
Hydra: A Scalable Decentralized P2P Storage
Federation for Large Scientific Datasets

Justin Presley**, Xi Wang**, Xusheng Ai†, Tianyuan Yu§, Tym Brandel*, Proyash Podder‡,
Varun Patil§, Alex Afanasyev‡, F. Alex Feltus†, Lixia Zhang§, Susmit Shannigrahi*

*Tennessee Tech
†Clemson University

‡Florida International University
§UCLA

Abstract—An increasingly collaborative and distributed na-
ture of scientific collaborations, along with the exploding volume
and variety of datasets point to an urgent need for data publica-
tion frameworks that allow researchers to publish data rapidly
and reliably. However, current scientific data publication solutions
only support any one of these requirements at a time. Currently,
the most common data publication models are either centralized
or ad-hoc. While the centralized model (e.g., publishing via a
repository controlled by a central organization) can provide
reliability through replication, the publication speed tends to
be slower due to the inevitable curation and processing delays.
Further, such centralized models may place restrictions regarding
what data can be published through them. On the contrary, ad-
hoc models lead to concerns such as the lack of replication and
a robust security model.

We present Hydra, a peer-to-peer, decentralized storage sys-
tem that enables decentralized and reliable data publication
capabilities. Hydra enables collaborating organizations to create
a loosely interconnected and federated storage overlay atop
community provided storage servers. The Hydra overlay is
entirely decentralized. Hydra enables secure publication and
access to data from anywhere and ensures automatic replication
of published data, enhancing availability and reliability. Hydra
also makes replication decisions without a central controller while
accommodating local policies. Hydra embodies a significant stride
toward next-generation scientific data management, fostering
a decentralized, reliable, and accessible system that fits the
changing landscape of scientific collaborations.

I. INTRODUCTION

Several scientific communities, such as genomics, climate
science, and high-energy particle physics, are increasingly fo-
cusing on data-driven science. Advancements in computational
capabilities, higher-resolution sensing devices, and state-of-
the-art data processing facilities collectively contribute to an
exponential increase in the volume and diversity of generated
datasets. Concurrently, scientific research architecture is trans-
forming from a predominantly centralized model to a more
globalized and decentralized paradigm. Within this evolving
context, scientific collaborations are becoming increasingly ad-
hoc and peer-to-peer in nature [2].

Unfortunately, the current data publication and access
models do not match this evolving paradigm. In the current
scientific landscape, datasets are often distributed through
centralized repositories, limiting the pace of data publica-
tion and imposing restrictions on the types and volumes of

**These authors contributed equally to this manuscript

datasets that can be made publicly available. Such a centralized
model introduces several additional technical challenges [4].
A centralized controller in this model not only serves as a
single point of failure, compromising system resilience and
data integrity, but also lacks adaptability to network partitions
or congestion, disrupting operational continuity. Furthermore,
this centralized approach consolidates all security and access
control responsibilities at the central controller, introducing
potential bottlenecks and heightened security risks.

These restrictions often lead researchers to use ad-hoc
repositories. However, these repositories lack critical features
like automated data replication, fault tolerance, standard pub-
lication and access APIs, and robust search capabilities. This
limitation hinders data reliability and accessibility, contributing
to the overall data management problem in scientific research.

To address these challenges, we introduce Hydra, a soft-
ware framework for building decentralized, peer-to-peer stor-
age federations using community-provided servers. Hydra es-
tablishes this federation and eliminates the need for a cen-
tral controller by leveraging the primitives of Named Data
Networking (NDN) [12]. Hydra enhances resiliency through
automated data replication while providing individual nodes
with complete control over what types of data they store.
This control, exercised using the Favor parameter, guide data
replication decisions. Hydra also integrates automated recovery
from node failures. Hydra establishes a robust data federation
that improves data publication, access, and compliance with
the FAIR [9] principles – Findability, Accessibility, Interoper-
ability, and Reusability.

The primary contributions of this work are as follows: (a)
we describe the building blocks and system architecture needed
to build a secure decentralized storage federation; (b) we
discuss our experiences in a proof-of-concept implementation,
preliminary deployment, and evaluations; (c) we discuss how
the system benefits science workflows in the context of data
publication, access, and FAIR principles.

II. SYSTEM OVERVIEW

The Hydra framework solves the problems of data pub-
lication and reliable access by creating a federation of ge-
ographically distributed data repositories directly connected.
The high-level data and control flow of Hydra are illustrated in
Fig. 1. Hydra’s architectural blueprint comprises two principal
components:

1) Storage nodes Hydra stores data on a set of storage
nodes provided by members of the federation, which may

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 810

NOC
Data Flow
Control Flow

Data
Storage

Publisher

Users

Sync Protocol

Node

Node

Node

Node

Synchronized State

Command

P2P
ReplicationData

Ingestion
Data

Access

Heartbeat
State updates

Fig. 1: Hydra’s system overview

be organizations or individual researchers. These nodes
form a peer-to-peer federation and handle all functions
of data publication, access, and replication. At the same
time, operators of individual nodes retain autonomy over
the nodes they control; they may define storage-level
policies and exercise control over the datasets replicated
to their nodes. Nodes may also freely join and leave the
federation at any time.

2) Network Operations Center The Hydra NOC assumes
the critical role of disseminating certificates, thus es-
tablishing and maintaining trust relationships among the
nodes and users in the federation. Note that the NOC’s
role is limited to certificate distribution, and it does not
exercise any other control over the Hydra infrastructure.
The NOC can also be replicated for resiliency. As a result,
the NOC is not a single point of failure in a running Hydra
federation.

The Hydra federation operates as a fully distributed system.
Achieving consensus among multiple nodes in such a system
can be computationally expensive. Hydra mitigates this chal-
lenge by maintaining a synchronized state across nodes using
an existing publish-subscribe framework implemented over
NDN [6]. This approach eliminates the need for consensus-
building during data insertion and replication.

The distinguishing feature of Hydra is the usage of a
semantic name on each piece of data. Through the utilization
of name-based APIs and anycast routing via Named Data
Networking (NDN), Hydra enables the “publication and access
from anywhere” of data. Hydra eliminates the conventional
methodology of providing end-user data locations. Instead,
it uses names as the primary identifier for objects stored
within the system. These names are used for all object-
related operations, including publication, access, replication,
and security and data validation.

In summary, the design of the Hydra framework inherently
supports decentralization in multiple ways [3]. First, the Net-
work Operations Center (NOC) focuses exclusively on the dis-
semination of certificates, establishing trust without exercising
additional control over the infrastructure. Second, the peer-to-
peer federation of storage nodes under the Hydra framework
offers member organizations complete operational autonomy,
allowing them to set their own storage-level policies. Finally,
Hydra leverages Named Data Networking (NDN) and name-
based APIs to eliminate the need for data locations, further
advancing its decentralized architecture.

III.ARCHITECTURAL PIECES

This section discusses the architectural pieces needed to
create this peer-to-peer storage server federation. Fig. 2 shows
these building blocks. It also shows the necessary interactions
between these pieces that we describe later in Section IV.

UCLA Repo

Global View Storage

Heartbeats

Sync
Updates

3
Trust schema based

Access control +
Retrieve File +

Update Global View

4

Generate
Updates

5

6 Receive
Updates

7

Update Global
View +

Replicate File

2

Publish File
(Anycast) Certificates

TTU Repo

Global View Storage

Heartbeats Certificates

FIU Repo

Global View Storage

Heartbeats Certificates

Hydra NOC
0

NOC distributes
user and Node

certificates
(out-of-band)

User A

Request File
(Anycast)

8

Publisher A

1 Publisher
signs/encrypts

File

Trust schema based
Access control

Periodically
Generate Heartbeat

Updates

Fig. 2: A high-level overview of Hydra [5]

A. Base Communication Infrastructure

Underlying Infrastructure: The Hydra federation com-
prises storage endpoints, known as “Hydra nodes.” These
nodes must have network connectivity among themselves,
which can be either through TCP/IP over Layer 3 or directly
atop Ethernet at Layer 2. Hydra employs Named Data Net-
working (NDN) as the transport layer on these underlying
connectivity layers. When nodes use TCP/IP, NDN operates as
an overlay. If nodes connect at Layer 2, such as over VLANs,
the NDN transport protocol runs directly over this underlay
without needing TCP/IP. We have based these networking
configurations on well-documented methods already used in
both local and wide-area NDN testbeds [11], so we do not
repeat those steps here. To participate in this federation,
each node must establish a Hydra endpoint by installing the
requisite Hydra software and subsequently joining an NDN-
based publish-subscribe group [6] among the nodes.

NDN-based anycast: NDN’s anycast functionality plays a
pivotal role in directing both data publication and consumption
requests to appropriate nodes in a Hydra federation. Anycast
in NDN is particularly effective because it enables a single
name or identifier to map multiple endpoints natively. When
a data publisher or consumer initiates a request, the NDN
anycast mechanism assesses the network topology and routes
the request to the most suitable or nearest node in the Hydra
federation. This is particularly beneficial for data publishers
because it allows them to upload their data to the closest or
most efficient storage node, optimizing resource utilization and
reducing latency. Similarly, data consumers can retrieve data
from the most convenient location, which could be determined
by proximity, load, or even the cost associated with data
retrieval.

Forwarding hints In NDN, forwarding hints are additional
information attached to Interest packets, guiding them through
specified forwarding paths, potentially bypassing the default
routing protocols. In the context of Hydra, forwarding hints are
used to redirect a request to a specific node when a contacted
node does not have a particular piece of data.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

811

B. Security Primitives

This section describes the security building blocks neces-
sary for Hydra’s function.

Node Bootstrapping: In the Hydra ecosystem, each par-
ticipating node undertakes a security bootstrapping process
to acquire essential components for subsequent secure com-
munications, including a trust anchor, NDN certificate, and
trust schema, so that Hydra nodes can sign and validate NDN
packets securely. The node bootstrapping process includes
achieving mutual authentication between NOC and new node,
installing trust anchor and certificate from Hydra software
package, getting name assignment, and request certificate from
the NOC using the NDNCERT protocol [13]. Provided that
the NOC successfully validates the new node’s credentials and
verifies the node’s eligibility to join the federation, a certificate
is issued. The node uses this certificate to sign all subsequent
messages.

Publisher Bootstrapping: In the Hydra ecosystem, pub-
lishers – those who can manipulate files – undergo a se-
curity bootstrapping process. Distinct from node bootstrap-
ping, user trust establishment has some specificities. First,
an email address serves as a publisher’s verifiable identifier,
authenticated through OAuth mechanisms like campus-based
or Google accounts. The NOC keeps an internal database
mapping email address authorized to publish datasets. This
database relies on pre-existing real-world relationships, such as
those between Principal Investigators (PIs) and their students.
Second, publishers can only modify namespaces for which
they possess the requisite certificates. For example, a publisher
who publishes data under the namespace “/human/genome
/dna/hg38” could perform file operations under that specific
namespace. After this initial setup, the remaining bootstrapping
process becomes automated. When a publisher requests a cer-
tificate for a particular namespace, the NOC cross-references
its database to validate the request. A certificate is issued
upon successful verification, enabling the publisher to conduct
secure operations within the Hydra system. Hydra currently
supports public data publication, meaning only publishers (and
not consumers) need to undergo this bootstrapping process.

C. Decentralized control plane

The decentralized control plane serves as the backbone
of Hydra’s peer-to-peer federation. At its core, the control
plane comprises two essential elements: a synchronized state,
known as the “global view,” and a distributed decision-making
framework. These components collaboratively enable robust,
decentralized governance within the Hydra federation.

Synchronized State or Global View: In Hydra, the
“Global View” serves as a local database for each node,
capturing a comprehensive snapshot of the system’s state.
Contrary to its name, the Global View is not stored in a
universally accessible location; each node maintains its own
version. Throughout the system’s operation, nodes synchronize
their local Global Views by continuously exchanging group
messages.

Integral to the Global View is the concept of the “State Vec-
tor” [6]. The State Vector signifies a sequence of messages with

monotonically increasing sequence numbers assimilated into
the Global View, thereby serving as an index for understanding
its current state and reconciling any state differences. The
Global View encapsulates a variety of information, including
details of all participating nodes and specifics of each file. For
each file, the Global View identifies the nodes currently pos-
sessing the file and those eligible for backup responsibilities.
It also includes metadata like file size, origin node, number of
copies, and other attributes.

Distributed decision making using “Favor”: In Hydra’s
federated architecture, which spans multiple organizations, the
diversity and dynamism of node conditions present unique
challenges. Notably, these nodes vary in hardware, storage,
bandwidth, and security protocols, all subject to rapid changes.
Complicating matters further is the existence of differing
administrative domains, making enforcing uniform policies
across the federation difficult. Consequently, efficient data
replication becomes a multi-optimization problem involving
several conflicting constraints such as storage availability,
bandwidth, and cost.

To address these complexities, Hydra introduces a mech-
anism known as “Favor.” Each node measures and calculates
the Favor number based on its local conditions and replication
preferences, encompassing factors like storage availability, net-
work conditions, and data popularity as a composite numeric
value. Specifically, nodes with the highest Favor values become
the candidates for replicating files that currently fall below
their desired degree of replication.

The current Favor calculation uses a weighted formula of
three factors – available storage capacity, network bandwidth,
and disk read/write speed. However, other more advanced ap-
proaches, such as using a multi-objective genetic algorithm to
optimize conflicting constraints like storage capacity, network
costs, and replication time is also possible [8]. Post-replication,
nodes can update their Favor scores to reflect new conditions,
such as changes in available storage capacity.

By incorporating Favor, Hydra successfully navigates the
challenges arising from node diversity and dynamic conditions.
It allows for tailored replication strategies, efficiently allocates
resources, and accommodates individual nodes’ unique prefer-
ences and policies within the federation.

D. Named Content and Service Endpoints

Named Content: In Hydra, the system adopts a publisher-
centric approach to naming datasets, offering high flexibility
and community-specific customization. For instance, in the
field of genomics, it is entirely feasible for the naming to
align with the well-established taxonomical structures such as
the tree of life [10]. Such a name might look like “/human
/genome/dna/hg38”. Hydra uses these names for all data-
related operations such as publication, replication, and access.

Named Services: In Hydra, the architecture employs a
streamlined set of named service endpoints, including content
publication, deletion, and retrieval. Hydra commonly uses a
generic prefix for commands generated by publishers, such
as Insert and Delete, and internal communications within the
Hydra federation. For example, Hydra could select the prefix
“/Hydra” or “/genomics”. In the first case, data insertion

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

812

and deletion namespaces can be “/Hydra/insert” or “/Hydra
/delete”. For internal communications, Hydra uses specific
namespaces such as “/Hydra/group-messages” and “/Hydra
/heartbeat” to distribute group messages and heartbeats to
all nodes participating in the federation.

IV.HYDRA OPERATIONS

This section discusses the operational aspects of the Hydra
federation, elaborating on how Hydra builds services using the
building blocks as shown in Fig. 2. Specifically, we discuss
the construction and maintenance of a federation, node failure
detection and recovery, and procedures for data insertion,
automated replication, and data retrieval.

A. Building and maintaining a federation

The Hydra federation structure relies on a multi-step estab-
lishment and ongoing maintenance process. Initially, each node
undergoes a node bootstrapping phase where it installs the
requisite Hydra software and acquires security credentials (i.e.,
a digital certificate) from the NOC. This ensures secure and
authenticated interactions within the federated environment.

Post-bootstrapping, nodes join the Hydra pub-sub names-
pace that is built using SVS [6]. This connection enables nodes
to exchange messages between themselves, including heartbeat
and update messages. Heartbeat messages are multicast peri-
odically over the pub-sub namespace (e.g., “/Hydra”). They
also exchange all update messages over this namespace.

Each node creates and maintains a local database (a.k.a.,
the Global View) representing its perspective of the federa-
tion. This database includes information about other nodes,
file attributes, and other metadata. The local databases are
synchronized across nodes to achieve a unified state across
the federation. When this state changes, nodes send an update,
and the other nodes authenticate and apply it to their global
views. Hydra assumes an eventual consistency among the
global views of the participating nodes.

B. Failure detection and recovery

Heartbeat messages serve as the built-in failure detection
mechanism. A failure mode triggers when a node misses
three consecutive heartbeats, initiating the recovery protocol.
During recovery, each node identifies files needing replication,
especially those from the failed node, guided by the global
“Favor” metric. If a node ranks highest, it begins replication.

Upon recovery, the node resumes heartbeats while other
nodes do not take immediate corrective action. Instead, the
reactivated node listens for incoming group messages and
updates the ones it missed. If any state data survived, the node
calculates the state difference, requesting missing data from
other nodes. If no prior state data exists, the node joins as new,
updating its state accordingly. This design ensures functional
data retrieval during individual node failures as long as one
operational node remains in the federation.

C. Data Insertion and Deletion

Within the Hydra framework, both data insertion and
deletion follow a secure procedure. When a publisher wants

to insert data, the process is initiated by the publisher making
contact with a Hydra node. The user sends an Interest and
NDN routing brings this Interest to a Hydra node. Concur-
rently, the user prepares the data for download and listens on
a designated data publication namespace. Upon authenticating
the user as a legitimate publisher, the node downloads the
user’s prepared data, completing the insertion and notifies the
user and other federation nodes about the new file.

For data deletion, the original publisher contacts a Hydra
node. The node authenticates and processes the deletion com-
mand. If the file exists locally, the node deletes it and updates
its local state, subsequently disseminating a group message to
inform the federation. If the file does not exist on the local
storage, the node will still update its local state and issue a
federation-wide group message, indicating that the file is to be
deleted. The Hydra framework operates under the assumption
of eventual consistency, ensuring that even if a group message
is lost, the system will eventually detect the discrepancy and
execute the file deletion.

D. Automated replication

In Hydra’s distributed storage framework, data replication
is essential for high availability, durability, and efficient data
distribution across a geographically dispersed federation of
nodes. Replication occurs automatically when a new file is
ingested or an existing node fails. On ingestion of a file, a node
broadcasts a group message. Other nodes check the replication
status of this file, and if below a threshold (the default is three
replicas), nodes with the highest Favor lead replication.

Hydra’s unique feature is its decentralized approach. Unlike
systems like Cassandra with centralized coordination, Hydra
shares Favor values among nodes, enabling each to self-
identify if they need to participate in replication tasks. Nodes
express intent to replicate via group messages. In summary,
Hydra’s replication is adaptable and resilient. It optimizes data
distribution across the federation using decentralized decision-
making and dynamic Favor metrics.

E. Data retrieval

In the Hydra framework, any node is capable of handling
a user’s file retrieval requests, irrespective of whether the node
physically stores the file in question or not. To retrieve a file, a
user dispatches an Interest bearing the file’s name, adhering to
the naming schema “/human/genome/dna/hg38”. Subsequent
to this action, three possible scenarios may occur: (a) Should
the file not exist within the Hydra ecosystem, the system
returns a Negative Acknowledgement (NACK) to the user;
(b) If the file is indeed present on the node that was initially
contacted, the data corresponding to the Interest is directly
returned to the user; (c) In the event that the file exists within
the Hydra system but is not on the node first contacted, that
node responds with a “Forwarding Hint” that directs the user
to another node where the file is stored. The user issues a
new series of Interests with this Forwarding Hint that are then
channeled via the NDN forwarding mechanism, independent of
Hydra, to the node actually containing the data. This initiates
a standard Interest/Data exchange procedure for file retrieval.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

813

Fig. 3: Hydra topology on FABRIC[5]

V. TRIAL DEPLOYMENT AND EVALUATION

This section describes our preliminary deployment of Hy-
dra on the FABRIC testbed [1]. The primary objective of this
deployment is to assess the control plane of Hydra, thereby
shedding light on the ramifications of our design choices. As
depicted in Fig. 3, our initial setup comprises provisioned
nodes on FABRIC, with one node designated as a client and
the remainder as Hydra nodes. The Network Operations Center
(NOC) is external to FABRIC and not displayed in the figure.

We elected to employ five nodes to showcase Hydra’s
capabilities preliminarily; four nodes serve as the minimal
requisite for replication (the default degree of replication is 3),
with an additional node functioning as the client. Each Hydra
node had 2 CPU cores, 8 GB RAM, and 20 GB SSD storage.
A Layer 2 network was established among these nodes, as
represented in Fig. 3.

A. Evaluation

It is important to note that as an initial proof-of-concept,
our goal was to demonstrate Hydra’s capabilities rather than
directly compare to other systems.

State Overhead: This experiment evaluates the storage
requirements for the local state in Hydra nodes. As Fig. 4
shows, in the initial configuration with 5 nodes and no files, the
total state consumed was 32KB, with only 30 bytes attributed
to node names. Upon uploading 1,000 files, the total state
per node increased to approximately 250KB, of which about
70KB was dedicated to both node and file names. The results
suggest that local state requirements in Hydra are relatively
low but are subject to increase with longer name lengths.
For example, using scientific data names averaging 120-130
characters would add an estimated 130KB to the total state for
1,000 files, resulting in an overall state size of approximately
500KB, which is still small.

Communication Overhead: The lack of a global con-
troller or shared state comes with additional communication
overhead. We measure the number of Interests and Data
packets over time to quantify this overhead. The messages in
this measurement include sync messages, heartbeat messages,
and prefix registration and management. Fig. 5 illustrates this
communication overhead, revealing that background Interest/-
Data exchanges typically generate fewer than 100 Interests and
tens of Data packets. However, this overhead is contingent
on the number of events within the federation. With 5 Hydra
nodes, the packet count escalates to nearly 4,000 Interests

and 1,300 Data packets within an hour. To contextualize this,
NDN’s default packet size is 8800 Bytes, equating to an
additional 35MB of network traffic over one hour.

In this experiment, we make several interesting obser-
vations. Firstly, there is a disparity between the number of
Interests and Data packets. Sync Interests inform nodes of state
changes, operating autonomously and remaining unacknowl-
edged, thus not generating Data packets. Fig. 5 also highlights
the relatively small scale of the overall state exchange.

Publication Overhead: Since publication in Hydra trig-
gers update messages to the federation, we looked at the
overhead of publication as Fig. 6 shows. We start counting the
packets when a file is ingested, and an announcement goes
out to the federation. The counting stops when replication
decisions are made, and the messages confirming the repli-
cation decision go out. For 25 file insertions over a 10-minute
timespan, we noticed an additional 1,400 Interests. The per-file
insertion overhead is approximately 25 Interests, including the
insertion command to Hydra, Sync Interests, and background
traffic. Note that we are measuring the control overhead here,
not the actual data overhead. The data overhead is equal to the
number of replications.

Replication decision: In Hydra, the default degree of repli-
cation is 3. Hydra uses either new file insertion or node failure
to trigger replication. This experiment quantifies how long it
takes to make these replicate decisions. In this experiment,
we measured the time between detecting a new file (or a
node failure) and the time for the other two nodes to make
the replication decision. In our experiment, after the group
message went out to the nodes announcing a new file, it took
the first node 8.344±14.40 milliseconds to start replicating
the content. The second node needed 38.404±13.24 ms to
start replication. The exact time to start replication depends on
factors such as distance to the original node, congestion, and
node load, but we observe that replication starts very quickly
under normal operating conditions.

Node joining and failure detection: In Hydra, a heartbeat
message goes out to the federation once a new node joins. On
the other hand, node failures are detected through the lack of
heartbeats. In this test, we added nodes to the federation to
quantify the time it takes to get the node to join it. We also
randomly failed nodes to quantify how long the other nodes
took to detect the failure.

We found after ten runs that the time for a new node to join
the federation is 55.428±0.238 seconds. Note that this time
varies based on when the heartbeat goes out to the group. Each
node sends out a heartbeat every 15 seconds. Each node also
waits for three heartbeats before updating the local state. The
total time includes three heartbeats, time to register prefixes,
and start up the Hydra software framework. Failure detection
takes longer by design. In our experiments, after ten runs, we
found the average failure detection time was 94.608± 5.38
seconds. The failure detection routine in Hydra runs every
30 seconds to accommodate any possible delay affecting the
heartbeat. The total time here includes three heartbeat detection
cycles and time to process the failure.

Distributed decision making: We mentioned previously
how Hydra nodes make replication decisions based on the

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

814

Number of Files

S
iz

e
in

 B
yt

es
 P

er
 N

od
e

0

50000

100000

150000

200000

250000

0 1 10 100 500 1000

Total State Names Only

Fig. 4: State size vs. Number of Files
Published

Time in Minutes

N
um

be
r o

f P
ac

ke
ts

0

1000

2000

3000

4000

5000

1 10 25 45 60

hydra interests hydra data nfd interests nfd data

Fig. 5: Network Overhead of Hydrawith-
out any Client Interaction

Number of Files Published in a 10 Minute Span

N
um

be
r o

f P
ac

ke
ts

0

500

1000

1500

0 1 5 10 25

NDN Interests NDN Data

Fig. 6: Network Overhead of Hydrawith
Client Interaction

Fig. 7: Favor calculation Time

Favor parameter. This experiment aimed to evaluate the ex-
ecution times of the Favor calculation process using different
numbers of nodes (5 and 10) under a bandwidth constraint of
100 Gbps. The process involved calculating the Favor using
a greedy algorithm for establishing the replication order and
calculating multi-objective optimization. Fig. 7 shows the time
required for Favor calculation for replicating 1, 5, 10, 20, 50,
and 100 files. For both 5 and 10 nodes, the execution times
remain relatively stable as the number of files increases. Note
that this value is calculated and stored separately in Global
View and does not affect Hydra’s operation.

VI.DISCUSSIONS AND LESSONS LEARNED

Advancing FAIR Principles through Secure Decentral-
ization: In light of the technical specifications described in
the earlier sections, we examine the implications of Hydra’s
architecture for scientific workflows, particularly in terms of
data publication, access, and adherence to FAIR [9] principles
(Findability, Accessibility, Interoperability, and Reusability).

Data Publication and Findability: Traditional centralized
solutions for data storage and retrieval often constrain data
publication to specific locations. In such scenarios, the find-
ability of data largely depends on metadata that is centrally
managed. Hydra’s decentralized architecture, in contrast, lib-
erates data from being tied to specific physical locations.
This is achieved through name-based data retrieval. Named
data becomes an integral identifier, making the data findable
irrespective of its storage location, thereby advancing the first
aspect of FAIR principles, i.e., Findability.

Data Access and Accessibility: Hydra’s use of name-
based access mechanisms extends considerable benefits in data
access. The stateful network transport and in-network caching
allow for efficient data retrieval without putting undue load on
individual nodes. This has significant implications for scientific
workflows, where large data sets are often accessed by multiple

users. Such a system design directly addresses the second
aspect of FAIR principles, which is Accessibility.

Interoperability and Reusability: Hydra’s decentralized ar-
chitecture promotes data interoperability and reusability. By
utilizing data names for all operations, Hydra ensures that
data formats and structures are transparent and interoperable.
Moreover, the direct signing of data by the producer in Hydra
ensures data integrity and enables content from anywhere,
making it easier for researchers to reuse the data. These mech-
anisms directly align with the Interoperability and Reusability
aspects of the FAIR principles.

Security and Provenance in Decentralized Scientific Work-
flows: Hydra’s decentralized trust model boosts security by
letting users set their trust anchors. It also supports publisher
authentication for secure data management, reducing central
authority bottlenecks and ensuring data integrity. This aligns
with FAIR data principles in a secure framework.

Scalability and Resiliency in Scientific Workflows: Hydra is
designed to be both scalable and resilient, two features crucial
for scientific workflows. The decentralized architecture allows
the system to scale horizontally, accommodating an increasing
number of nodes and data requests. On the resiliency front,
the decentralized data sharing and lack of central control
eliminates single points of failure, thus ensuring uninterrupted
data availability even when certain nodes are unavailable.

Limitations and Implications of Eventual Consistency
in Hydra: In this section, we lay out some limitations of the
Hydra system. First, Hydra assumes a federation of organi-
zations has some knowledge of which nodes and users can
join the Hydra federation. This knowledge (DNS names for
nodes and email addresses of users) is built into the NOC.As
mentioned earlier, the NOC’s role is limited to certificate
distribution, and it does not exercise any other control over
the Hydra infrastructure. As such, the NOC is not a single
point of failure in a Hydra federation.

Second, we also assume Hydra publishes publicly available
open data. We are working on building an access control model
for the consumers but this is not yet integrated with the system.

Third, Hydra operates under an eventual consistency
model, implying that data replication and state synchronization
occur on a best-effort basis rather than in real time. The impli-
cations of this model are twofold. Firstly, regarding data inser-
tion and replication, any delays in the ingestion notification can
result in file replication remaining below the preferred degree.
Nevertheless, the file becomes accessible to consumers once

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

815

the global view is synchronized. Fig. 5 illustrates that this state
exchange is typically minimal, suggesting that synchronization
should be quick under normal operational conditions. In the
event of congestion or network partition, an unsynchronized
state can lead to the ingested file remaining inaccessible and
unreplicated until state synchronization.

Lastly, we have yet to comprehensively grasp the ramifica-
tions of autonomous replication decisions on the entire system.
Can a scenario arise in which a file remains unreplicated not
because of resource constraints but rather due to policy limi-
tations? If such a situation does exist, how should we address
it? We are currently exploring answers to these questions.

VII.RELATED WORK

There have been several attempts to create distributed
data repositories in the past, and some of these have been
successfully deployed. Popular distributed databases such as
Cassandra, Bigtable, and Dynamo [7] and other similar solu-
tions can store large amounts of data and perform replication
functions. These systems are tightly coupled, generally require
significant manual configuration and maintenance, and, most
importantly, require a single administrative control for the
configuration of replication and other system functions – a
model that is unfit to serve a community of scientists, where
individual machines may be owned by different parties and
require some degree of autonomy in their operations.

Other distributed data management infrastructures also ex-
ist in scientific communities, including Xrootd, iRods, Rucio,
and Globus [11]. These solutions hide the complexity of a
location-independent infrastructure over TCP/IP at the applica-
tion layer by creating a location-transparent overlay. However,
they still need to maintain data locations which makes them
complex and requires substantial manual configuration.

There have been a few incarnations of storage reposito-
ries over NDN such as repo-ng, Fast Repo for NDN-RTC
streams, NDNts for web applications, and ndn-python-repo.
These existing NDN based repositories are single-instance
implementations of storage that can be accessed over the
network, but not a distributed storage system.

VIII.CONCLUSION AND FUTURE WORK

In addressing the challenges posed by big data scientific re-
search on networked systems, Hydra offers a secure, scalable,
and resilient storage service by leveraging a decentralized fed-
eration of individual user-provided storage servers. Grounded
on Name Data Networking (NDN), Hydra exemplifies that
loosely coupled, name-based systems can be both lightweight
and robust. This work has afforded us valuable insights into the
intricacies of crafting a secure, data-centric distributed network
without micromanaging every individual node.

As we continue to refine Hydra, several areas of im-
provement are under exploration. Key among these is the
optimization of the data plane for higher throughput via
NDN-DPDK integration. Additionally, we aim to enhance
data retrieval performance through congestion control and
module tuning. Another focus is the dynamic adjustment of
the favor parameter based on near real-time performance met-
rics. Benchmarking against existing solutions will be another
important next step.

In contrast to the growing centralization in IP networks,
Hydra and NDN pave the way for a decentralized approach.
Leveraging NDN’s data-centric networking model, which in-
cludes features like in-network caching and multicast delivery,
our work opens up new possibilities for empowering end users.
This research serves as a cornerstone for creating a more
democratic and decentralized scientific federation and has the
potential to revolutionize secure, decentralized storage, making
it not just viable but highly effective.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under Grant No OAC-2126148.

REFERENCES

[1] BALDIN, I., NIKOLICH, A., GRIFFIOEN, J., MONGA, I. I. S., WANG,
K.-C., LEHMAN, T., AND RUTH, P. Fabric: A national-scale pro-
grammable experimental network infrastructure. IEEE Internet Com-
puting 23, 6 (2019), 38–47.

[2] EDWARDS, P. N., MAYERNIK, M. S., BATCHELLER, A. L., BOWKER,
G. C., AND BORGMAN, C. L. Science friction: Data, metadata, and
collaboration. Social Studies of Science 41, 5 (2011), 667–690. PMID:
22164720.

[3] LIU, S., PATIL, V., YU, T., AFANASYEV, A., FELTUS, F. A., SHANN-
IGRAHI, S., AND ZHANG, L. Designing hydra with centralized versus
decentralized control: A comparative study. In Proceedings of the
Interdisciplinary Workshop on (de) Centralization in the Internet (2021),
pp. 4–10.

[4] OGLE, C., REDDICK, D., MCKNIGHT, C., BIGGS, T., PAULY, R.,
FICKLIN, S. P., FELTUS, F. A., AND SHANNIGRAHI, S. Named data
networking for genomics data management and integrated workflows.
Frontiers in Big Data 4, 1 (2021), 16.

[5] PRESLEY, J., WANG, X., BRANDEL, T., AI, X., PODDER, P.,
YU, T., PATIL, V., ZHANG, L., AFANASYEV, A., FELTUS, F. A.,
ET AL. Hydra–a federated data repository over ndn. arXiv preprint
arXiv:2211.00919 (2022).

[6] SHANG, W., AFANASYEV, A., AND ZHANG, L. Vectorsync: Dis-
tributed dataset synchronization over named data networking. In Pro-
ceedings of the 4th ACM Conference on Information-Centric Network-
ing (New York, NY, USA, 2017), ICN ’17, Association for Computing
Machinery, p. 192–193.

[7] STANSBERRY, D., SOMNATH, S., BREET, J., SHUTT, G., AND
SHANKAR, M. Datafed: Towards reproducible research via federated
data management. In 2019 International Conference on Computational
Science and Computational Intelligence (CSCI) (Los Alamitos, CA,
USA, dec 2019), IEEE Computer Society, pp. 1312–1317.

[8] WANG, X., AI, X., FELTUS, F. A., AND SHANNIGRAHI, S. Gnsga: A
decentralized data replication algorithm for big science data. In 2023
IFIP Networking Conference (IFIP Networking) (2023), pp. 1–9.

[9] WILKINSON, M. D. E. A. The fair guiding principles for scientific data
management and stewardship. Scientific Data 3, 1 (Mar 2016), 160018.

[10] WOLF, Y. I., ROGOZIN, I. B., GRISHIN, N. V., AND KOONIN, E. V.
Genome trees and the tree of life. TRENDS in Genetics 18, 9 (2002),
472–479.

[11] WU, Y., MUTLU, F. V., LIU, Y., YEH, E. M., LIU, R., IORDACHE,
C., BALCAS, J., NEWMAN, H., SIRVINSKAS, R., LO, M., SONG, S.,
CONG, J., ZHANG, L., TIMILSINA, S., SHANNIGRAHI, S., FAN, C.,
PESAVENTO, D., SHI, J., AND BENMOHAMED, L. N-dise: Ndn-based
data distribution for large-scale data-intensive science. Proceedings of
the 9th ACM Conference on Information-Centric Networking (2022).

[12] ZHANG, L., AFANASYEV, A., BURKE, J., JACOBSON, V., CLAFFY,
K., CROWLEY, P., PAPADOPOULOS, C., WANG, L., AND ZHANG, B.
Named data networking. ACM SIGCOMM Computer Communication
Review 44, 3 (2014), 66–73.

[13] ZHANG, Z., YU, Y., AFANASYEV, A., AND ZHANG, L. NDN certifi-
cate management protocol (NDNCERT). Technical Report NDN-0050,
NDN, Apr. 2017.

2024 International Conference on Computing, Networking and Communications (ICNC): Next Generation Networks
and Internet Applications

816

