
Tamperproof Data Transmission to Offline IoT
Devices in a Zero-Trust Environment

1st Richard Vogel
Faculty Applied

Computer Sciences & Biosciences
Hochschule Mittweida

09648 Mittweida, Germany
vogel2@hs-mittweida.de

2nd Robert Manthey
Faculty Applied

Computer Sciences & Biosciences
Hochschule Mittweida

09648 Mittweida, Germany
manthey1@hs-mittweida.de

3rd Matthias Baumgart
Faculty Applied

Computer Sciences & Biosciences
Hochschule Mittweida

09648 Mittweida, Germany
baumgart@hs-mittweida.de

4th Christian Roschke
Faculty Applied

Computer Sciences & Biosciences
Hochschule Mittweida

09648 Mittweida, Germany
roschke@hs-mittweida.de

5th Marc Ritter
Faculty Applied

Computer Sciences & Biosciences
Hochschule Mittweida

09648 Mittweida, Germany
ritter@hs-mittweida.de

6th Matthias Vodel
Faculty Applied

Computer Sciences & Biosciences
Hochschule Mittweida

09648 Mittweida, Germany
vodel@hs-mittweida.de

Abstract—This paper presents a holistic approach for trans-
mitting arbitrary data to local Internet-of-Things (IoT) devices
using only public services in a zero-trust environment. The
approach features a variety of benefits, namely (i) eliminates
the need for service providers to deploy their own costly
infrastructure, (ii) enables the receiving device to operate without
an active network connection, (iii) ensures that the data can
be proven untampered on the IoT device itself, (iv) verifies
both the validity and recency of the information, (v) requires
low administrative and technical efforts, (vi) allows for wireless
data updates, including the timeliness of current information, by
any participant due to the zero-trust assumption. The described
methodology utilizes distinct features of Proof-of-Work (PoW)-
based programmable blockchain systems. This work will focus
on the usage of Ethereum Classic (ETC) as base layer for trust,
the validity and recency of the information.

The proposed approach has wide-ranging practical applica-
tions, including programmable, rule-based locking systems such
as smart locks used in corporate and institutional buildings, cars,
and hotels. It also facilitates other forms of access control, such
as ticket systems, health certificates, and proof-of-possession for
resources or achievements. Due to the zero-trust assumption,
data updates as well their recency can be updated by any
participant of the system.

Index Terms—Internet of Things, Security, Blockchain, Access
Control, Wireless Communication, Distributed Systems

I. INTRODUCTION

Security-relevant applications such as door locks, car locks
and various types of access control systems inherently rely
on very high levels of trust, information recency and service
availability. However, devices like locks are geographically
dispersed, power constrained and may lack network connec-
tivity. This work presents an infrastructure-less method for
securely and reliably transmitting arbitrary data to these con-
strained IoT devices. The method leverages features from pub-
lic Proof-of-Work-based blockchain systems, offering unique

advantages in terms of tamperproof data according to [1,
Tab. 1], timeliness of information and availability.

This paper will primarily focus on complex, physically
separated locking systems, that require updates whenever
access permissions are modified. Typical use cases include
car fleet administration, large institutions like universities, and
home rental services. For managing access in these contexts,
there are generally two approaches. The local administration,
although simple and well-understood, has its drawbacks. Phys-
ical keys can be lost or duplicated, giving unauthorized parties
access. Replacing a lock can be expensive1 23, particularly if
multiple locks are keyed alike. The manual distribution of keys
also poses logistical challenges, binds massive resources and
limits the complexity of access control protocols, i.e. time-
based constraints. Other access methods like pin pads share
similar limitations; their codes can easily be disseminated, and
altering them requires physical intervention.

Remote administration solutions, provided by various smart
lock systems like the August Door Lock Pro4 or the Nuki
Smart Lock5, address many drawbacks of local administration.
These systems commonly offer features like sharing access
rights and Bluetooth connectivity for lock operation. Products,
like the Nuki Smart Lock 3.0 Pro, support wireless commu-
nication for remote administration, whereas others require a
specialized bridge for network connectivity. Although these

1https://vizpin.com/blog/access-control-pricing/
2https://www.forbes.com/home-improvement/home-security/cost-to-hire-a

-locksmith/
3https://www.verbraucherzentrale.de/wissen/geld-versicherungen/weitere-v

ersicherungen/generalschluessel-verloren-drohende-kosten-bis-zum-preis-e
ines-kleinwagens-10679

4https://august.com/products/august-smart-lock-pro-connect
5https://nuki.io/de/

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 817

Key System
Mechanical Electronic Our Solution

Key
issuance
(min)

Adjustment
time

5− 15 1 1

Permission
distribution

30− 60J 1− 5J 1

Permissions
change
(min)

Change
time

5− 15R 1 1

Change
distribution

30− 60RJ 1− 5J 1

Key
retraction
(min)

Retract key 1 1 1
Retraction
distribution

30− 60RJ 1− 5J 1

Costs (C) Key 20− 90 < 300 < 300
Each lock 50− 150J 1J < 1

TABLE I: Comparison of different lock systems character-
istics. Efforts are measured in operator journeys J to each
individual lock as well as in replacement tasks R for specific
components.

systems generally offer a high level of security through data
encryption [2], they come with their own set of limitations.
Specifically, they require a working LAN-infrastructure and
vendor-specific services. These dependencies results in well-
known security risks, including potential vulnerabilities in the
vendor’s data storage and transmission models. Additionally,
such solutions are vulnerable to DDoS attacks [3], hence
impacting availability.

Further prototype approaches, for instance YPTOKEY6, are
using mobile devices as smart keys entities and demonstrate
the integration of blockchain features. Nevertheless, all of
these latest developments still require continuously network
uplinks in order to provide the services. This results in
problems for large scale or high security application scenarios.

Thus, we want to combine advantages of traditional, physi-
cal locking systems regarding cost-efficiency and compatibil-
ity with the flexibility and scalability of modern smart lock
systems

The proposed method addresses the shortcomings of ex-
isting Smart Lock systems by leveraging public Proof-of-
Work blockchains as a trust anchor. The public nodes that
constitute this blockchain network are globally distributed,
ensuring a highly available infrastructure that is to a con-
siderable extent inherently resistant to trivial DDoS attacks.
Owing to its consensus mechanism, the network is designed
to prevent the propagation of incorrect information, thereby
providing a trustless base layer as each participating node acts
like a ”watchtower”, continuously monitoring and validating
transactions.

The subsequent section will briefly discuss the essential
elements of blockchain technology required to understand the
proposed workflow. The following chapter will elaborate on
the concept in greater detail.

II. RELATED WORK & BACKGROUND

This section will briefly introduce the base building blocks,
taxonomy and components used in this work. The concepts

6https://www.yptokey.com/de

mentioned here are vital to understand the method itself.
The anchor of security is the blockchain technology which
became widely adopted as a decentralized and highly available
infrastructure. It provides both algorithmic and game-theoretic
measures to create a tamperproof record of stored data,
eliminating the need for trust in any specific service provider.
Accordingly, blockchain fits perfect to the properties adver-
tised. The technology was publicly introduced by Nakamoto
Satoshi [4] by introducing Bitcoin. Bitcoin is the most adapted
blockchain and supports some of the features needed for this
work. However, due to the missing general programmability,
Bitcoin is not sufficient to our approach. Hence, this work
will focus on Ethereum-based [5], [6] systems, specifically
Ethereum Classic (ETC). The relevant concepts are briefly
described as follows.

a) Ethereum Block Structure: At the core, a blockchain
consists of a growing data layer. The data is organized
in name-giving blocks. Each of the blocks represents an
update to the state of the blockchain and consists of several
fields [6]. For Ethereum, these include, among others, a
block number, a timestamp, a list of transactions,
a mix hash, a difficulty, a state root, the pre-
vious block hash parent and a random number denoted as
nonce. The latter is a reference to the previous block, making
the blocks an actual blockchain.

b) Blockchain: Ethereum Classic as a Mainline
Ethereum 2 compatible public blockchain and serves
as our foundational layer for this work. This includes
programmability using Smart Contracts, proofing the state of
the values at a given moment in time using Merkle Patricia
Proofs and being compatible to the Ethereum ecosystem,
while featuring an active network of participants. However,
due to its consensus mechanism it additionally allows for
offline capabilities, which cannot be achieved by most other
public blockchains.

c) Consensus: Blocks in a blockchain are generated
by network nodes. Each participating node can create new
blocks by including valid transactions in block data structure.
Specifically, in Proof-of-Work (PoW) consensus, the nodes
engage in a computationally expensive process called mining.
Essentially, this involves finding a random value for the
block’s nonce field, so that the hash h(block) satisfies certain
criteria enforced by the consensus protocol [6]. This value can
only be found by brute force. The PoW model is distinct from
other consensus models like Proof of Authority or Proof of
Stake [7], which rely on protocols for block generation which
lack the computational effort aspect.

d) Transactions: Transactions are state changing actions
which can be emitted by every user. They are used to transfer
tokens, deploy Smart Contracts or call functions thereof. A
transaction is propagated to the network and miners include
them into their blocks, which they are incentivized to by
tips. Transactions are needed in our method to update the
information state. Fig. 1 summarizes the process of transaction
emission, block generation and block appending.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

818

e) Fork: When two miners simultaneously discover new
blocks that both link to the same parent block, the
blockchain temporarily splits into multiple paths. Each block
represents computational work, and the path with the greatest
cumulative computational work will eventually be accepted
as the truth. Consequently, miners will continue to build upon
the longest chain, as measured by this computational effort,
thereby resolving the fork. The existence of forks dictates
some of the design decision of our method.

f) Smart Contract: A Smart Contract is a program
code that resides on the blockchain. The described method
will make use of Smart Contracts. Once deployed, a Smart
Contract has its own storage and can contain functions that
alter this internal state (i.e., memory). The functions can be
invoked by any network participant. The Smart Contract itself
is associated with an unique account itself, enabling it to
interact with other contracts and accounts as if it were an
individual participant on the network.

g) Account: Ethereum is a Account-based system. Each
Account is associated with its own address and balance.
Further, Smart Contract Accounts additionally contain fields
for their Code Hash (h(SmartContract)) and a field which
holds the root of the Storage Trie, which basically is
h(Storage). Thus, and account in Ethereum is made of the
following fields: address, balance, code hash, and storage
hash. Understanding that the storage hash is part of the
account data structure is crucial for understanding the method.

h) Merkle Patricia Tree: Merkle Patricia Trees (MPT) or
hash trees are a fundamental data structure used in Ethereums
storage system [9], [10]. They serve as a cornerstone for
proving the authenticity of data in the method described in
this paper. Essentially, an MPT is a tree-like data structure
where each leaf node contains a hash of some data stored in
the system. Inner nodes, on the other hand, contain hashes
of their child nodes. Ethereum employs MPTs in two key
instances: (i) for storing each smart contracts data, and (ii)
for storing hashes of all known accounts. The root hash of
the smart contract’s data is saved in its storage root, while
the hash of all account information is stored in the state root
field of a block. Thus, proving that a value exists in a given
block can be accomplished by providing the appropriate path

Fig. 1: Process of committing a transaction multiple blockchain
nodes, having nodes create blocks including the transaction and
eventually appending one valid block to the blockchain data structure
using the consensus mechanism. [8]

to the storage root of the smart contract and another path to
the state root of the block header. This mechanism, known as
Merkle Patricia Proof, is supported in most Ethereum clients
due to EIP-1186 [11].

i) Ethash: Ethash is the Proof-of-Work algorithm used
by Ethereum, based on the Dagger Hashimoto algorithm [6].
It is a memory-hard algorithm, designed to be resistant to
ASIC-based mining, requiring a substantial amount of RAM.
A notable feature of Ethash is its usage of a large, read-only
data structure. A smaller but crucial part of this structure,
known as the cache or light cache is necessary for verifying
the authenticity of a block. This cache evolves over time in a
predictable manner, allowing it to be precomputed and stored.
Currently, the cache is approximately 55 MB in size increases
slowly over time.

III. METHOD DESCRIPTION

In the following part, we will provide a detailed description
of the method, outlining each step, its implications, design
decisions, and prerequisites. The authors of this work are
involved in a project that applies this method to the context of
configurable door locks. To help clarify the method’s utility
and application, we will use the example of administering
access to commodities in an renting service.

a) Example Service ”Rent a Block”: Our hypothetical
rental service, Rent a Block (RaB), manages a fluctuating
number of properties. These properties are situated in a variety
of locations, some in well-connected urban areas and others in
more remote regions. Currently, most of these properties use
traditional physical keys, which are distributed by staff. Some
locations have adopted Smart Locks, but these come with their
own set of challenges, including the need for a stable internet
connection and being restricted to proprietary software and
cloud services.

The requirements for RaB are as follows:
• Door permissions must be updated frequently, at least

daily.
• Different parties—such as guests, cleaning services, and

housekeepers—may need to access a door at different
times.

• The system must allow for updates in locations where
Wi-Fi or cellular data may not be readily available.

• Administration should be streamlined and cost-effective,
allowing for simultaneous updates on multiple locks.

• In cases of misuse or error or changes in bookings,
permissions must be revocable in such a way that even a
malicious party cannot gain access after a revocation or
permission change has been issued.

Given these constraints, RaB is a suitable candidate for the
method proposed in this paper.

b) General Workflow: The chronological workflow of
the method with the roles [U]ser, [D]evice and [A]dministrator
in chronological order is as follows:
A: Initially: Creating and deploying a Smart Contract.
A: As needed: Updating data by invoking the Smart Con-

tract.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

819

U: Continuously: Retrieve blockchain blocks, off-chain data
if needed, and Merkle Proofs.

U: Automatically: Transmit required data to the [D]evice via
Bluetooth when within range.

D: Background: Process and verify transmitted data
U: Active: Send unlock request to device
D: Grant or deny access based on current permissions and

validity of transmitted data.
A graphical representation is given in Fig. 2. More details
about each step are described in the following part of this
chapter.

Fig. 2: Exemplary workflow illustrates the device management
setting the permission rules or similar as well as the Smart
Contracts. These are transmitted to a public accessible storage.
The user periodically download the data to present. If a device
is within proximity the data are transmitted by Bluetooth. In
case of a activity request from the user the lock is checking the
received Smart Contract and the permission rules. If rules and
identity are accepted, the requested action will be executed.

c) Step 1: Smart Contract: As for updating the permis-
sions, the door lock system needs a minimal Smart Contract:

c o n t r a c t RaB {
b y t e s 3 2 p u b l i c c u r r e n t c o n f i g ;
a d d r e s s p u b l i c owner ;
c o n s t r u c t o r () { owner = msg . s e n d e r ; }

f u n c t i o n u p d a t e (b y t e s 3 2 cn f g) p u b l i c {
r e q u i r e (msg . s e n d e r == owner) ;

c u r r e n t c o n f i g = cn fg ;
}

}
This prototype contract, written in Solidity, serves as a foun-
dational layer for permission management. Although very
simplistic, it’s functional and provides two crucial storage
variables: current_config and owner. Upon deploy-
ment, the constructor sets the contract’s owner to the
deployer’s address. This owner can later invoke the update
function to modify the stored configuration.

d) Off-chain storage: Given RaB’s requirements for
complex rules, large data structures are inevitable. The com-
pany decides for a simplistic, straightforward update scheme:

{"lock id 1": [{permission 1}, ...,
{permission N}],

"lock id N": [...], ...}

Due to the high storage costs on the blockchain, our Smart
Contract opts for a small 32-byte (bytes32) slot to store
just the hash of the lock configuration (h(configuration)).
Since the hash of the configuration is securely and immutably
anchored to the blockchain, the storage location of the actual
data structure can be flexible. This flexibility even enables the
use of untrusted or public storage solutions. Various storage
and sharing options are available, ranging from decentralized
systems like IPFS [12] and Torrent7, to centralized solutions
like FTP and HTTP.

For updating the configuration, the administrator has to emit
a transaction to the blockchain, to store the configuration hash
and transmit the actual data to one or more off-chain storages.
The execution model of the blockchain guarantees, that the
permission model, as described by the Smart Contract, will be
enforced. Note, that off-chain storage is an optional ingredient:
if the data are reasonable in size, it can directly be stored on
the blockchain.

e) Transferring data to the device: Assuming that the
device is generally offline, data transmission relies on user
intervention. The user’s device is responsible for regularly
fetching block headers from any node in the ETC network.
Public blockchain nodes are available, such as those listed on
Chainlist8. Further, commercial services like Infura9 provide
access to blockchain nodes. Preferably, the user’s device main-
tains a list of nodes as fallbacks. When within range of the
target device (i.e., the lock in our example), the most recently
acquired data is transferred using a radio communication
protocol such as Bluetooth.

f) Data verification on the target device: Despite the data
being transferred and stored via untrustworthy mediums, the
device can verify its integrity, validity, and timeliness offline,
without requiring internet access.

• The device checks the received block headers for validity.
This involves hashing the block header and executing

7https://www.bittorrent.com/btt/btt-docs/BitTorrent (BTT) White Paper
v0.8.7 Feb 2019.pdf

8https://chainlist.org/chain/61
9https://www.infura.io/

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

820

the Ethash / Etcash algorithm, using pre-computed light
caches read from a storage medium like an SD card.
The cache itself is uniquely determined by the block
header. By comparing the algorithm’s results with the
block’s mix hash and its difficulty field, the
device verifies that the block was generated using the
correct algorithm, confirms the data’s integrity (i.e. data
was not tampered with), and ensures the appropriate
amount of computational work was invested. After veri-
fying the block, the device should take note of the block’s
timestamp and number which are part of the block
header and verified in the described process. Due to the
potential for blockchain forks and attempts to bypass
these security measures using raw computational power,
it’s strongly advised to verify multiple consecutive block
headers.

• As block headers themselves do not carry any actual use
data on their own, Merkle Proofs are used to verify the
existence of a specific value in the blockchain. In our
running example, the user needs to prove that the given
permission set is indeed anchored in the blockchain at
the current time.

1) Verify the structure of the Merkle proof itself.
2) Verify the leaf (last node of the proof) contains the

expected value (here: h(configuration)).
3) Verify that the proof belongs to the correct Smart

Contract (i.e. Account Address).
4) Verify that the head of the proof matches the

state root of the block header.
As the block header has already been proven to be
valid and untampered with, the successful verification
of the Merkle Proof ensures that the corresponding
configuration is accurate and was indeed written into the
blockchain at the time indicated by the block’s times-
tamp. This dual-layered verification process provides a
robust mechanism for ensuring data integrity, authenticity
and timeliness. Importantly, even when the configuration
did not change, the user can prove this fact. Thus, not
only be proven that the data has changed, but also estab-
lish that it hasn’t changed without requiring additional
administrative effort. As a result, a malicious user cannot
falsely claim to have permission by withholding blocks,
if those permissions have actually been revoked.
g) Access Authorization: To gain access, the user sub-

mits an unlock request to the device. Since the configuration is
already verified, the device only needs to confirm the request’s
proper format and signature. Following this validation, the
device ascertains whether the user holds the requisite per-
missions under the current rule set. It’s crucial to employ
standard security protocols, such as Nonces or challenge-
response mechanisms, as well as timestamp verification to
prevent potential attacks like replay attacks.

IV. EVALUATION

We have undertaken a series of assessments involving both
theoretical analyses and first practical performance.

We used a Teensy 4.110 with an ARM Cortex-M7 processor
connected to a SDIO bus equipped with a San Disk Extreme
64GB (U3) SD-Card formatted with a extFat filesystem to
store the blockchain-cache. A commercially available motor
operated lock is connected by a custom protocol.

These tests were conducted to obtain a clear indication of
the effectiveness of our solution. Given that resources for data
transmission or IoT devices face very stringent limitations, the
focus of performance testing was directed towards this specific
domain.

For this purpose, we evaluated the hardware require-
ments for JSON-based ETC block headers (as generated by
Ethereum client software like geth11, which contain around
1200 characters when encoded as JSON key-value pairs.
Encoding as plain binary sequence reduces the data to 330
bytes per block header. Similarly, Merkle Proofs come with
an average proof-length of 10 to 12 elements with up to 1088
characters each. In binary representation, this can be reduced
to binary sequences of around 620 bytes totally.

Further, we conducted tests for verification times of block
headers on the test hardware yielded an average speed of
around 21 seconds per block. Notably, the read speed of the
SD card emerged as the constraining factor in this context.
This comes naturally totally due to the random access factor
imposed by the Ethash algorithm.

a) Verification Speed: The verification of a block header
necessitates approximately 32, 768 random read operations
from storage. When relying on an SD Card connected via
SDIO interfaces12 (like the described setup), a single ran-
dom read operation typically consumes between 0.5 and 2.0
milliseconds. This translates to a block header verification
time ranging from 16 to 65 seconds. The setup we employed
had an average read time of roughly 0.64 milliseconds per
operation when assuming the measured 21 seconds total block
verification time. Importantly, the security level of the whole
system is determined by the amount of blocks checked on
update time, as it becomes increasingly hard to fake valid
blocks. To illustrate, opting for a security level of 5 blocks
would render the device busy for about 1 minute and 45
seconds for verifying the blocks, which may or may not be
acceptable for certain use cases.q

There are, however, quicker alternatives. The microcon-
troller in use can be augmented with Flash RAM modules. A
random read operation from Flash RAM takes only about 100
microseconds, reducing the block header verification time to
approximately 3.3 seconds. However, one must additionally
consider the time to copy data from the SD Card to Flash
RAM, which, being a sequential operation, takes around 2.5
seconds. The total time for verifying n blocks would then be
2.5s + n × 3.3s (roughly 19 seconds for 5 blocks). When
employing DRAM, with its rapid random access speed of
about 10 to 20 nanoseconds, the block verification time could

10https://www.pjrc.com/store/teensy41.html
11https://geth.ethereum.org
12https://www.pjrc.com/store/teensy41.html

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

821

shrink to between 0.32 and 0.64 seconds. For 5 blocks, this
results in a total time of approximately 2 to 4.1 seconds,
including data copy times, as shown in Figure 3.

With the use of RAM, the speed can be improved signifi-
cantly, since the data can be loaded from the SD card in one
read operation and then the operations from the ram can be
performed quickly.

V. CONCLUSION AND FUTURE WORK

This study introduces a blockchain-based, universal al-
gorithm for the tamperproof transmission of arbitrary data.
Importantly, the entire process leverages highly available and
fail-safe public infrastructure. Using a Proof-of-Work-based
blockchain like Ethereum Classic enables offline verification
of block headers, thanks to the significant computational effort
required to forge a block. This unique feature sets our method
apart from other energy-intensive approaches that rely on
an active internet connection. By utilizing Ethereum-specific
features, notably Merkle Patricia Proofs, we demonstrated
that the existence of specific data on the blockchain can be
verified. Additionally, we showed that it’s possible to prove
the unaltered state of data without administrative effort.

A prototypical implementation of the proposed method has
been developed and successfully tested on a small micro-
controller suitable for Internet of Things applications. Initial
assessments of computational time and memory constraints
have been conducted. Despite these advances, there is still
considerable scope for future research. One avenue for further
investigation lies in the system’s adjustable parameters, such
as the number of consecutive blocks required for verification
or the acceptable time frame for the last verified block. These
factors could be security-relevant and may need adjustment
depending on the specific use case. Exploring the applicability
of this method across various use cases is a promising path

1 3 5 10

0

50

100

150

200

Number of Block Headers

Ti
m

e
(S

ec
on

ds
)

SDCard Flash DRAM

Fig. 3: Verification times in seconds for n = [1, 3, 5, 10] block
headers using different memory setups.

for future work. This could involve the development and
testing of frameworks to perform the requisite operations.
Additional hardware testing, aimed at reducing resource and
time consumption, represents another crucial area of focus.
In particular, the development of energy-efficient computation
and memory solutions could be significant.

Another design choice worth examining is the selection
of Ethereum Classic as the base layer. While it serves the
purpose of this work, other platforms may also provide the
necessary components for establishing a trustless infrastruc-
ture. Investigative work in this area could expand the range of
technological options available. Beyond technology-related re-
search, another important direction involves improving public
perception of blockchain technology as a whole. This could
be achieved by developing useful applications that leverage
blockchain to solve real-world problems.

ACKNOWLEDGMENT

This work was partially accomplished within the project
Chainlock - Blockchain-gestützte, smarte Schließanlagen
(funding code 03WIR1321A) funded by the Federal Ministry
of Education and Research (BMBF, Germany).

REFERENCES

[1] R. Chaganti, R. V. Boppana, V. Ravi, K. Munir, M. Almutairi, F. Rustam,
E. Lee, and I. Ashraf, “A comprehensive review of denial of service
attacks in blockchain ecosystem and open challenges,” IEEE Access,
vol. 10, pp. 96 538–96 555, 2022.

[2] C. Caballero-Gil, R. Álvarez, C. Hernández-Goya, and J. Molina-Gil,
“Research on smart-locks cybersecurity and vulnerabilities,” Wireless
Networks, May 2023. [Online]. Available: https://doi.org/10.1007/s112
76-023-03376-8

[3] B. Asad and N. Saxena, “On the feasibility of dos attack on smart door
lock iot network,” in Security in Computing and Communications, S. M.
Thampi, G. Wang, D. B. Rawat, R. Ko, and C.-I. Fan, Eds. Singapore:
Springer Singapore, 2021, pp. 123–138.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 03
2009. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[5] V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform,” 2014, accessed: 2023-08-29.
[Online]. Available: https://ethereum.org/en/whitepaper/

[6] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1–32, 2014.

[7] J. Xu, C. Wang, and X. Jia, “A survey of blockchain consensus
protocols,” ACM Computing Surveys, 2023.

[8] R. Manthey, R. Vogel, F. Schmidsberger, M. Baumgart, C. Roschke,
M. Ritter, and M. Vodel, “Blockchain based social commitment -secure
& reliable web services,” in International Workshop on Metrology for
Living Environment (MetroLivEn). New York, NY, USA: IEEE, 07
2022, pp. 101–104.

[9] H. S. de Ocáriz Borde, “An overview of trees in blockchain technology:
Merkle trees and merkle patricia tries,” 2022.

[10] H. Liu, X. Luo, H. Liu, and X. Xia, “Merkle tree: A fundamental
component of blockchains,” in 2021 International Conference on Elec-
tronic Information Engineering and Computer Science (EIECS), 2021,
pp. 556–561.

[11] S. Jentzsch and C. Jentzsch. (2018, June) Eip-1186: Rpc-method to
get merkle proofs - eth getproof [draft]. [Online serial]. [Online].
Available: https://eips.ethereum.org/EIPS/eip-1186

[12] E. Daniel and F. Tschorsch, “Ipfs and friends: A qualitative comparison
of next generation peer-to-peer data networks,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 1, pp. 31–52, 2022.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

822

