecture the local exit is a crucial inference
component, hence joint training aims at a desired performance
trade-off between:

• backpropagating the local exit performance to the local
layers (i.e., θL) to ensure that the majority of local
decisions ŷL can be relied on, despite being based on
only a small/simple DNN module.

• backpropagating the remote exit performance to both the
remote layers (i.e., θR) to ensure they can provide im-
proved inferences ŷR, when needed, and also to the local
layers (i.e., θL) to ensure that they produce sufficiently
useful intermediate features (i.e., z) for the additional
remote layers.

In Eq. (7), wL is the “local weight” and wR is the “remote
weight”, which regulate the impact of the local and remote
exit on the overall loss of the DDNN during the joint training.
These weights, wL, wR ∈ [0, 1] and wR = 1 − wL, play an
important role in the optimization process. If we set wL = 0
(which also means wR = 1) then the DDNN resembles a
centralized DNN and tries to optimize the performance in the
remote exit. Similarly, if we set wL = 1 (which also means
wR = 0) then the DDNN tries to optimize the performance
in the local exit. Selecting the best (wL, wR) is crucial in
order to achieve the desired goals (i.e., good local predictions,
allocating resources locally for many slices, and good remote
predictions).

It is important to note here that this type of distributed
training is different from the one in [22]. Our goal is to
distribute the actual architecture (between the edge and the
core/cloud) appropriately, and not necessarily to also make

1The perspective of utilizing distributed DNNs with early exits [19], [20],
[21] is a new and exciting research direction that has many unexplored
possibilities.
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the training process distributed (although this is certainly
possible).

B. Online Inference and Offloading

Having trained the local and remote DNN modules to
collaborate smoothly, there is one task remaining. As the
sample goes through a forward pass reaching the local exit, the
key decision is as follows: Is this allocation decision predicted
to be good enough, or should we continue the forward pass
through the remote DNN layers as well?.

It is important to note that this, in principle, is an unsuper-
vised learning decision. We have to decide whether to stick
with the local decision or transmit to the remote layers for
additional processing without knowing a priori whether this
extra processing will actually help, and how much.

Oracle-based Offloading: First, let us assume an “oracle”
that does know the potential added value of remote processing
for any sample. We will use this as reference. We can calculate
the loss difference:

Lm = f(ŷL,m, dm)− f(ŷR,m, dm), (8)

and if, for example, we want to offload for example 40%
of the samples locally, then we pick 40% of the samples
with the lowest Lm for offloading in the local exit and the
remaining samples, which have higher Lm, will be exited
remotely. Hence, if we did have such an oracle, we could
certainly always keep the local decisions that will be better
than the remote ones. While among samples for which the
remote exit is better, we would choose to keep the local ones
that are closest to the remote ones. Finally, when Eq. (8) is
large, this suggests that the remote exit could offer significant
cost benefits (hence justifying the additional overhead).

Bayesian Confidence-based Offloading: Unfortunately, in
practice we do not have such an oracle, as the right term of
Eq. (8), i.e., the remote decision ŷR,m and the related cost,
cannot be known at the edge, without actually sending the
sample to the remote cloud. To this end, the authors of [13]
propose to use the entropy of the local image classification as
a confidence “proxy” for Eq. (8): significant uncertainty in the
classification suggests potential for improvement by sending
the sample through additional (remote) layers. Nevertheless,
this cross-entropy metric is not applicable to non-classification
problems like ours. In fact, very little can be found in related
DDNN literature ( [18], [23]) for offloading decisions in such
regression-type problems. We propose a methodology based
on random dropouts, applied to the local forward pass, moti-
vated by the Bayesian confidence metric in [16] (this dropout
is different from the dropout block used as a regularizer during
the training).

The confidence block includes a dropout layer with dropout
probability p = 0.4, followed by a linear FC block. The
intermediate signal z is given to the confidence block and
it is forced to infer for each input sample, say J = 10 times.
The randomness of the dropout makes the inference of the
confidence block different at each time. Therefore, for each
base station, we have an array ∈ RJ . For each base station

k ∈ K, we calculate the standard deviation (σk) and then take
the average among the K base stations. We refer to this value
as Uncertainty:

U =
1

K

K∑
k=1

σk. (9)

This metric serves as a worst case estimate of how much
perturbations have affected the local decisions. The confidence
mechanism compares the measured uncertainty (U ) value with
a given confidence threshold (η), which is a design parameter
of the DDNN. If U < η, then the model is confident
about the local decision, and it is considered “good enough”.
Otherwise, the intermediate signal z will be sent to the remote
layers, where the remote decision is assumed to be the correct
decision, and then we proceed with the next set of samples2.

As the confidence block is used for inference in the online
mode, a question that comes is: Is the latency savings from
avoiding the central cloud, enough to justify the extra latency
added by this new “confidence block” at the edge? If we
send everything to the central cloud, then the total time to
make a decision is the sum of two components: the round-
trip transmission time (RTT) from the edge to the cloud and
the processing time through all the layers of the full model
for all the samples. In DDNN, the total time comprises the
processing time of the confidence mechanism for all samples,
the processing time of the local FC for confident samples, the
RTT from the edge to the cloud for non-confident samples,
and the processing time of remote layers for non-confident
samples. We will investigate this latency trade-off in the next
section.

V. PERFORMANCE EVALUATION

A. Data Preparation

To train and test our proposed architecture, we will use
the Milano dataset [24], which is publicly available and has
been used in many related works [16], [25], [26]. The LSTM
network takes sequences (time series) as the input. LSTMs
yield good results with short sequences, up to 100-300 samples
in a sequence. On longer sequences, LSTMs still work but can
gradually forget information from the oldest samples. We use
the past 144 samples (the number of samples measured in one
day) to predict the next sample for all 16 base stations together.
In other words, in the sequence di

t,N = {dit−N , ..., dit−1} we
set N = 144 and K = 16. As a result, the input of the DDNN
is an array with dimensions (Number of samples, 16, 144), and
the output is an array with dimensions (Number of samples,
16, 1). We use Python and PyTorch for implementing our
models. We run the models on Google Colab server using
an Nvidia V100 GPU, 16 GB HBM2, and 32GB RAM.

2Note that, when deciding the allocation for multiple correlated elements,
we either make all K decisions locally or all K decisions remotely. In
future work, we plan to investigate more complex hierarchies of layers, with
potentially partial views.
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(a) Offline vs Online trade-off curve
for (wL, wR) = (0.9, 0.1)

(b) Online trade-off curve for
(wL, wR) = (0.1, 0.9)

Fig. 2. Total loss vs percentage of samples predicted locally

B. Performance Metrics

The DDNN overall cost is the summation of the local and
the remote loss when some percentage of samples at each exit
point in the hierarchy is offloaded:

CDDNN =

M∑
m=1

Im · f(ŷL,m, dm) + (1− Im) · f(ŷR,m, dm),

(10)
where

∑M
m=1 Im · f(ŷL,m, dm) represents the local exit loss,∑M

m=1(1−Im) · f(ŷR,m, dm) represents the remote exit loss,
and Im indicates whether the sample exited locally or not.

Im =

{
1 if the sample m exited locally
0 else.

(11)

We train a centralized DNN with the same size as the
proposed distributed model. Additionally, we implement the
model in [11] known as DeepCog and train the model with
our data. The centralized DNN loss, the DeepCog loss, and the
DDNN total loss in offline mode (Oracle) serve the baselines
for comparison with the DDNN total loss in the online mode.

C. Resource Allocation and Communication Trade-off

Experiment 1: After jointly training the model, for each η
(confidence threshold) in [0, 1] we measure the samples in the
test set that can be exited locally (according to the explanations
given in IV-B) and then calculate the total loss, as in Eq.
(10). We plot the trade-off curve, which represents the total
loss versus the percentage of samples resolved in the local
exit. When we use Oracle-based Offloading, we obtain the
offline trade-off curve. By using Bayesian Confidence-based
Offloading, we produce the online trade-off curve.

In Fig. 2(a) we plot both offline and online trade-off
curves for the model with (local, remote) training weights
(wL, wR) = (0.9, 0.1). We can see that the Bayesian offload-
ing mechanism (blue curve) has a good performance compared
to the oracle offloading (green curve), which represents the
ideal offloading policy. We can see that when 40% (or less)
of the samples are exited locally, the oracle and Bayesian
mechanisms have similar performance.

The online trade-off curve for three models is shown in
Fig. 3. We repeat the process for three DDNN models each

Fig. 3. Total loss vs percentage of samples predicted locally as η increases
in online mode.

using the following (local, remote) training weights, respec-
tively: (0.8, 0.2), (0.87, 0.13) and (0.9, 0.1). In this figure, we
also mark the centralized DNN loss and the DeepCog loss. The
centralized LSTM architecture indeed slightly outperforms the
centralized CNN-based architecture of DeepCog, as expected.
(We remind you that our main goal here is not to improve
the DNN architecture itself, but rather to investigate how to
distribute more complex, memory-based DNNs for such tasks).

As we can see in Fig. 3 the (wL, wR) = (0.9, 0.1) model
achieves the best trade-off in the considered scenario. It is
possible to resolve more than 50% of the samples locally
while the overall loss equals that of the centralized DNN.
The (wL, wR) = (0.8, 0.2) model, can resolve all the samples
remotely, i.e., η = 0, while the total loss is nearly 25% less
than that of the centralized DNN loss. Also, with this model,
we can offload more than 40% of the samples locally while
the cost is the same as that of the centralized DNN3.

It is evident that the overall trade-off curve is affected by the
choice of the (offline) training weights. In Fig. 2(b), the online
trade-off curve for the model with (wL, wR) = (0.1, 0.9)
is shown (by increasing the confidence threshold η, we can
plot it). We observe that with this pair of weights, the model
doesn’t perform well and in fact, its loss is always more than
that of the centralized models. We have also analyzed other
weight combinations, yet it is clear that even for “non-optimal”
weight choices, there is still an interesting trade-off achieved.
Another important observation is that, in our model a local
weight higher than the remote weight (wL > wR or wL > 0.5)
is needed to counterbalance the fact that the local module is
much simpler/shallower, and be able to surpass the centralized
DNN performance.

3One might wonder why we manage to achieve better performance than a
fully centralized DNN, with lower overhead (win-win), rather than “almost
as good performance but with lower overhead”. This is due to the effect of
the local exit on the gradient flow, a phenomenon observed in other research
studies like [13], [18], [19], [27] and the additional regularization effect of
the local exit is declared to be responsible for this.
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TABLE I
LATENCY COMPARISON

L (%) 5 20 40 50 60 80 95 CDNN DeepCog
T (ms) 41.01 34.62 26.11 21.86 17.61 9.10 2.72 42.67 42.63

Experiment 2: In Fig. 4, the real traffic demand (Band-
Width) (d) in the test set, the local allocations (ŷL), and
the remote allocations (ŷR) for one of the base stations with
two different (local, remote) training weights (wL, wR) =
(0.9, 0.1) and (wL, wR) = (0.1, 0.9) have been illustrated.
To obtain local and remote predictions for all samples, we
don’t use the confidence mechanism. In Fig. 4(a), we can
see that with (wL, wR) = (0.9, 0.1) the local exit has good
performance and some samples can be predicted locally, while
Fig. 4(b) shows that with (wL, wR) = (0.1, 0.9), the local
exit doesn’t work well and using local predictions increases
the cost which was expected according to the trade-off curve
for this weight pair in Fig. 2(b). Also, we observe that both
models avoid SLA violations, rather than trying to “match”
the demand (as an MSE objective would), due to the higher
cost of under-provisioning in our objective function.

Experiment 3: As we explained in section IV-B we need
to calculate the “Communication” and “Computation” latency
in order to see if our model is adding latency or if we have
latency gains. Communication time: We refer to the recent
systems-oriented study in [28] where the authors set the round
transmission time (RTT) from edge to cloud, on average,
to 42.46 ms for each sample. Computation time: We run
each model multiple times on the same server and calculate
the average processing time for each sample using different
models4.

The results are shown in Table I. L represents the percentage
of samples that exit locally and T represents the average
time for resolving one sample in each scenario. For example,
when 40% of the samples resolve locally, then T = average
processing time of the confidence block for a sample + 0.4
(average processing time of the local inference for a sample) +
0.6 (RTT + average processing time of the remote inference for
a sample). We can conclude that as more samples are resolved
locally, the inference latency decreases. For example, when the
DDNN resolves 50% of the samples locally, it has nearly the
same cost as the centralized baselines, while experiencing 49%
lower inference latency.

Key Observation 1: It is possible to distribute a sophisti-
cated LSTM-based DNN architecture and achieve significant
latency/communication reduction (due to local resolution of
allocation decisions), with almost no penalty on the total cost.

Key Observation 2: The Bayesian offloading confidence
mechanism has a good performance in detecting which sam-

4Please note that the setup for implementing such a distributed architecture
can differ. In this experiment, we aim to create a scenario with practical values
as an example. This is done to effectively demonstrate the potential reduction
in latency. We run the models on a server using an Nvidia V100 GPU, 16
GB HBM2, and 32GB RAM.

(a) (wL, wR) = (0.9, 0.1) (b) (wL, wR) = (0.1, 0.9)

Fig. 4. Traffic demand predictions for two base stations, data forwarded pass
(no confidence mechanism)

ples can be offloaded locally in the online mode.
Key Observation 3: The training weights (wL, wR) sig-

nificantly impact the model performance. Choosing the right
weights to jointly train the local and remote modules is crucial
for the overall performance.

Key Observation 4: Having a local weight higher than the
remote weight (wL > wR) is necessary to counterbalance the
fact that the local module is simpler/shallower and to surpass
the performance of the centralized DNN.

Key Observation 5: (SLA Violations Avoidance) The mod-
els prioritize avoiding service level agreement violations over
matching demand, aligning with the higher cost associated
with under-provisioning in the objective function.

Key Observation 6: (Latency Reduction with Local Res-
olution) As more samples are resolved locally, the inference
latency decreases.

VI. CONCLUSIONS AND FUTURE WORK

We designed and implemented a Distributed Deep Neural
Network (DDNN) for forecasting future traffic demand and al-
locating resources accordingly in 5G+ networks. The proposed
DDNN is a DNN with multiple exit points: one local exit (e.g.,
Edge) and one remote exit (e.g., Cloud). The DDNN needs to
be trained jointly to achieve the desired goals. During joint
training, a weight is assigned to the local exit, and another
weight is assigned to the remote exit, which encourages good
performance at the local exit and also affects the performance
of the remote exit. Additionally, the objective function plays
an important role in avoiding under-provisioning. We use
a Bayesian confidence mechanism to determine either the
samples should offload locally or remotely. In comparison
with centralized models, our algorithm can achieve lower or
equal cost performance while resolving more than 50% of the
samples locally and also reducing latency.

We are currently investigating alternative confidence mecha-
nisms to reduce computational usage and accelerate the alloca-
tion process in online mode. Additionally, we are considering
implementing the model with multiple local exits. As the local
and remote weights play an important role, adaptive tuning of
local and remote weights (wL, wR) during training could be
an interesting topic for future work.
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