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Abstract—Non-terrestrial networks (NTN) are a promising
approach in beyond 5G/6G era to provide ubiquitous connectivity
to everywhere, including uncovered or underserved areas. NTN
enables covering wide areas from the sky by employing satellites
and unmanned aerial vehicles (UAVs) as movable network nodes
such as base stations and routers. In contrast, the node mobility of
NTN introduces dynamic changes in the network topology, which
decreases the opportunities and duration of NTN-ground com-
munication. In addition, dynamic changes in the communication
environment, such as weather, cause link quality and availability
to fluctuate. Therefore, NTN brings challenges in keeping the
packet delivery rate high due to its dynamic changes in topology
and communication environment. This paper proposes a routing
method with link information-based path calculation rule selec-
tion in NTN. The proposed method calculates paths according
to the rules selected by the link information-based rule selection
model using machine learning (ML). The rule selection model is
trained with the dataset based on simulations of various training
scenarios of an NTN. Simulation results for two evaluation
scenarios demonstrate that the proposed method outperforms the
existing routing methods in terms of packet delivery rate even
under severe weather conditions. The results also show that each
of the multiple path calculation rules contributes to increasing
the packet delivery rate.

Index Terms—Routing, rule selection, non-terrestrial networks,
machine learning, beyond 5G/6G.

I. INTRODUCTION

Future networks in beyond 5G/6G era are expected to
provide ubiquitous connectivity to everywhere, including un-
covered or underserved areas. In particular, the future net-
works will need to cover not only populated areas but also
unpopulated areas such as ocean, air, and space. Therefore,
a more efficient network infrastructure is essential to provide
greater coverage instead of extending the existing terrestrial
networks (TN) such as mobile and fixed networks. Hence,
non-terrestrial networks (NTN) are becoming one of the most
promising approaches to provide wider network connectivity
from the sky. NTN employs satellites, high altitude platform
stations (HAPS), and unmanned aerial vehicles (UAV) as
flying network nodes, such as base stations and routers, in
three-dimensional (3D) space.

While NTN is suitable for extending coverage, it also brings
challenges in providing stable communication due to node
mobility and dynamic environment such as weather. Node
mobility in NTN makes the network topology dynamic with
respect to time and introduces time limits during which NTN
nodes can communicate with the ground nodes. Additionally,
the dynamic environment causes link quality and connectivity

to fluctuate. In particular, a low earth orbit (LEO) satellite
moves so fast (about seven kilometers per second) that an LEO
satellite may only be visible from a ground station (GS) for
about ten minutes. The availability of a link between an LEO
satellite and a GS may vary depending on several factors such
as weather, antenna directions, and inter-node distance. Hence,
NTN brings challenges in keeping the packet delivery rate high
due to its limited NTN-ground communication opportunities
and intermittent link availability.

Routing is a fundamental process that selects an appro-
priate path from possible paths to deliver packets from a
source node to a destination node. In particular, selecting
appropriate paths for each moment considering node mobility
and link availability becomes more critical in NTN. Existing
routing methods, including routing protocols for mobile ad-
hoc networks (MANET), are based on distributed routing,
which exchanges messages in the network to detect topology
changes and to calculate paths. While such distributed routing
approaches provide versatility in applying to various networks,
they have difficulties in finding optimal paths in NTN in terms
of packet delivery rate as they cannot anticipate the dynamic
changes in topology and environment such as weather. Addi-
tionally, the existing routing methods usually adopt the shortest
path algorithm, an optimization algorithm that minimizes the
sum of link cost (weight) for each possible path. However,
such a path-finding mechanism might not be able to find a
path that can deliver packets to the destination in NTN. For
instance, the shortest path in terms of the number of hops from
source to destination may suffer from rain loss in a heavy rain
area, but another detour path, which is not the shortest path,
may provide a higher packet delivery rate as it bypasses the
rainy area. Therefore, another routing approach that selectively
employs possible paths considering node mobility and link
availability is necessary to keep the packet delivery rate high
in NTN-ground communication.

This paper proposes a routing method with link information-
based path calculation rule selection to increase the packet
delivery rate in NTN. The proposed method calculates paths
according to the rules selected by the link information-based
rule selection model using machine learning (ML). The future
link information is calculated based on orbital parameters and
weather forecast data assuming that the future locations of
NTN nodes can be predicted using orbital parameters, and the
link quality can be calculated using propagation models such
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as ITU-R rain loss model [1]. The rule selection model is
trained with the dataset obtained by simulating different train-
ing scenarios of the NTN. Simulation results for evaluation
scenarios demonstrate that the proposed method outperforms
the existing routing methods in terms of packet delivery rate
even under severe weather conditions. The results also show
that each of the multiple path calculation rules contributes to
increase the packet delivery rate.

The rest of this paper is organized as follows. Section II
describes related work. Section III presents the proposed
routing method. Section IV presents evaluation of the proposed
method in terms of packet delivery rate in comparison with
the existing methods. Finally, Section V concludes this paper.

II. RELATED WORK

Routing methods in dynamic networks have been presented
in the field of ad-hoc networks. Ad-hoc On-Demand Dis-
tance Vector (AODV) [2] and Optimized Link State Rout-
ing (OLSR) [3] are two examples of routing protocols in
MANET routing methods. In addition, modified versions
of MANET routing methods have been presented in the
literature [4], [5]. The work in [4] presented a modified
version of AODV, where each node predicts link breakage
and warns neighboring nodes when the link is about to
break via control messages. The work in [5] presented an
hello message interval control method using reinforcement
learning to reduce bandwidth wastage due to frequent hello
message flooding in flying ad-hoc networks (FANET). The
hello message interval control method is incorporated into
the existing MANET routing protocols, AODV and OLSR.
The work in [6] presented an ML-based packet arrival rate
prediction model to avoid high-traffic UAVs and minimize
packet loss in UAV-based FANET. These existing routing
methods are based on distributed routing, where dynamically
changing network topology is continuously discovered by
frequent control message flooding and path calculation is
performed on the discovered topology. Although such routing
methods have versatility in applying to various networks, they
cannot anticipate the changes in dynamic network topology
and environment such as weather. In addition, such routing
methods are usually based on the shortest path algorithms,
which may result in poor packet delivery rate in NTN as
described in Section I. Our work presents a centralized routing
method with path calculation rule selection from multiple
rules using pre-calculated link information based on orbital
parameters and weather forecast to improve packet delivery
rate. Although the proposed method requires the pre-calculated
link information, it is suitable for routing in dynamic networks
such as NTN, whose node movement can be predicted.

Besides ad-hoc routing protocols, ML-based intelligent rout-
ing methods in dynamic networks have been presented in
the literature [7]–[9]. The work in [7] presented a next hop
selection model in ultra-low latency vehicular networks for
autonomous driving. The work in [8] presented a deep re-
inforcement learning-based automatic path selection strategy.
The work in [9] presented an ML-assisted routing optimization

Fig. 1. Architecture for link information-based routing in NTN.

approach for energy-efficient communication in mobile net-
works. The ML-based path selection and next hop selection
boils down to ML-based classification problems, where the
number of labels increases with the size of the network.
Our work differs from these approaches in selecting path
calculation rules instead of selecting paths or next hops using
ML technique, where the number of labels is constant and
does not depend on the size of the network.

III. LINK INFORMATION-BASED ROUTING METHOD

A. Notation

An NTN during a given time period t ∈ [1, T ] is represented
by a sequence of graphs G = [g1, · · · , gT ], since its topology
and link information may change over time. Each graph in
G has the set of links L = {li|i ∈ [1, nl]}, where L is
the common set for each graph in G. Each path between a
source and a destination is defined as a sequence of links
pk = [lk(1), · · · , lk(|pk|)] ∈ P , where k(i) denotes the index
of the i-th link in path pk and P is a set of possible paths
in the NTN. The link information of li at time t is a set
of features (properties) of link li, which is represented by a
vector xli(t) = [xli

1 (t), · · · , x
li
N (t)]. N is the number of link

features. A whole link information vector at time t is defined
by X(t) = [xl1(t), · · · ,xlnl

(t)]. The link information at time
t is embedded in the corresponding edges of graph gt. A set
of path calculation rules is represented by R = {r|r ∈ [1, R]}.
A link information-based rule selection function is denoted by
F(R,s,d)(X), where s and d are source and destination nodes,
respectively. A function that calculates s-to-d path on graph g
according to rule r is denoted by F p

r (g, s, d).

B. Architecture

We propose a routing method with link information-based
rule selection in NTN. Fig. 1 presents an architecture for
link information-based routing in NTN during a future time
period t ∈ [1, T ]. The architecture mainly consists of three
functions: link information calculation, link information-based
rule selection, and rule-based path calculation, where the
proposed method consists of the latter two functions. The
link information is a set of link features, such as propagation
loss, propagation distance, bit error rate (BER), and other
metrics. In the link information-based routing architecture,
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Algorithm 1: Link information-based routing.
Input: G, s, d, R
Output: p′(s, d)

1 for t← 1 to T do
2 r′t ← F(R,s,d)(X(t)) // rule selection

3 p′t(s, d)← F p
r′t
(gt, s, d) // path calculation

4 end
5 p′(s, d)← [p′1(s, d), · · · , p′T (s, d)]

the future link information is calculated in advance using
the future locations of NTN nodes and the propagation loss
considering the environment. We assume that future locations
can be predicted using orbital parameters, such as two-line
elements (TLEs), or flight paths of HAPS and UAVs planned
in advance by network operators. The propagation loss consid-
ering environment is calculated using some propagation loss
models, such as ITU-R P.618-12 rain loss model [1], taking as
input the node locations and weather forecast data at each time
t. The link information-based rule selection and rule-based
path calculation are the main part of the architecture, which
calculates paths according to the rules selected by the link
information-based rule selection model for each time t. The
link information-based rule selection function is an ML-based
model that selects an appropriate path calculation rule based
on the pre-calculated link information. Finally, a sequence
of the selected paths during t ∈ [1, T ] is configured to the
NTN, where packets from the source node are delivered to
the destination node along with the configured paths.

Algorithm 1 describes the behavior of the proposed method.
The proposed method takes as input a sequence of graph
G containing link information for each link at each time
t ∈ [1, T ], source s, destination d, and the set of path
calculation rules R. At each time t ∈ [1, T ], an appropriate
path calculation rule r′t is selected by F(R,s,d) based on the
whole link information X(t). The rule selection function
F(R,s,d) is an ML-based classification model that selects a
path selection rule out of R rules taking X(t) as input. Then
F p
r′t

calculates a s-to-d path p′t(s, d) according to the path
calculation rule r′t at time t. Finally, a sequence of calculated
paths p′(s, d) is configured to the NTN.

C. Path calculation rules

Path calculation is a process of selecting the optimal
path from possible sequences of links between a source and
a destination in a network. A path calculation rule is an
algorithm that outputs a path based on the input data. A
well-known example of path calculation rule is the shortest
path algorithm, which is represented as argmin

pk∈P

[∑
li∈pk

ci

]
,

where ci is the cost (weight) of link li. The cost of each
link may be set based on link information, represented as
ci = f(xli

j ) for j ∈ [1, N ], where f is an appropriate
function. Hence, several different path calculation rules can be
defined depending on the cost definition in the shortest path

Algorithm 2: Building process of rule selection model.

Input: E , R, F j , F l

Output: F(R,s,d)

1 foreach e ∈ E do
2 Xe ← [Xe(1), · · · ,Xe(T )]
3 for t← 1 to T do
4 for r ← 1 to R do
5 p̃e,t,r(s, d)← F p

r (ge,t, s, d)
6 me,t,r ← F j(e, p̃e,t,r(s, d))
7 end
8 me,t ← [me,t,1, · · · ,me,t,R]
9 qe,t ← F l(me,t)

10 end
11 qe ← [qe,1, · · · , qe,T ]
12 end
13 D ← [(X1, q1), · · · , (XE , qE)]
14 F(R,s,d) ← train(D)

algorithm. Besides the shortest path-based rules, other path
calculation rules can be considered. Let xi denote Eb/N0,
energy per bit to noise power spectral density ratio, of link
li in path pk, argmax

pk∈P
[minli∈pk

xi] is a rule that selects

the path with the largest minimum Eb/N0 value for each
link comprising the path in the network. Note that the path
calculation rules included in the proposed method are not
limited to any particular ones.

D. Path calculation rule selection model and training dataset

The path calculation rule selection function F(R,s,d) is an
ML model of R-class classification based on supervised learn-
ing. Algorithm 2 describes the building process of F(R,s,d)

including the dataset generation process. The training of
F(R,s,d) is based on a dataset D, whose input data is link
information and output label is a path calculation rule at each
time t. The path calculation rule selection model F(R,s,d)

is trained using the dataset D in line 14. Note that training
method of F(R,s,d) is not restricted to any particular one in
this work.

We consider a set of NTN scenarios, represented by a set
E = {e|e ∈ [1, E]}, to obtain the dataset D. Each scenario
e defines Ge, s, d, and some other parameters such as each
antenna direction and weather condition. Table I describes the
qualitative link information for five example cases with dif-
ferent antenna directions and weather conditions. In cases (a)
and (b), the antennas of satellites and GSs face each other
with good weather conditions, which provides high SNR and
low BER. Case (a) likely to provide better link quality than
case (b) because the propagation distance in case (a) is shorter
than in case (b). In case (c), the satellite antenna does not face
the GS antenna, which results in low low SNR and high BER
while the distance is not long. In cases (d) and (e), while
the antennas of satellites and GSs face each other, there is
rainfall, which degrades signal power, resulting in low SNR
and high BER. Likewise cases (a) and (b), case (e) may lead
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TABLE I
EXAMPLES OF LINK INFORMATION VARIATIONS FOR DIFFERENT

SCENARIO PARAMETERS.

Example (a) (b) (c) (d) (e)
cases with
different
antenna

directions
and weather
conditions

SNR High High Low Low Low
Distance Short Long Short Short Long

BER Low Low High High High

to poor link quality because its propagation distance is long in
addition to the rainfall. Thus, antenna directions and weather
conditions differentiate each scenario in terms of link quality
and availability. Therefore, running multiple scenarios, each
with different conditions, produces a dataset with different
link information and path calculation rule labels. Note that
the quantitative link information is obtained and is used to
train the rule selection model in the proposed method, while
Table I presents a qualitative analysis for simplicity.

In Algorithm 2, lines 1 through 13 represent the dataset
building process. Line 6 represents the packet delivery judg-
ment process that judges whether a packet is delivered to the
destination along with a path calculated by a rule. In particular,
a function F j(e, p̃e,t,r(s, d)) judges whether a packet from
s is successfully delivered to d along with the path p̃e,t,r,
where p̃e,t,r is the path calculated according to rule r at time
t in scenario e. The judgment result is stored in me,t,r, where
me,t,r is set to 1 if a packet from s is delivered to d along
a path p̃e,t,r(s, d), and is set to 0 otherwise. In practice, F j

may be some simulators, where we use a network simulator
EXata [10] in Section IV. In line 9, a function F l decides
a label of path calculation rule based on the judgment result
me,t. me,t is an R-element vector containing binary results
at time t in scenario e for rule r ∈ [1, R] at r-th element.

For instance, min

[
argmax

r∈R
(me,t)

]
selects as the label qe,t

at time t in scenario e the minimum path calculation rule index
r whose delivery result me,t,r is 1. Finally, a sequence of link
information and labeled rule pair for each scenario e is stored
as dataset D.

IV. EVALUATION

We evaluate the packet delivery rate of the proposed routing
method on an example NTN in comparison with two existing
routing methods, AODV [2] and OLSR [3].

A. Example NTN

We consider an example NTN consisting of a group of LEO
satellites, GSs, and a data center (DC) as shown in Fig. 2.
The LEO satellites, denoted as Sat 1, 2, 3, 4, 5, and 6, move
from the west to the east passing over Japan. Each satellite

Fig. 2. Example NTN. A group of six LEO satellites pass over Japan. Six
GSs are geographically distributed and connected to DC. Sat 1 is the source
and the DC is the destination. Packet delivery rate of the proposed method
and the existing methods are evaluated in the example NTN.

has an antenna to communicate with the GSs. Sat 1 is also
connected to the other satellites via inter-satellite links (ISLs)
for inter-satellite communication. Six GSs, denoted as GS 1, 2,
3, 4, 5, and 6, are geographically distributed throughout Japan.
The DC located at Tokyo is connected to each of the GSs via
terrestrial networks. Sat 1 is the source of the traffic that sends
data to the DC as the satellites pass over Japan. Traffic from
Sat 1 may be routed directly to the DC via one of the six GSs,
or may be routed along with detour paths via other satellites
and GSs if necessary. For instance, a path [Sat 1 – GS 4 –
DC] may be used if the weather permits, but a detour path
[Sat 1 – Sat 5 – GS 2 – DC] may be used if there is a heavily
rained area around some GSs.

B. Link information and path calculation rules in evaluation

We describe the features of link information, path calcula-
tion rules, training scenarios to build the dataset and to train
the rule selection model, and evaluation scenarios to evaluate
the packet delivery rate of the proposed routing methods in this
work. In this evaluation, link information is calculated for each
inter-satellite link and satellite-GS link by using the Systems
Tool Kit (STK) [11] from Analytical Graphic Inc. (AGI).
We used eight features for each link; Equivalent Isotropic
Radiation Power (EIRP), propagation loss, G/T, Eb/N0, BER,
distance, and two additional features. One of the additional
features is a bit that represents the link availability determined
by STK. The other one is a bit that represents whether the link
is an ISL or a satellite-GS link.

We consider four path calculation rules in this evaluation,
denoted as rule 1, 2, 3, and 4; rule 1 is to select the path with
the largest minimum Eb/N0 value for each link comprising the
path, rule 2 is to select the path with the largest total Eb/N0

value for the path, rule 3 is to select the path with the smallest
sum of the distance values of the paths, and rule 4 is to select
the path with the smallest maximum BER value for each link
comprising the path.
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C. Scenarios for training and evaluation

We consider 35 training scenarios of the example NTN
during time period 1 ≤ t ≤ 600 [s]. Each of the training
scenarios differs from the others in the directions of the
antennas of the satellites and the antennas of the GSs so
that the training dataset contains different link information
and labels. For instance, one training scenario has a setting
in which the antenna of Sat 6, the antennas of the other
satellites, and the antennas of all the GSs are pointed at GS 3,
vertically downward, and at Sat 6, respectively. All the training
scenario are in good weather conditions with no rainy areas.
According to Algorithm 2, the training labels of the path
calculation rule are obtained as a result of F j for each rule
r at each time t in each training scenario e, which constitute
the training dataset D. We obtained 11692, 10571, 1247, and
724 data for rule 1, 2, 3, and 4, respectively, which are finally
randomly under-sampled to 2896 data in total. We trained the
rule selection model F(R,s,d) based on the dataset using the
random forest algorithm in scikit-learn [12] with its default
parameters, whose accuracy score reaches 0.92. Note that the
evaluation metric in this work is the packet delivery rate, where
the accuracy score of the training is only for reference.

We also consider two different evaluation scenarios. Both
evaluation scenarios have a heavy rain area in the central
region of Japan and have an antenna setting in which all the
satellites’ antennas point straight down. All the GSs’ antenna
are pointed to Sat 4 and to Sat 5 in the evaluation scenario 1
and 2, respectively. In particular, all the GSs are more likely
to be connected to Sat 4 and to Sat 5 via high quality links
than to other satellites in the evaluation scenario 1 and 2,
respectively. Fig. 3 shows the evaluation scenario 2 during
the time period t ∈ [1, 600] in three parts, where each part
corresponds to every 200 seconds of the scenario. In part 1,
Sat 1 can communicate with GSs in the western part, such as
GS 1 or GS 2, directly or via Sat 5 as satellites are far from the
rainy area. In part 2, while Sat 1 cannot communicate directly
with GSs as Sat 1 reaches over the rainy area, Sat 1 can still
communicate with GS 1 or GS 2 via Sat 5. In part 3, most
of the satellites have passed over the rainy area and are in the
eastern area. Hence, the paths from Sat 1 to the DC via high
quality links change from those in part 1 and 2. Therefore,
routing methods become critical to keep the delivery rate high
in each part of the scenario. In the evaluation scenario, paths
can be calculated at each time according to the selected rule by
the rule selection model trained based on the training scenario.
Note that the two evaluation scenarios are not included in
the training scenarios, where all the training scenarios do not
contain rainy areas.

Each scenario is run on the simulation system, which
consists of Analytical Graphic Inc. (AGI)’s Systems Tool
Kit (STK) [11] Pro version 12.3 and Keysight’s EXata [10]
version 7.3.2.0. We import real weather data on August 13,
2021, when a strong typhoon hit Japan, from the Japan
Meteorological Agency [13]. The weather data are in the
network common data form (netCDF) format, which records

TABLE II
SIMULATION RESULTS OF DELIVERY RATE FOR EACH 200 SEC PART FOR

DIFFERENT ROUTING METHODS IN EVALUATION SCENARIOS 1 AND 2.

Example Sent Delivered packets (Delivery rate)
scenario 1 packets Proposed AODV OLSR

Part 1 20,000 18,528 (0.93) 19,984 (0.99) 18,093 (0.90)
Part 2 20,000 18,689 (0.93) 19,641 (0.98) 15,660 (0.78)
Part 3 20,000 18,552 (0.93) 670 (0.03) 8,131 (0.41)
Total 60,000 55,769 (0.93) 40,295 (0.67) 41,884 (0.70)

Example Sent Delivered packets (Delivery rate)
scenario 2 packets Proposed AODV OLSR

Part 1 20,000 18,517 (0.93) 19,978 (0.99) 18,217 (0.91)
Part 2 20,000 17,614 (0.88) 19,984 (0.99) 15,575 (0.78)
Part 3 20,000 17,948 (0.90) 7,196 (0.36) 9,870 (0.49)
Total 60,000 54,079 (0.90) 47,158 (0.79) 43,662 (0.73)

the weather data for each geographical location and time. The
rain loss of the satellite-GS links is calculated by using the
ITU-R P.618-12 rain loss model [1] for each geographical
location and time. We consider constant bit rate (CBR) traffic
from Sat 1 to DC, consisting of 512-byte user datagram
protocol (UDP) packets at a rate of 100 packets per second
for 600 seconds.

D. Simulation results

Table II shows the simulation results of the packet delivery
rate for three different routing methods in the evaluation
scenarios 1 and 2. In both evaluation scenarios, the proposed
method outperforms the existing routing methods in terms
of the number of delivered packets and the packet delivery
rate. This is because the proposed method is based on the
pre-calculated link information and leverages multiple path
calculation rules selectively at each moment whereas the ex-
isting methods calculates the shortest paths on the discovered
topology even if the link quality of the shortest path is poor.
In addition, the topology discovery of the existing method is
based only on the control message flooding, where detailed
link information that incorporates rain loss due to weather
data cannot be used.

While both existing methods show almost the same packet
delivery rate for the entire scenario, OLSR works better than
AODV in part 3 for both example scenarios. This is due to the
difference between the two routing protocols. Since AODV is a
reactive routing protocol, its path calculation starts only when
the source starts communicating. AODV basically calculates
paths only when a source-to-destination path is unavailable or
broken links are detected on the active path, which is based on
message flooding. Therefore, AODV tends to continue using
the active paths when they are available. In contrast, OLSR is a
proactive routing protocol that periodically floods messages to
discover the topology, where the shortest paths are calculated
on the discovered topology. As a result, OLSR tends to change
active paths based on detected topology changes. Therefore,
OLSR has more chances to change the active paths to keep
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(a) Part 1 of evaluation scenario 2, t ∈ [1, 200]. (b) Part 2 of evaluation scenario 2, t ∈ [200, 400]. (c) Part 3 of evaluation scenario 2, t ∈ [400, 600].

Fig. 3. Images of evaluation scenario 2 in three parts during time period t ∈ [1, 600]. There is a typhoon with heavy rain in the central region of Japan. All
the satellites’s antenna point to straight down and all the GSs are targeted to Sat 5.

TABLE III
NUMBERS OF DELIVERED PACKETS FOR EACH PATH CALCULATION RULE

IN EACH EVALUATION SCENARIO.

Rule 1 Rule 2 Rule 3 Rule 4
Evaluation scenario 1 20668 23830 4305 152
Evaluation scenario 2 34195 18762 1122 0

up with the topology changes in part 3 compared to AODV,
which may result in OLSR’s higher packet delivery rate in
part 3.

In addition, while AODV slightly outperforms the proposed
method in parts 1 and 2, the proposed method significantly
outperforms AODV in part 3. We consider that this is because
of the prediction error of the rule selection model in the
proposed method. In particular, less than 10 % of the packets
are routed along with paths calculated by wrong rules because
the accuracy of the rule selection model F(R,s,d) is about
92 % and not 100 %. However, the proposed method keeps
the packet delivery rate constant even in part 3, which enables
stable communication compared to the existing methods.

The numbers of delivered packets for each path calculation
rule in each evaluation scenario are presented in Table III.
While the numbers vary by rule and scenario, each of the rules
introduced in this evaluation contributes to the packet delivery
rate. In particular, rules 1 and 2 are Eb/N0-based rules, which
contribute to delivering most of the delivered packets, whereas
distance-based rule 3 and BER-based rule 4 also contribute to
the other delivered packets. Therefore, the proposed method
selectively leverages the multiple rules to keep the packet
delivery rate high in each part in each evaluation scenario.

V. CONCLUSION

This paper proposed a routing method with link
information-based path calculation rule selection in NTN. The
proposed method consists of two components; one is the
path calculation rule selection based on link information, and
the other is the path calculation according to the selected
rule. While the proposed method requires pre-calculated link
information of the NTN, it enables path calculation using
multiple rules to increase the packet delivery rate in dynamic

networks. The path calculation rule selection model is trained
based on the training scenarios of an example NTN. The
proposed method is evaluated in terms of packet delivery rate
in evaluation scenarios of the example NTN. The simulation
results demonstrated that the proposed method outperforms
the existing routing methods in two evaluation scenarios. In
particular, the proposed method keeps the packet delivery rate
high compared to the existing methods even under dynamic
changes in topology and link availability due to severe weather.
The results also show that each of the multiple path calculation
rules contributes to increasing the packet delivery rate, where
selectively using multiple rules finds valid paths to deliver
more packets.
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