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Abstract—Unmanned aerial vehicles (UAVs) have become in-
creasingly popular in providing services to mobile users, as
they can enhance network capacity and coverage. UAV-aided
mobile edge networks leverage UAVs as edge servers to provide
computing resources such that mobile users can offload their
computation-intensive tasks to the UAVs. To balance the load
among multiple UAVs, an intelligent task offloading scheme is
required that can distribute tasks from users to different UAVs
while guaranteeing network latency. Moreover, as computation-
intensive tasks are energy-consuming, an energy-efficient scheme
that can minimize the energy consumption of offloading the
tasks is essential. Additionally, UAV-aided edge networks may
experience disturbances caused by UAV and communication link
failures, making reliability performance a critical consideration.
Therefore, in this paper, we investigate the energy-efficient task
offloading problem in UAV-aided edge networks with guaranteed
reliability and latency. We formulate this problem as an integer
programming problem and propose a Lyapunov optimization
algorithm to efficiently solve the problem. Simulation results are
conducted to demonstrate the feasibility and superiority of our
proposed algorithm.

Index Terms—Mobile edge computing, Unmanned Aerial Ve-
hicle (UAV), computation offloading, quality of service (QoS),
reliability

I. INTRODUCTION

Emerging applications such as virtual reality, augmented
reality, and autonomous vehicles are becoming increasingly
time-sensitive and energy-consuming, presenting challenges
for mobile users [1]. For example, virtual reality applica-
tions have strict latency requirements of less than 15 ms
for rendering images, to prevent users from feeling dizzy
or detached [2]. However, the limited resources of mobile
devices, including computing capability and battery power,
make it challenging to implement these applications. The
traditional approach is to rely on remote cloud resources,
which can lead to long communication latency. Mobile edge
computing (MEC), which distributes computing and storage
resources at the network edge (e.g., base stations and wireless
access points), is considered one of the promising solutions to
address this challenge. Computation-intensive tasks generated
by mobile users can be offloaded to proximal MEC servers
for processing [3], which reduces network latency and energy
consumption of mobile devices.

Unmanned aerial vehicles (UAVs), also known as drones,
have garnered significant attention from academia and industry
due to their mobility and deployment flexibility [4]. UAVs
can function as temporary edge servers in mobile edge net-

works, particularly in areas with limited communication such
as emergency rescue or sports events stadiums, to enhance
network capacity [5]. One of the key advantages of UAV-
aided mobile edge networks is that UAVs can dynamically
adjust their positions based on network traffic to provide better
services. This flexibility enables UAVs to serve as mobile
edge servers that can move to the locations of mobile users,
providing computing resources and reducing communication
latency.

To balance the load across different UAVs, an effective
task offloading scheme that distributes tasks from different
users to their appropriate UAVs is required to meet quality
of service (QoS) requirements, such as task completion time
[1]. However, intensive computations are energy-intensive and
can rapidly drain the limited UAV batteries. Therefore, an
energy-efficient task offloading scheme with guaranteed QoS
performance is essential to address these challenges.

In practice, UAV-aided edge networks may face inevitable
disturbances such as UAV failures due to software or hardware
breakdowns and communication link failures between mobile
users and UAVs caused by various communication errors. Un-
der such circumstances, achieving reliable workflow becomes
a crucial challenge [6]. Therefore, in addition to considering
latency guarantees, a reliable mechanism is essential to ensure
the reliability of task offloading.

In this paper, we investigate the energy-efficient task of-
floading with guaranteed reliability and QoS in UAV-aided
mobile edge networks. Furthermore, we propose a Lyapunov
optimization algorithm to make effective offloading decisions.
Simulation results demonstrate the performances of our pro-
posed algorithm.

This paper is structured as follows. In Section II, we review
the related work. Section III presents the analysis of our sys-
tem model. In Section IV, we formulate our problem. Section
V proposes a Lyapunov optimization algorithm to effectively
address our problem. Section VI presents the simulation results
and analysis. Finally, Section VII concludes the paper.

II. RELATED WORK

MEC has been the focus of many research studies. Mao et
al. [1] conducted a survey of recent MEC research from the
perspective of radio and computational resource management
and provided insights into the challenges and future research
directions of MEC. Sun and Ansari [7] proposed the EdgeIoT
architecture to handle data streams at the mobile edge. The
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architecture adopts a hierarchical fog computing architecture
to provide network services while maintaining user privacy. Li
et al. [8] investigated the cooperative offloading problem in
MEC networks, where resource-constrained edge clouds help
each other with computation-intensive tasks. They proposed
an online learning method based on social trust to minimize
system cost.

Several studies have investigated the task offloading prob-
lem in UAV-aided edge networks. For example, Wang et al.
[5] focused on the computation offloading problem in fog
computing enabled vehicle networks, aiming to ensure reliable
communication and low latency. Wu et al. [9] addressed
the joint deployment and UAV flight trajectory algorithm
in UAV-assisted vehicle edge networks with the objective
of minimizing the cost of UAVs, while considering both
UAV flying and turning energy costs. They proposed a deep
reinforcement learning algorithm to obtain an energy-efficient
autonomous deployment strategy. Yang et al. [10] investigated
the load balancing problem in multi-UAV-aided MEC systems
to offload tasks to different UAVs while guaranteeing the
coverage constraints and the QoS of mobile devices. However,
the reliability performance in UAV-aided MEC networks is not
considered in the above works.

Liu and Qi [11] proposed an offloading strategy in mobile
edge networks to minimize the task offloading failure proba-
bility subject to service latency constraints. Yao and Ansari
[12] investigated the tradeoff between maximizing system
reliability and minimizing the system cost by designing the fog
resource provisioning strategy in fog-aided networks. Huang et
al. [13] studied the reliability-aware network function virtual-
ization instance provisioning problem in MEC networks where
different users request different network services with different
reliability requirements with the objective to maximize the
network throughput. Hou et al. [14] designed a fault-tolerant
particle swarm optimization algorithm for task allocation prob-
lem in software-defined and edge-computing-aided internet of
vehicles to maximize the reliability with latency constraints.
However, none of the above works consider the reliability-
aware task offloading problem in UAV-aided mobile edge
networks. To fill the gap in the existing research, we investigate
the energy-efficient task offloading in UAV-aided mobile edge
networks with guaranteed reliability and latency constraints in
this work.

III. SYSTEM MODEL

In the considered UAV-aided mobile edge networks, de-
picted in Fig. 1, N mobile users offload their computing
tasks to M drones, which provide computing resources and
are assumed to be stationary in the air. The index sets of
mobile devices and UAVs are denoted by N = 1, 2, . . . , N
and M = 1, 2, . . . ,M , respectively. Each mobile user is
associated with a UAV, which processes its computing tasks.
To model this association, a binary variable xij ∈ {0, 1} is
defined, where xij = 1 indicates that user i is associated with
UAV j, and xij = 0 otherwise. To account for the inevitable
disturbances in UAV-aided mobile edge networks, we assume

that UAV j may fail with a rate of λj while executing tasks
due to hardware failures or software errors [6]. Additionally,
the wireless communication link between user i and UAV j
may fail with a rate of λ′

ij due to communication errors.

Computing task 

offloading

Mobile user

UAV with 

computing resource

H d

Fig. 1. UAV-aided edge networks.

A. UAV Air-to-Ground Channel Model

To characterize the air-to-ground channel between UAVs
and mobile users, we adopt a widely used probability model
that accounts for both line-of-sight (LoS) and non-line-of-
sight (NLoS) scenarios [15]. Specifically, we assume that the
wireless channel can be either LoS or NLoS, and that the prob-
abilities of these scenarios depend on the elevation angle θ (as
shown in Fig. 1). The probabilities of the channel being LoS
or NLoS can be calculated as IP(LoS) = 1

1+α exp(−β[ 180π θ−α])

and IP(NLoS) = 1 − IP(LoS), respectively, where α and β
are constants that depend on the environment (e.g., rural or
urban) [15].

The LoS and NLoS pathloss models are characterized by
the free space propagation model, where the LoS pathloss is
PLLoS = 20 log10(

4πfcd
c ) + ξLoS and the NLoS pathloss

is PLNLoS = 20 log10(
4πfcd

c ) + ξNLoS , where fc is the
carrier frequency, d is the distance between a UAV and mobile
user, and ξLoS and ξNLoS are constants that depend on the
environment [15]. By combining the LoS and NLoS pathloss
models and their probabilities, the average pathloss model can
be calculated as PL = IP(LoS)·PLLoS+IP(NLoS)·PLNLoS .
Then, the wireless channel between mobile user i and UAV j

can be expressed as hij = 10−
PL
10 . According to the Shannon

Equation, the wireless transmission rate from mobile user i to
UAV j can be calculated as

rij = wij log2(1 + γij) = wij log2(1 +
pihij

N0wij
), (1)

where wij is the allocated bandwidth between user i and UAV
j, γij represent the signal-to-noise ratio (SNR) between user
i and UAV j, hij indicates the wireless channel gain between
user i and UAV j, N0 is the noise power spectrum density,
and pi is the wireless transmission power of user i.

B. QoS Model

In UAV-aided mobile edge networks, the QoS of a user is
determined by the network latency experienced by the user.
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If the latency exceeds user i’s completion deadline Di, the
user’s experience is greatly affected. To model computing
tasks, we adopt a widely used tuple notation ⟨li, vi, Di⟩, where
li denotes the input data size in bits, vi is the computation
intensity in CPU cycles per bit, and Di is the completion
deadline in seconds [4]. Computing tasks are first offloaded
from a user to a UAV, where the task is processed, and
then the computing results are sent back to the user. The
network latency experienced by a user usually consists of
the task offloading time, the task processing time, and the
result transmission time. As the results of tasks from UAVs are
relatively small in size and the downlink capacity is typically
much larger than the uploading capacity, we neglect the result
transmission time in our work. The task offloading time from
user i to UAV j can be calculated as twij = li

rij
, where rij

is the wireless transmission rate from user i to UAV j. UAV
j’s task processing time to execute a task from user i can
be expressed as tcij = livi

fj
, where livi is the required CPU

cycles to process the task from user i, and fj is UAV j’s CPU
frequency in CPU cycles per second. In summary, the total
task completion time experienced by user i, if it is associated
with UAV j, can be expressed as

tij = twij + tcij =
li
rij

+
livi
fj

. (2)

C. System Energy Model

In our system model, computation-intensive tasks are of-
floaded from users to UAVs for processing, which implies
that the energy consumption of the system is composed of
the energy used by users for task offloading and the energy
used by UAVs for task processing. As we mentioned before
that the results of tasks from the UAVs are usually small, and
so we neglect the energy consumption for downloading the
results from UAVs back to the users. Specifically, the energy
consumption of user i for offloading a task to UAV j is given
by Ew

ij = pi
li
rij

, where pi is the transmission power of user i
and li

rij
is the wireless transmission time. Meanwhile, we adopt

a widely used energy consumption model for a UAV to execute
tasks, where the model assumes the energy consumption of a
single CPU cycle is proportional to µf2

j . Here, µ is a scalar and
its value depends on the CPU switched capacitance of a UAV
[16]. Thus, the energy consumption of UAV j for processing
a task from user i is Ec

ij = µf2
j livi. In summary, the total

system energy consumption for the task to be offloaded from
user i and processed by UAV j is

Eij = Ew
ij + Ec

ij = pi
li
rij

+ µf2
j livi. (3)

Note that our analysis focuses solely on the energy consumed
by the UAV during wireless transmission and communication,
while disregarding the energy expended by the drone while
hovering. This hovering energy is typically determined by
the UAV’s physical attributes like its weight and propellers,
making it a constant factor. Hence, it has no impact on the
solution to our optimization problem [17].

D. Reliability Model

In our work, we take into account both the reliability
of UAVs and the reliability of the communication links
in the system. During the processing of computing tasks,
UAVs may experience hardware or software failures, while
communication links between mobile users and UAVs may
be disrupted by severe path loss, fading, or shadowing. We
define the reliability of a UAV as the probability that the
UAV is operational while processing tasks, and the reliability
of a communication link as the probability that the link is
functional during task offloading [18]. We adopt the Poisson
process to model the failures of UAV j with the failure rate
λj [19]. Therefore, the reliability of UAV j can be calculated

as Ruav
j = e−λj

∑
i∈N xijt

c
ij = e

−λj
∑

i∈N xij
livi
fj , where xij is

the binary variable which indicates whether user i is associated
with UAV j [18]. The failures of each communication link
are also assumed to be a Poisson process with the failure
rate λ′

ij [19]. Hence, the reliability of communication link
between user i and UAV j can be expressed as Rcom

ij =

e−λ
′
ijxijt

w
ij = e

−λ
′
ijxij

li
rij [18]. To evaluate the overall system

reliability, we adopt a commonly used model [18] that defines
system reliability as the probability that all the UAVs in the
system and communication links between the UAVs and users
are functional. Thus, the system reliability is equal to the
product of the reliabilities of UAVs and communication links.
Therefore, the system reliability can be calculated by

Rsys =
∏
j∈M

Ruav
j

∏
i∈N , j∈M

Rcom
ij

=e
−

∑
j∈M λj

∑
i∈N xij

livi
fj

−
∑

i∈N
∑

j∈M λ
′
ijxij

li
rij

=e
−

∑
i∈N

∑
j∈M(

λjlivi
fj

+
λ
′
ij li

rij
)xij

.

(4)

IV. PROBLEM FORMULATION

We present the formulation of the energy-efficient task
offloading problem in UAV-assisted mobile edge networks,
which considers both QoS and reliability. The problem can
be mathematically formulated as:

P0: min
xij

∑
i∈N

∑
j∈M

Eijxij (5)

s.t.,
∑
j∈M

tijxij ≤ Di,∀i ∈ N , (6)

Rsys ≥ Rth, (7)∑
j∈J

xij = 1, ∀i ∈ N , (8)

xij ∈ {0, 1}, ∀i ∈ N , j ∈ M. (9)

The objective of problem P0, as defined in Eq. (5), is to
minimize the overall energy consumption of the UAV-assisted
mobile edge network by determining the optimal user-to-
UAV associations represented by the binary variables xij .
The QoS constraint is given by Eq. (6), which ensures that
the completion time of each user’s computing task does
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not exceed its respective deadline Di. The system reliability
constraint, expressed in Eq. (7), mandates that the overall
system reliability exceeds the predetermined threshold Rth.
The association constraint, as formulated in Eq. (8), guarantees
that each user is associated with only one UAV. Finally, Eq. (9)
constrains the user-to-UAV association variable to be a binary
variable.

Plugging Eq. (4) into Eq. (7), we have

e
−

∑
i∈N

∑
j∈M(

λjlivi
fj

+
λ
′
ijli

rij )xij ≥ Rth, which can be
further simplified as∑

i∈N

∑
j∈M

(
λj livi
fj

+
λ

′
ijli
rij

)xij ≤ ln
1

Rth
. (10)

For ease of notation, let Φij =
λj livi
fj

+ λ
′
ijli
rij . Hence, Eq. (10)

can be transformed into∑
i∈N

∑
j∈M

Φijxij ≤ ln
1

Rth
. (11)

As a result, problem P0 can be formulated as an integer linear
programming (ILP) problem, which can be reduced to the
generalized assignment problem (GAP), a well-known NP-
hard problem [20]. In the next section, we will present an
algorithm to solve this problem.

V. PROPOSED ALGORITHM

In this section, we present our algorithm designed to solve
P0 by using Lyapunov optimization. Our algorithm addresses
both quality of service (QoS) and reliability by selecting the
optimal UAV for each mobile user.

P0 is challenging due to the interdependence introduced
by the reliability constraint (11), which couples the user and
UAV pairs together. In other words, without the reliability
constraint (11), P0 could be easily solved by transforming
it into N independent subproblems, where each subproblem
involves selecting the UAV that generates the minimum energy
consumption for a single mobile user while satisfying the time
constraint (6). Therefore, this coupling makes the optimization
problem more challenging and requires a more sophisticated
approach to solve. Our algorithm is motivated by the need
to break the coupling caused by the reliability constraint
and address both the QoS and reliability constraints in a
computationally efficient manner.

We utilize Lyapunov optimization which is typically used
to optimize time-averaged objective functions in dynamic
stochastic networks such as networks with random events
and uncertainties [21]. To transform the static problem into a
dynamic problem, we choose a user and UAV pair in each time
slot while ensuring that the QoS and reliability constraints are
satisfied. To do this, we introduce a reliability addition Φij

whenever we add a new user and UAV pair to our system
in each time slot. The sum of all reliability additions over
time must not exceed a reliability capacity threshold ln 1

Rth ,
as defined by the reliability constraint (11).

In Lyapunov optimization, virtual queues are used to char-
acterize the event arrivals and departures. For our problem, we
define the event arrival as the reliability addition Φij in each
time slot i and the departure as the reliability budget (i.e.,
the average reliability addition) 1

N ln 1
Rth . The backlog of the

virtual queue qi is then defined as

qi+1 =max

{
0, qi +Φij −

1

N
ln

1

Rth

}
, (12)

where qi can also be considered as the reliability deficit
because it reflects the deviation of the reliability addition from
the reliability budget in each time slot. A large reliability
deficit qi implies that the previous reliability additions exceed
the reliability budgets, so a smaller reliability addition is
required in time slot i to ensure that the total reliability
additions do not surpass the reliability capacity. Therefore, qi
measures the importance of minimizing the reliability addition
in time slot i. By combining the objective of minimizing
energy consumption, we can reformulate P0 in time slot i
as:

P1: min
xij

V
∑
j∈M

Eijxij + qi
∑
j∈M

Φijxij (13)

s.t., (6), (8), (9),

where V is a positive constant to balance the energy con-
sumption objective and the reliability objective. The objective
of problem P1 is to jointly minimize the energy consumption
and the weighted reliability addition while satisfying the QoS
constraint.

Algorithm 1: Proposed Algorithm

Input : E, Φ, D, Rth, N ,M,
Output: Task offloading xi,j

1 Initialize qi = 0, xij = 0;
2 Initialize current reliability summation s = 0;
3 Set reliability capacity as ln 1

Rth ;
4 for i = 1 · · · N do
5 Sort UAVs in the ascending order of

V Eij + qiΦij ;
6 for j = 1 · · ·M do
7 if tij ≤ Di and s+Φij ≤ ln 1

Rth then
8 xij = 1;
9 s = s+Φij ;

10 break;
11 end
12 Update qi+1 based on Eq. (12);
13 end

P0 can be addressed by solving P1 in an online fashion
for each time slot, which removes the coupling caused by
the reliability constraint (11). In time slot i, we choose the
optimal UAV for mobile user i. We first sort all UAVs in the
ascending order of the objective function V Eij + qiΦij . We
then choose the UAV with the smallest objective value and
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check whether it satisfies both the QoS constraint (6) and the
reliability constraint (11). If it satisfies both constraints, we
assign the UAV to mobile user i. If not, we proceed to the
next UAV with the second smallest objective value and repeat
the process until we find a UAV that satisfies both constraints.

Our proposed algorithm is outlined in Alg. 1. Line 1
initializes the reliability deficit qi = 0 and the task offloading
decision xij = 0. Lines 2-3 initialize the current reliability
summation as 0 and the reliability capacity as ln 1

Rth . Lines 4-
13 choose the allocated UAV for each mobile user. Line 5 sorts
the UAVs according to the objective function V Eij + qiΦij .
Lines 6-10 choose a UAV that satisfies constraints (6) and
(11). Line 12 updates the reliability deficit qi.

VI. PERFORMANCE EVALUATION

In our simulation, the network is assisted by N = 25 UAVs
that are also uniformly distributed in the air at a height of
H = 100 m. To model the probability of line-of-sight (LoS)
and non-line-of-sight (NLoS) signals, we set the environment-
related constants α = 9.6 and β = 0.28, respectively. In the
UAV pathloss model [15], we assume the carrier frequency is
2 GHz, the speed of light c = 3× 108 m/s, and environment-
related constants of ξLoS = 1 dB and ξNLoS = 20 dB.
The bandwidth allocated to each user-UAV pair is 1 MHz,
and the noise power density is N0 = −174 dBm/Hz. The
task completion deadline is set to 114 s. The failure rate
of a UAV is 5 × 10−6 and that of a communication link is
5 × 10−6. The reliability threshold value Rth is set to 94%.
Each user has a wireless transmission power of 1 W. Note
that the default values of these parameters can be adjusted to
reflect the actual conditions and their impact on the algorithm’s
performance when we show the simulation results. We adopt
three benchmark algorithms for comparison including ILP,
Greedy, and Random and we denote our proposed algorithm
as Propose. ILP is the optimum solution obtained by the
CPLEX solver. Greedy greedily chooses the drone that has
the minimum ratio of energy consumption over reliability for
each user. Random randomly chooses the drone that satisfies
the time and reliability constraints for each user.
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Fig. 2. Energy consumption vs number of users.

Fig. 2 compares four different algorithms in a small-scale
problem with user numbers ranging from 20 to 60. The system
energy consumption increases with the increasing number of
users because more users consume more energy. Propose
performs close to the optimal solution ILP. Besides, Propose is
better than Greedy Random because Greedy greedily optimizes
the energy consumption for each user without considering the
impacts of other users’ decisions on the performance.
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Fig. 3. Execution time vs number of users.

Fig. 3 presents the execution time of four different algo-
rithms with different numbers of users. The execution time
increases as the number of users increases because more users
lead to larger size problems and so more time is required
to get the task offloading decisions. Note that ILP incurs
an exponentially increasing execution time while Propose,
Greedy, and Random are relatively stable. This is because ILP
usually adopts a branch-and-bound algorithm, thus leading to
the exponential time complexity. On the other hand, Propose,
Greedy, and Random choose the appropriate UAVs for each
user, and thus are executed in polynomial time.
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Fig. 4. System reliability vs number of users.

Fig. 4 illustrates the performance of system reliability with
different numbers of users ranging from 20 to 60. The system
reliability decreases as the number of users increases. This
is because more users create more communication links and
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thus it is more likely to have link failures. Besides, Propose
performs similar to ILP and better than Greedy and Random.
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Fig. 5. Energy consumption vs number of UAVs.

Fig. 5 displays the performance of system energy con-
sumption with different numbers of UAVs ranging from 10
to 38. The system energy consumption of Propose, ILP, and
Greedy decreases when the number of UAVs increases because
more UAVs provide a larger exploration space and so it is
more likely to find better UAVs that provides smaller energy
consumption in the task offloading problem. Similar to Fig. 2,
Propose performs similar to ILP and better than Greedy and
Random.
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Fig. 6. Energy consumption vs Reliability threshold.

Fig. 6 presents the system energy consumption of Propose,
Greedy, and Random with different reliability thresholds Rth.
It can be observed that the system energy consumption de-
creases as Rth increases. This is because a larger system
reliability Rth requires a smaller wireless transmission time
according to Eq. (4) and hence the energy consumption
becomes smaller. Besides, Propose consumes less energy than
Greedy and Random with a similar reason in Fig. 2.

VII. CONCLUSION

In this paper, we have investigated the energy-efficient
task offloading problem in UAV-assisted edge networks. We

have formulated our problem as an ILP problem with the
objective to minimize the system energy consumption while
satisfying the task completion time requirement and reliability
constraint. We have designed a Lyapunov optimization algo-
rithm to address our problem, which achieves a polynomial
time complexity. Extensive simulations have been conducted
to demonstrate that our proposed algorithm performs similarly
to the optimal solution and better than benchmark algorithms.
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