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Abstract—One-to-many or many-to-many communication is
certainly beneficial for various network services, such as on-
line meetings and entertainment live-streaming. The multicast
paradigm is one of the most effective communication tech-
niques for enabling such services. However, owing to its various
limitations, it is not yet widely deployed to the Internet. For
simplified and effective multicast service deployments, we propose
Information-Centric Cloud-Native Network Function (IC-CNF),
which can be used to quickly create a multicast island in which
various applications will benefit from a variety of multicast
functionalities. To validate the effectiveness of IC-CNF, we imple-
mented an actual system using an emerging microservice tech-
nology, i.e., Docker and conducted real-world experiments. The
experimental results show that the proposed IC-CNF significantly
reduces 4K live video streaming traffic by 71.6% compared with
IP-based unicast networking. Conceptually, multiple multicast
islands created by IC-CNF can be deployed and connected to
the Internet; thus, a wider multicast network can be organized
while maintaining efficiency.

Index Terms—ICN, CCNx, NDN, Information-Centric Net-
working, Named-Data Networking, Cefore, deployment, video
streaming, Cloud-Native Network Function, CNF

I. INTRODUCTION

Multicasting is the most effective networking technology for
one-to-many or many-to-many communication services such
as remote meetings and live video streaming. The internet
protocol (IP) multicast is a representative paradigm, and its
effectiveness has been demonstrated in various research do-
mains. However, their IP multicast solutions have certain short-
comings [1]–[3], such as improved routing protocol scalability
to support complex routing coordinates and configurations,
which otherwise entails high resource and operational costs.
Recently, the Internet Engineering Task Force (IETF) revisited
the IP multicasting deployment barrier and analyzed how
this emergent technology can be deployed from the protocol
perspectives [4], yet it is tough to be realized. Application
layer multicast [5] and peer-to-peer (P2P) communications
do not require significant protocol changes in the network
layer; hence, they have gained considerable attention in terms
of multicast support improvements [6], [7]. Nevertheless, it
is difficult to establish and maintain optimized forwarding
paths for various types of dynamic multicast services and
participants .

The concept of Information-Centric Networking (ICN) [8]
has been advanced to several architectures, such as Content-
Centric Networking (CCNx) [9], [10] and Named-Data Net-
working [11]. Fundamental research and experimentation have

been widely conducted [12], and various efforts have been
extended to provide improved routing, forwarding, caching,
and security methods. As such, a consensus on designs and
protocols seems imminent. One of the most noteworthy fea-
tures of ICN is its multicast functionality at the network layer,
which is achieved using name-based communications. ICN
was originally designed as a clean-slate network architecture
for the future Internet; however, it is now viewed as a
practical network architecture running atop the IP network
as an overlay technology [13], [14]. Deployment studies on
Internet-of-Things (IoT) sensor networks [13] and 4G Long-
Term Evolution (LTE) networks [15] have focused on ICN
deployments to last-mile or edge areas. This assumption is
reasonable because deploying an ICN to an edge network is
easier than deploying it to a core network, owing to the low
initial costs [16].

Recent cloud-native ecosystems, e.g., Docker [17] and Ku-
bernetes [18], are emerging microservice technologies that
hold promise for edge and fog computing solutions. Docker
containers provide numerous benefits for software resource op-
erations and management, including portability, performance,
agility, and scalability. After several years of experimentation
and deployments, ICN has not been employed on the Internet
yet, despite its promised effectiveness; however, ICN software
platforms such as Cefore [19], [20], which is a CCNx-1.0-
compliant implementation, are integrated as microservice tech-
nologies that offer a quick and simple ICN construction and
deployment capability as network services.

In this paper, we design and implement a deployable ICN
framework for IP networks using emerging cloud-native net-
work softwarization technologies. We first discuss the system
design and propose a new multicast island concept for extant
edge computing platforms to facilitate multicasting at edge
nodes while reducing video traffic bandwidth1. To this end,
we integrate Cefore with Docker technologies and provide
our novel Information-Centric Cloud-Native Network Function
(IC-CNF) platform to deploy ICN functions as microservices
for creating multicast islands with all of the inherent benefits.
To validate the effectiveness of our proposed deployable IC-
CNF, we implement an actual system using Docker and
conduct real-world experiments. The results demonstrate that

1As a proof-of-concept, we especially highlight the features of video
streaming applications; however, our proposal can be also applied to general
applications based on one-to-many or many-to-many communication models.
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the proposed approach significantly reduces traffic loads at the
server, compared with IP-based unicast-only live streaming.

The remainder of this paper is organized as follows. Section
II explains the basics of the ICN and Cefore software plat-
forms. Our deployable ICN framework is then proposed, and
our ICN/Cefore integration concept with Docker technologies
is explained in Section III. Section IV presents the experimen-
tal results obtained using a real testbed. Finally, in Section VI,
we conclude this paper by discussing future directions.

II. BACKGROUND TECHNOLOGY

A. ICN: Information-Centric Networking

Figure 1 presents an overview of the ICN communication
model, which adopts a receiver-driven method in which a
consumer (user) transmits an Interest (request) packet to re-
trieve a ContentObject (data) packet from producer/publisher
(content servers). The Interest packet contains the name of
the required content, e.g., “video.mp4”, and the ContentObject
packet contains the corresponding name of the Interest packet.
These packets are forwarded by intermediate routers using
name-based forwarding mechanisms.

A Forwarding Information Base (FIB) is used for Interest
packet forwarding. When a router receives an Interest packet
and decides to forward it to an upstream neighbor based on
an FIB lookup, it records the incoming interface (face) of the
Interest packet in a Pending Interest Table (PIT) to forward
the corresponding ContentObject packet. For ContentObject
packets, PIT is used for forwarding by recording the reverse
paths of the transferred Interest packets. The intermediate
routers in the data path store the ContentObject packets in
their Content Store (CS) based on their caching policies. The
in-network cache can then be used for future requests from
other users.

Notably, one of the most important/interesting features of
ICN is “multicast” at the network layer. Hence, when more
than one consumer requests the same content, the Interest
packets are aggregated by a branching router. When the corre-
sponding ContentObject packets is sent from the producer, the
ContentObject packet is replicated at the router and forwarded
to multiple consumers while referring to the PIT trials. Using
this multicast technique, ICN is expected to reduce the traffic
load at producer and core networks.

B. Cefore: CCNx-based extensible packet forwarding engine

To realize ICN communications, the Cefore [19] open-
source software platform was developed.

1) Core component: Cefore’s packet format is compliant
with CCNx-1.0, which was standardized by the Internet Re-
search Task Force (IRTF) RFCs 8549 and 8609 [9], [10].
Cefore emphasizes the following three design policies:

• Light weight: the software implementation must be com-
pact, and the platform should be usable by resource-
constrained devices, such as sensor nodes.

• Usability: the platform should be easily configured, set
up, reloaded, and connected to the experimental environ-
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Fig. 1. An overview of ICN communications model.

ments. Ideally, its emulation/simulation capacity will be
easily applied and tested using real network equipment.

• Extensibility: the platform should be easily extensible
to accommodate the novel functions that satisfy future
network requirements.

To satisfy these policies, Cefore handles Interest and Con-
tentObject packets using the cefnetd core forwarding daemon,
which contains a minimum set of functions (i.e., FIB and PIT),
making it lightweight and scalable. Other compute-intensive
functions, such as in-network caching and computing, are im-
plemented using plugins or external daemons for extensibility
and usability. Csmgrd is a CS daemon to which cefnetd can
connect via the transmission control protocol or a local socket.

2) Plugin extension: Figure 2 shows an overview of Ce-
fore’s pluggable architecture. In addition to these core compo-
nents, Cefore is easily customizable by adding plugin libraries.
Therefore, researchers or network administrators can develop
and configure new mechanisms for cefnetd and/or csmgrd
without modifying their codes. For example, cefnetd can be
equipped with the forwarding strategy and transport plugins
to receive ICN benefits, such as multi-path or multi-source
communications. Csmgrd has a cache plugin that selects its
cache eviction method, e.g., First-In-First-Out (FIFO), Least
Recently Used (LRU), and Least Frequently Used (LFU)
depending on the operator’s requirements.

3) Utilities: The Cefore software package includes useful
utilities such as cefputfile and cefgetfile for upload-
ing and downloading data, respectively. The CCNinfo, a CCNx
network operation and management tool, is also included
(see specifications in [21]). In the current implementation,
all communications are performed over TCP/UDP as an IP
overlay.

III. IC-CNF: INFORMATION-CENTRIC CLOUD-NATIVE
NETWORK FUNCTION

A. System Design

In this section, we propose a deployable ICN framework
for provisioning ICN/Cefore nodes as cloud-native functions
into edge networks. Figure 3 illustrates our assumed scenario
in which an ICN router (Cefore) is deployed to provide
microservices function at the edge computing infrastructures
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Fig. 3. A deployable ICN framework with multicast islands in the edges.

over the Internet, which facilitates the multicast capability via
the traffic aggregation of streaming users to reduce bandwidth
demands between the core network and the server. To this end,
we deploy ICN functions at the edge and construct multicast
islands for multiple consumers in the edge.

To achieve this architecture, we require two components:
an operation function and a deployment platform. Using the
operation function, we simply monitor the IP traffic of the edge
site, predict its demand, and deploy the ICN function at the
appropriate time. Overall, we provide a network monitoring
function to report the deployment timing to an edge manager
such as k8s. After reporting the deployment timing, Cefore
on a Docker container is started as a multicast island. The
edge manager changes the routing table of each consumer in
the targeted edge to reroute traffic to the multicast island for
using the ICN’s multicast function as with the multicast island2
example shown in Fig. 3. To interface the ICN functions with
existing cloud-native paradigms, we need a new management
tool for managing ICN control plane and data plane such
as [22]. Note that we have reserved the detailed design and
implementation of this management tool for our future work.

B. Deploying ICN/Cefore as a Docker Microservice

To deploy the ICN function in an edge-computing infrastruc-
ture, we require a new deployment platform. In this section, we
describe the significant advantages of the Docker microservice
technology when applying it to construct ICN networks over
IP. The main reasons for using Docker are as follows:

• Lightweight
Compared with virtual machines, a Docker container
is exceptionally lightweight. Thus, we can build nu-
merous containers on one physical machine, which
enriches the evaluation scenarios of ICN networks
and improves experimental scalability.

• Performance
Since Docker containers do not contain operating
systems, they can be easily and quickly initiated and
terminated, which facilitates comfortable testing and
evaluation.

• Scalability
The setup requires multiple ICN nodes to pro-
vide different functions in the network at the
same time. Notably, the microservices concept
meets this requirement. Useful option tools (e.g.,
docker-compose2) can be used for flexibly and
quickly setting up containers and providing services.

To build our Cefore/Docker images, the “Dockerfile” is
prepared for the base function, which outlines the necessary
functions for ICN services at the container node.
---------------------------------------------------
# base/Dockerfile
FROM ubuntu:20.04
LABEL maintainer="hayamizu <hayamizu[at]nict.go.jp>"
RUN mkdir -p /cefore
WORKDIR /cefore
RUN apt update
RUN apt install -y git build-essential libssl-dev automake
RUN apt -y clean

2https://docs.docker.com/compose/
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RUN git clone https://github.com/cefore/cefore.git
WORKDIR /cefore/runner_test
---------------------------------------------------

In the base function, we specify the base image of the
operating system, i.e., Ubuntu 20.04, install the Cefore’s
dependencies, and download published Cefore source codes
from the Internet, e.g., GitHub.com.

We can also prepare this and other Dockerfiles to enhance
the ICN nodes’ service functions. For example, if we were to
construct a simple ICN network with consumer, router, and
producer nodes, two types of microservice Dockerfiles can be
used: one for the end-application, i.e., min, and another for
the router’s caching function, i.e., cache. End applications
do not require special functions; thus, the file can be written
as follows:
---------------------------------------------------
# min/Dockerfile
FROM cefore/base
WORKDIR /cefore/cefore
RUN ./configure
RUN make; make install; make clean
RUN ldconfig
ENV USER root
COPY ./entrypoint.bash /cefore
ENTRYPOINT /cefore/entrypoint.bash
---------------------------------------------------

This file builds only Cefore binaries for preparing the deploy-
ment initiation.

To add the caching function, i.e., cache, we mod-
ify the min file such that the ICN node can emu-
late a router with CS. The configuration options, i.e.,
--enable-cache --enable-csmgr, and configuration
parameters, i.e., cefnetd/csmgrd caching functions, are added
to the min service.
---------------------------------------------------
# cache/Dockerfile
FROM cefore/base
WORKDIR /cefore/cefore
RUN ./configure --enable-cache --enable-csmgr
RUN make; make install; make clean
RUN ldconfig
RUN echo "CS_MODE=2" > /usr/local/cefore/cefnetd.conf
RUN echo "CACHE_TYPE=memory" > /usr/local/cefore/csmgrd.conf
ENV USER root
COPY ./entrypoint.bash /cefore
ENTRYPOINT /cefore/entrypoint.bash
---------------------------------------------------

As presented in the aforementioned examples, these ICN func-
tionalities can be easily and flexibly deployed as microservices
according to the network and application requirements.

IV. EXPERIMENT

A. Implementation

We implemented a prototype of IC-CNF running on a
Docker container. We deployed 20 Docker containers including
consumer nodes, edge/core routers, and producer, on a physical
host machine running Ubuntu 22.04. The host machine is with
2.80 GHz Intel Xeon Platinum 8362 CPU × 128, and 1TB of
memory.

We used Docker version 24.0.5 as a base library and
leveraged docker-compose tools for easily and quickly

...

...

...

consumer

producer (video server)
core

edge 1 edge 2
edge 3

Cefore

Cefore Cefore

Fig. 4. Evaluation model.

deploying ICN functions as multicast islands. by using IC-
CNF framework. As explained previously, we built a Cefore
on Docker container image in advance before deploying as
multicast islands, and as necessary, i.e., when traffic load
has exceeded the pre-configured threshold, we start the Ce-
fore/Docker container on the host machine.

B. Model

To investigate the effects of our proposed deployable ICN
framework, we conducted an experimental evaluation using a
4K live video streaming scenario with 10 minutes duration3.
Figure 4 illustrates the evaluation model used for this exper-
iment. The producer at the content server sent a 4K video
encoded with approximately 20 Mbps quality to the network.
There were 15 consumers, five at each edge node, and they
joined the live streaming event. We randomly set the join delay
between consumers to n and n+1 (n = 1 · · · 14) based on an
exponential distribution with an arrival rate of λ = 0.1.

We evaluated the traffic based on a unicast-only IP network
and Information-Centric Cloud Native Network Function (IC-
CNF) network configuration. In the unicast-only IP network,
all consumers must download video data from the origin
server. With IC-CNF, we deployed an ICN function based on
the amount of traffic passing through each edge node and
accordingly constructed multicast islands at the appropriate
timing. The evaluation metrics included traffic load in terms
of throughput at the server, download rate of each consumer,
and total traffic transferred by the core router.

C. Result

Figure 5 shows the time variations of the traffic load in
the producer (server) node. With IP (unicast), the traffic load
monotonically increased with the addition of users. After all
users joined the live streaming, the traffic load saturated at
approximately 300 Mbps, which approximated the demands
of 15 streams (users) based on 20 Mbps allocated for each.
With IC-CNF, we found that our proposed deployment strategy
works well with the join timing of streaming users; thus, it
successfully reduced server traffic loads. In the current configu-
ration, we aggregated the traffic of five users around 100 Mbps.

3https://peach.blender.org/
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As the total traffic approached this threshold, our proposed
monitoring tool successfully detected and reported the traffic
concentrations. The edge manager then rerouted the traffic
requests to the newly created multicast island, where they were
aggregated, resulting in significantly decreased server loads.
Ultimately, 73.3% of the total server traffic load was reduced
at the steady state: IP (unicast) = 314.0 Mbps and ICN =
83.7 Mbps. We also confirmed that the download rate of all
consumers was sufficiently high at 20 Mbps, which meets 4K
streaming quality.

Figure 6 shows the amount of video traffic transferred by the
core router. Our proposed deployable ICN framework reduced
71.6% of its data traffic because the edge multicast performed
adequately. This significant reduction in core traffic brought
various benefits, including congestion mitigation, latency im-
provements by server load reduction, and energy-savings for
data commmunicatoins.

V. RELATED WORK

A. Multicast

There are several related work to address IP multicast
deployment issues. ODMT [23] was a proposal for dynamic
multicast tunneling that bridges native and non-native multi-
cast domains. Although ODMT provides an on-demand inter-
provider multicast tunneling dynamically, it requires complex
equipments, Controller Node (CoN), Forwarding Node (FoN)
and Controller node Resolver (CR). This requirement leads to
an additional deployment barrier.

One of the major approaches for multicast tunneling is the
Automatic Multicast Tunneling (AMT) [24] specified in the
IETF PIM working group. AMT is a protocol that enables
users who do not have native multicast connectivity to join
multicast sessions and has been implemented by multiple
vendors such as [25]. AMT replicates unicast packets for users
and transmits them via AMT relay and gateway nodes, and
hence the bandwidth cost for the packet replication will be
higher than expected.

Moreover, although Crowcroft [26] observed the difficulties
in both ICN and IP multicast deployment, these deployment
barriers are different. Because of the different IP address
semantics, IP multicast requires not only IP multicast routing
paths are different from the unicast, but also IP multicast
applications must be developed with the multicast specific
socket options to invoke IGMP/MLD join and leave operations.
Usually, application developers do not consider the routing
protocols and paths on which their applications run; therefore
there is a big obstacle for application development as well.
In contrast, ICN does not impose to distinguish the protocol
for application programming so that it is not necessary for ap-
plication programmers to decide communication styles either
unicast or multicast for their applications.

B. Cloud-native network function

Cloud-native network function (CNF) is a new net-
working softwarization tool utilized for network manage-
ment/orchestration optimization. CNF covers a lot of underly-
ing technologies on network virtualization. D. Breitgand et. al.
[27] proposed cloud native MANO architecture that exploits
benefits of Kubernetes (k8s) [18], which is a de facto industry
standard for CNF orchestration. Halpern et al., [29] proposed
cloud-native traffic steering architecture without relying on
SDN technologies. Service Function Chaining (SFC) [28]
has been originally proposed as an SDN-based architecture.
The authors of [29] integrated CNF with the SFC concept
and newly proposed a cloud-native service function chain-
ing technology (CN-SFC) which does not rely on the SDN
controller for ensuring effective traffic steering among cloud-
native network functions. K8s is used for the orchestration
platform of service functions deployed as CNF. K. Kanai et al.,
[30] proposed information-centric service mesh framework for
improving in-network computing performance by using k8s
platform. This framework provides parallel data processing for
dynamically provisioning in-networking computing resources.
These studies are beneficial and can be good compasses for us
to manage/control states of deployed multicast islands as CNFs
because we are planning to combine our developed IC-CNF
with k8s platform as aforementioned.

VI. CONCLUSION

In this study, to deploy multicast communication services
in the Internet, we designed an multicast island in which
multicast services are purely enabled, and we proposed a novel
IC-CNF that quickly and easily deploys multicast function-
alities using ICN-based edge-computing paradigms. IC-CNF
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is enabled using the Cefore open-source software platform,
which enables ICN communications using CCNx-1.0 messages
defined by the IRTF. Cefore was integrated with emerging
microservices technologies (e.g., Docker) for quick and simple
ICN deployments. In our experiment, we evaluated the traffic
reduction performance of the proposed scheme in a live 4K
video streaming scenario and demonstrated that our proposed
deployable ICN framework significantly reduces server and
core router traffic loads while ensuring sufficient throughput
for each consumer. In future work, we plan to embed this
IC-CNF using representative orchestration technologies (e.g.,
Kubernetes) while enhancing its network management and
operation schemes.
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