
Multi-armed Bandit Algorithm for Online
Offloading and Scheduling in Edge Computing

Environment
Xiaoying Han

University of Science and Technology of China
hanxiaoying@mail.ustc.edu.cn

Xiaohua Xu*
University of Science and Technology of China

xiaohuaxu@ustc.edu.cn

Abstract—In this paper, we study the online scheduling
offloading problem in edge computing. Previous scheduling
work generally assumes that system have global informa-
tion, or between the server and the user mutual state
information known. Considering the privacy security and
the conflicts that users may have during wireless communi-
cation, we designed a stochastic multi-played multi-armed
bandit online learning offloading framework: D-UCB-G.
The framework performs offloading and scheduling based
on historical experience, which maximizes the service
quality of user devices and also solves the problem that
users cannot access the state of edge servers. In the case
of ensuring that the user devices do not conflict, the user
devices are scheduled to use the edge server resources. We
prove the convergence of the algorithm experimentally and
demonstrate the effectiveness of the algorithm by applying
real-world location data to simulations.

I. INTRODUCTION

With the rise of computing-intensive applications and
the increase of terminal devices, edge computing emerges
as the times require. Edge computing refers to a new
computing model that performs computing at the edge
of the network [1]. Data that users may request can be
pre-cached on edge devices, and some computing tasks
can also be performed on edge. Computing on edge
devices can improve the quality of service of end devices
without generating large network transmission overhead.
However, edge device resources are limited, so a rea-
sonable offload scheduling strategy needs to be proposed
to improve the quality of service for users as much as
possible. Now most users access the network through
wireless networks, we consider the protocol interference
model [2], that is, the situation where conflicts may occur
between users.

In the research of offload scheduling strategy, some
works believe that global information is known [3] [4],
and some work believes that edge device status or
communication status is known [5]. However, in some
cases, the user equipment cannot obtain the status of the

edge device, so the offloading selection needs to be made
through historical experience. We propose to model the
offload scheduling problem with the multi-armed bandit
problem. At the same time, user protocol conflicts [8] in
wireless communications, which will occur when some
users are too close, are always overlooked. Considering
the limited edge resources, we also introduced the knap-
sack constraint.

The multi-armed bandit is a classic reinforcement
learning problem. In the problem, each machine provides
a random reward from a probability distribution specific
to that machine, that is not known a-priori. The objective
of the gambler is to maximize the sum of rewards earned
through a sequence of lever pulls. Algorithms to solve
this problem are widely used in recommender systems
and resource allocation [6] [7]. In the edge computing
environment, edge devices can be regarded as resources
to be allocated. And if each user devices is allocated
to the cache or computing resources of edge devices, it
will gain certain benefits, such as faster response speed
or larger storage space. We design a random multi-play
multi-armed bandit online learning offloading framework
(D-UCB-G) to solve this problem. The contributions of
this paper are as follows:

• We considered protocol conflicts between users in
wireless communications and modeled user conflict
relationships using graphs. At the same time, taking
into account the limited edge resources, we set a
knapsack constraint.

• The offloading and scheduling problem is modeled
as a MAB problem, and an offload scheduling
framework (D-UCB-G) based on UCB algorithm
is proposed. It solves the offloading problem and
scheduling problem when there are conflicts be-
tween users and the state of the edge device is
inaccessible. It ensures the maximization of the
overall reward.

• The convergence of the algorithm is proved by ex-

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 81

periments.The established edge computing offload-
ing model is simulated. The results show that the
given framework can be optimized and its perfor-
mance is better than that of the baseline methods.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System network Model

In this work, we consider a general practical model
as illustrated in Fig. 1.We consider that there are N
user devices in the edge computing system, expressed
as U = {u1, u2, u3, . . . , un}. There are multiple wireless
access points (APs) distributed in various locations of
the system, and edge servers are deployed on the APs.
Suppose there are J APs in the system, which are
expressed as AP = {ap1, ap2, ap3, . . . , apJ}. each AP
can directly provide services for user device within a
certain radius. It is assumed that the tasks generated by
the user device all directly reach the closest AP. It is
assumed that users in the system will need to use storage
or computing resources such as cached data provided by
edge servers during the scheduling process.

This system considers the user’s choice of edge
servers, and the edge server’s scheduling of users ac-
cording to its environment conditions. And the allocation
of communication resources and the allocation of edge
server computing resources when the user is offloaded.
The tasks that need to be performed by the user device
that is not selected for offloading are performed locally.

user device edge server

Fig. 1: system model

The system time is divided into consecutive time
frames of equal lengths. It is assumed that the total
scheduling process has T time periods, and t is used
to represent the current time period, t = 1, ..., T . Each
user device will generate some tasks that need to be
executed. In this system, it is set that the user device
will only generate one task in each time period. At time

t, the task generated by i-th user is J t
i ≜ {M t

i , C
t
i , D

t
i},

M t
i indicates the amount of data to be transmitted, in

kilobytes. Ct
i indicates the required computing resources.

Dt
i indicates the amount of resources required by the

task, that is, the abstraction of resources such as CPU
and storage. According to knapsack constraint, the sum
of the resources of all tasks that need to be offloaded to
an edge server must be within a range. We use CAP to
represent this range.

In wireless transmission,according to the protocol in-
terference model [2], there may be conflicts between
users. Two conflicting users cannot be selected to access
the AP at the same time during scheduling. It is assumed
that the user does not move during scheduling. We use an
undirected graph to represent the conflicting relationship
between users. The point set is the user device U . If the
edge set E contains (ui, uj), it means that the two user
devices conflict with each other and cannot be selected
at the same time.

B. Wireless communication model

In this system, let the distance between the user device
un and AP app be Ln,p.In this model, the code division
multiplexing technology is used for the communication
path. Referenceing [10] the inter-node signal-to-noise
ratio calculation formula and the Shannon’s formula, the
signal-to-noise ratio between the nth user device un and
the pth APapp in the time period t is:

SNRn,p(t) =

Powern ·Gainn,p

σ +
∑

i∈M{i}:uichoose theAP apptoo
Poweri ·Gaini,p

.

(1)
where Powern represents the power of the signal trans-
mitted by the user device un, Gainn,p represents the
communication gain between the user device un and
AP app, σ is white Gaussian noise, i ∈ M{i} :
ui choose the AP app too indicates that the same
AP, that is, the user device of app, is selected at the
same time as un.we simplify the communication gain to
[12]:Gainn,p = C · L−a

n,p.. where C is a constant factor
,a is the path loss factor.

The transmission speed of task J t
n can be obtained as:

St
n = Bw ∗ log2 (1 + SNRn,p(t)) (2)

where Bw represents the network bandwidth that the AP
can allocate.

2024 Workshop on Computing, Networking and Communications (CNC)

82

C. Local execution model

When the task is executed locally, the latency only
includes the time of the local execution, and the calcu-
lation formula is: LHt

n = Ct
n

Ct
ud,n

where Ct
n represents

the computation amount of the tasks generated by the
end-user device un, in the t time period. The amount
of computation is the number of CPU cycles required.
Ct
ud,n represents the CPU cycles executed per second of

user device ud.
When the task is executed locally, the energy consump-

tion only includes the energy consumption of the local
execution, and the calculation formula is: LEt

n = Ct
n ·ρn

where ρn represents the energy consumed by the user
device un per unit CPU execution cycle. That is, energy
consumption is proportional to the number of CPU
execution cycles, and ρn is a proportional coefficient.

D. Offload execution model

If the task is offloaded to the AP and edge server for
execution. It is generally considered that the amount of
result data generated by edge server computing is very
small, far less than the amount of uploaded data, so it is
ignored. Therefore, the transmission delay only considers
the part of the delay for offloading the task to the edge
server. The transmission time of task J t

n to the edge
server is: H1tn = M t

n

St
n

. The time required to execute on

the edge server is: H2tn = Ct
n

Ct
es,p,n

where Ct
es,p,n denotes

that the computing resources allocated by the edge server
Ep to the task J t

n can be understood as the computing
speed.

Then the total time required to offload the task to
the edge server for execution is divided into three parts:
1.Upload the task data to the edge server: H1tn. 2.The
task is executed on the edge server: H2tn. So if un
chooses to offload task J t

n to edge server Ep at time
t, the time required is EHt

n = H1tn +H2tn.
When the task is offloaded to the edge server on

the AP for execution, since the task does not need
to be executed locally and does not consume local
energy, the energy consumed by the edge server is not
considered. The energy consumption generated in this
case is mainly reflected in the energy consumption in
the transmission process. The calculation formula of the
energy consumed by the task J t

n in the transmission
process is as follows:EEt

n = H1tn · pn where pn is
the data transmission power. The transmission time is
proportional to the energy consumed by the transmission.

E. Problem formulation

Divide each scheduling process into many time pe-
riods. The system in this study is set to have a total
of T time periods, and T is known. This study adopts
binary offloading method for all tasks. At each time
period, offloading and scheduling decisions are made.The
offloading policy of the user device un in a scheduling
system is expressed as follows:

OPn = [o1, o2, ..., onn] oi = 0 or 1 (i = 1, 2, ..., nn)
(3)

where nn represents the number of all APs that the user
device can access. oi = 1 means that the user device will
offload the task to the edge server on the i AP for execu-
tion. When oi = 1, oj = 0 (j ̸= i), because it can only
be offloaded to one server. If oi = 0 (i = 1, 2, ..., nn) is
all 0, it means that the task will be executed locally on
the end-user device un.

At the same time, if the edge server on AP app is
scheduled, then its scheduling policy is expressed as
follows:

SP p = [a1, a2, ..., apn] ai = 0 or 1 (i = 1, 2, ..., pn)
(4)

where pn represents the number of all end-user devices
covered by the edge server service area. All end users
are ranked from the nearest to the farthest. oi = 1 means
that app schedules the i user to offload tasks to the edge
server it deploys for execution.

III. USER SCHEDULING ALGORITHM BASED ON UCB

A. MAB problem definition

In this section, the scheduling offload problem is
transformed into a MAB problem.The classic MAB prob-
lem includes three parts: arm, agent, and reward. Every
time the arm is pulled by agent, the arm will return a
reward. The MAB question is how to pull these arms to
make the long-term reward as high as possible. For the
performance of solving the MAB problem, the regret is
usually used to evaluate.

1) Arms and Agents: Firstly, the user needs to select
an edge server for offloading. So the user ui itself is the
agent, and the server accessible to the user ui is arms,
denoted by AP ui = {ap1, ap2, . . . , apmi

}. In each round,
the end-user device select one edge server scheduled to
offload, it is equivalent to pulling the arm in the MAB
problem.

Then it is the edge server that schedules appropriate
end-user devices to offload tasks. So here the user devices
U = {u1, u2, u3, . . . , un} are used as arms.The end-user

2024 Workshop on Computing, Networking and Communications (CNC)

83

device in the system is fixed and known, with a value of
N . Since there are many edge servers in the system, and a
single server cannot access all user devices. it is assumed
that the end-user devices that can be covered by a certain
api during the scheduling process are fixed Invariant,
the set is Uapi , and the number is pni. Therefore, the
main body of the scheduling is api, the optional arm
is the coverable end-user device Uapi (for brevity, Uapi

will be directly mentioned later), the number of arms
is fixed and known as pni.Let api choose the number
of end-user devices in round t as kit. Because in this
scheduling algorithm, there can be multiple end-user
devices scheduled in each round, that is, kit ∈ [1, pni].
So this is a multiple choice MAB problem.

2) Reward: Then an important part of the MAB prob-
lem is the reward. In this scenario, scheduling end-user
devices and offloading tasks to edge servers is the process
of pulling arm. So the benefit is defined as the benefit of
the device offloading. So first of all, the calculation of the
benefit considers the improvement of the service quality
obtained after the device is uninstalled. It is hoped that
the more the service quality is improved, the better. So
for the user uj to offload the task to edge server api, the
reward uj obtained is defined as follows:

Rewardji (t) = δH(LHt
j−EHt

j)+δE(LE
t
j−EEt

j) (5)

where δH and δE are constant parameters. The first half
of the right side of the equal sign is the time saved
by executing on the edge server compared to the local
execution, which reflects the improvement of service
quality from the perspective of delay. The second half
is the energy saved by executing on the edge server
compared to the local execution, which reflects the
improvement of service quality from the perspective of
energy consumption.

Abstract the improvement of service quality that users
may obtain by using an edge server as the payment for
using it. The edge server receives the payment of each
user, so the reward calculation is the payment obtained
by the use of unit resources usage.the user uj to offload
the task to edge server api, the reward api obtained is
defined as follows:

Rewardij(t) = Rewardji (t)/Dj (6)

In the MAB problem, the regression is used to reflect
the performance of the algorithm. Let each end-user
equipment be scheduled to obtain a random variable, and
the random variable corresponding to the user equipment

ui is Di. Let µi = E[Di], µ represents the expectation of
return. Let the set of end-user equipments to be scheduled
by api in the t round is U(t,api)

, and the optimal end-
user equipment that can be selected in the t round of
scheduling is The set is U∗

(t,api)
. In the MAB problem, the

regret is the difference between the income that has been
selected and the income obtained by actually choosing
the optimal one. According to the proof of the document
[11] , the calculation formula is as follows:

Regret(t) =

t∑
s=1

 ∑
j∈µ∗

(t,api)

Dt
j −

∑
j∈µ(t,api)

Dt
j

 (7)

The algorithm hopes that Regret(T) is as small as
possible. Since in this system, the user’s transmission
speed and the size of the task will change, the truly opti-
mal choice cannot be determined, and an approximation
can only be achieved through learning. It is optimal, so
in real situations, the regret cannot be calculated. The
goal of the final algorithm is to maximize the overall
revenue of the user through the scheduling policy SP p .
The optimization goal is defined as follows:

max
π

T∑
t=1,...,T

Reward(t).

B. Algorithm

This section introduces a offloading and scheduling
framework: D-UCB-G. This framework contains dou-
ble UCB algorithm. Edge Server implements a multi-
played UCB algorithm containing user conflict graphs
(MPUCBG). The algorithm is based on the definition
of the task offloading problem in the previous section,
that is, it is carried out on the basis of abstracting
the scheduling problem into a MAB problem.The user
conflict graph refers to the Graph established in the
system model, and the conflict between end-user devices
will be considered when executing the algorithm. Multi-
ple selection is because more than one end-user device
may need to be selected each time, so the classic UCB
algorithm needs to be improved to make it suitable for
the multiple selection in this scenario.

In this algorithm, the calculation of the upper bound of
the income follows the calculation method of the upper
confidence bound in the classic UCB algorithm. The
formula is as follows:

λj = µ̂j,nt
j
+

√
2 lnT

nt
j

(8)

2024 Workshop on Computing, Networking and Communications (CNC)

84

The first half of the right-hand side of the equation
is the expected value of reward. The larger the expected
value, the greater the benefit that may be obtained by
choosing this arm. The larger the nt

j in the second half of
the right side of the equation, the less the arm is selected.
It shows that the exploration of this arm is too little
and requires further exploration.This formula is a balance
of exploration and exploitation.Therefore, the larger the
upper confidence bound, the more worthy of choice.

Then is the calculation of µ̂j,nt
j
. In the classic UCB

algorithm, the benefits obtained from all rounds are
averaged, but in this system, with the change of the
environment, the end user The transmission speed of
the equipment, the distribution of tasks, etc. may have
changed, so it is believed that the newer the gains are
the more real. A scaling factor is added to the original.
The formula of µ̂j,nt

j
is as follows:

µ̂j,nt
j
= (1− g)µ̂j,nt

j
+ gReward(t) (9)

where g is the scale factor, indicating the size of the
newly obtained reward when it is updated. When g =
1/nt

i, all the gains obtained are averaged with the same
weight. When g is a fixed value, the most recent reward is
a certain proportion. Rewardj(t) expresses the revenue
obtained after the end-user device uj is offloaded in the
t round. Of course, only the devices that are scheduled
to offload tasks to the edge server for execution will be
updated.

For a certain edge server api, its accessible user equip-
ment is Uapi

k , and the number is pnk, and its scheduling
algorithm flowchart is as follows:

For users to evaluate edge servers applied a UCB-
based approach, Reward’s calculation refers to 5 ,The
algorithm flowchart is as follows:

IV. EXPERIMENT

A. Convergence

The first is the convergence of the algorithm for the
MAB problem. Since in this study, a multiple MAB al-
gorithm is required, the convergence needs to be verified.
Several studies have mathematically demonstrated the
convergence of the multiple UCB algorithm [11]. But
there are still conflicts between users in this study, so it
is necessary to verify the convergence of the algorithm
in the case of multiple selection and arm conflict. The
following figure2 is the situation of each MAB algorithm
running when the reward is independent and identically
distributed, and the variance is 1 and the mean is 0.The

Algorithm 1 MPUCBG scheduling algorithm
Initialization: initialize the capacity CAP i. choose each

users (collection Uapi

k) once to initialize the n0
i = 1

and µ̂i,1.
for t = 1, ..., T do

Users selects the edge server according to Algorithm
2; Users who choose U are Uapi

k
calculate Set:
λi = µ̂i,nt

i
+
√

2 lnT
nt

i

sort Uapi

k by λi , save them to a collection U1api .
let Kt = 1
while U1api ̸= ϕ do

find the U1api [i] with the largest λ to be Utemp.
It’s task is Jtemp

if CAPi −Dtemp < 0 then
break;

end if
add Utemp into the Uapi

t .
CAP i = CAP i −Dtemp < 0;
Find the users that conflicts with Utemp in con-
flict graph, delete them in collection U1api .delete
Utemp;
Kt ++;

end while
select the AP(the Edge Server) for i ∈ UKt

t by UCB
algorithm.
Schedule all users to get reward.i ∈ UKt

t offload
tasks to AP, and others execute tasks locally.
observe Rewardj(t) j ∈ UKt

t

update µ̂j,nt
j

j ∈ UKt

t .
end for

Algorithm 2 UCB-based Selecting edge server algorithm
Initialization: choose each available AP(edge

server,collection AP i) once to initialize the nt
e,j

and µ̂e,j,nt
e,j

.
for t = 1, ..., T do

calculate Set:
λj = µ̂e,j,nt

e,j
+
√

2 lnT
nt

e,j

select the apj with the largest λ as aptemp

ui offload the task to the aptemp

caculate the reward
update the nt

e,j and µ̂e,j,nt
e,j

of aptemp

end for

2024 Workshop on Computing, Networking and Communications (CNC)

85

convergence result is shown in the following The algo-
rithm is convergent and optimal.

0 100 200 300

550

600

650

700

750

800

su
m

 re
w

ar
d

times

 Multi-played UCB
 random
 epsilon greedy
 50 pts SG smooth of epsilon greedy
 50 pts SG smooth of Multi-played UCB
 50 pts SG smooth of random

Fig. 2: the convergence of two algorithms for MAB
problems: UCB and ϵ − greedy , and the comparison
with random selection.

B. Experimental setup

Using a dataset of user devices and edge server
locations located in the city of Melbourne [9]. It is
composed of 126 base stations and 816 user equipments.
The location of the base station is considered to be the
location of the edge server. According to the protocol
interference model [2] , we think two users conflict if
the distance between them is less than 25 meters. Each
user will generate a task in each round. The settings of
each parameter during the experiment are shown in the
tableI.

TABLE I: Parameters

Bw; σ; a; Powern 5Mbps; -100dbm; 4; 200mW
M t

i ; Ct
i ; random [500,1600]KB; [500,1600]Mc;

Ct
ud,n; Dt

i random {1,2,3}GHz; [0.3,0.6]
CAPj ; Ct

es,p,n; pn 2; 20GHz; 0.5

The baselines set in this experiment are:
• Local: In this case all end-user perform their tasks

locally.
• Random1: The D-UCB-G framework is used but the

selection is randomly instead of using lamda
• Random2: Each end-user randomly whether to unin-

stall or not. End-users and edge servers choose
randomly.

C. Performance analysis

Considering both latency and energy consumption (in
(5), δH taking 10 and δE taking 1), the sum reward

of users in each round is shown on (3).It shows that
the algorithm is optimized for system offloading and
scheduling and will eventually converge.

0 500 1000

1200

1250

1300

1350

su
m

 re
w

ar
d

times

 sum reward
 200 pts SG smooth of sum reward

Fig. 3: D-UCB-G conducts 10 experiments, each per-
forming 1000 rounds, and the average per experiment
total reward curve of each round of users

Then, the overall latency and energy consumption
under different algorithms are investigated. In the case
of 3 reward, 10 experiments were performed with 1000
rounds each, and the total latency and energy consump-
tion of users per round using D-UCB-G framework and
the Random1 algorithm were shown in 4.It can be seen
that The overall latency and energy consumption of the
user running task are optimized, and the convergence
is achieved. The average delay and energy consumption
of the last 200 rounds are shown in the table II. The
comparison of Random1, Random2 and Local results
shows that using edge server devices in this system
setup performs better than only computing locally. The
performance of the D-UCB-G framework is better than
that of the baseline algorithms, indicating that the service
quality to users is improved.

0 500 1000

4500

4550

4600

to
ta

l e
ne

rg
y

co
ns

um
pt

io
n(

m
W

)

times

 D-UCB-G
 random
 200 pts SG smooth of random
 200 pts SG smooth of D-UCB-G

(a) latency

0 500 1000

300

302

304

306

to
ta

l la
te

nc
y

(m
s)

times

 D-UCB-G
 Random
 200 pts SG smooth of D-UCB-G
 200 pts SG smooth of Random

(b) energy

Fig. 4: The total reward of users per round using D-UCB-
G framework and Random1 algorithms

2024 Workshop on Computing, Networking and Communications (CNC)

86

TABLE II: The averge latency(ms) and energy consump-
tion(mw) of users using D-UCB-G framework and the
two baseline algorithms

D-UCB-G Random1 Random2 local
energy consumption 4541.95 4577.13 4710.44 5303.73
latency 302.24 304.16 312.58 353.49

In some cases, of course, the system would like to
think only about latency or energy consumption. There-
fore, when only latency (in 5, δH taking 10 and δE taking
0) and only energy consumption (in 5, δH taking 0 and δE
taking 1) are considered, the reward in the operation of
the algorithm is tested as shown in the following figure 5.
When only latency was included in reward, it converge
slowly, so 10 experiments were carried out, with 2000
rounds running each time. The latency and energy of the
last 200 rounds after convergence of various algorithms
are calculated considering delay, energy consumption and
both, as shown in the table.

0 500 1000

700

750

800

su
m

 re
w

ar
d

times

 sum reward
 200 pts SG smooth of sum reward

(a) latency

0 1000 2000

480

500

520

540

su
m

 re
w

ar
d

times

 sum reward
 200 pts SG smooth of sum reward

(b) energy

Fig. 5: The average per experiment total reward of users
of each round

TABLE III: The averge latency(ms) and energy consump-
tion(mw) of users using D-UCB-G framework

only latency only energy
energy consumption 4543.75 4540.26
latency 302.07 304.41

Observe TableII and Table III, it can be seen that con-
sidering the latency or energy consumption separately,
the performance of the system can also be optimized.
The latency and energy consumption in the system are
not independent of each other, so both will be optimized
at the same time. After optimization, compared with the
baseline data in Table 2, the system latency and energy
consumption are reduced, indicating that the quality of
user services has been improved in a targeted manner.

V. CONCLUSIONS

This paper models the edge computing system, and
considers the inaccessible state of the edge server, ab-
stracts the offload scheduling problem into the MAB
problem, and focuses on improving the service quality
of the system to the end users. In view of this problem,
a multi-choice UCB offloading and scheduling frame-
work is proposed:D-UCB-G. Experiments show that the
framework can be optimized and converged, while having
better performance than the baseline algorithm, and can
also balance latency and energy consumption through the
setting of reward.

REFERENCES

[1] W. Shi and S. Dustdar, ”The Promise of Edge Computing,” in
Computer, vol. 49, no. 5, pp. 78-81, May 2016.

[2] P. Gupta and P. R. Kumar, ”The capacity of wireless networks,”
in IEEE Transactions on Information Theory, vol. 46, no. 2, pp.
388-404, March 2000.

[3] X. Liu, Z. Qin and Y. Gao, ”Resource Allocation for Edge
Computing in IoT Networks via Reinforcement Learning,” ICC
2019 - 2019 IEEE International Conference on Communications
(ICC), 2019, pp. 1-6.

[4] L. T. Tan and R. Q. Hu, ”Mobility-Aware Edge Caching
and Computing in Vehicle Networks: A Deep Reinforcement
Learning,” in IEEE Transactions on Vehicular Technology, vol.
67, no. 11, pp. 10190-10203, Nov. 2018.

[5] H. Yuan, G. Tang, X. Li, D. Guo, L. Luo and X. Luo, ”Online
Dispatching and Fair Scheduling of Edge Computing Tasks: A
Learning-Based Approach,” in IEEE Internet of Things Journal,
vol. 8, no. 19, pp. 14985-14998, 1 Oct.1, 2021.

[6] Gittins, J. C. (1989), Multi-armed bandit allocation indices,
Wiley-Interscience Series in Systems and Optimization., Chich-
ester: John Wiley & Sons, Ltd., ISBN 978-0-471-92059-5

[7] Berry, Donald A.; Fristedt, Bert (1985), Bandit problems: Se-
quential allocation of experiments, Monographs on Statistics and
Applied Probability, London: Chapman Hall, ISBN 978-0-412-
24810-8

[8] Gupta P, Kumar P. The capacity of wireless networks[J/OL].
IEEE Transactions on Information Theory, 2000, 46(2):388-404.

[9] Lai P. et al. (2018) Optimal Edge User Allocation in Edge
Computing with Variable Sized Vector Bin Packing. In: Pahl C.,
Vukovic M., Yin J., Yu Q. (eds) Service-Oriented Computing.
ICSOC 2018. Lecture Notes in Computer Science, vol 11236.
Springer, Cham.

[10] X. Chen, L. Jiao, W. Li and X. Fu, ”Efficient Multi-User
Computation Offloading for Mobile-Edge Cloud Computing,”
in IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp.
2795-2808, October 2016.

[11] A. Lesage-Landry and J. A. Taylor, ”The Multi-Armed Ban-
dit With Stochastic Plays,” in IEEE Transactions on Auto-
matic Control, vol. 63, no. 7, pp. 2280-2286, July 2018, doi:
10.1109/TAC.2017.2765501.

[12] T. Zheng, J. Wan, J. Zhang, C. Jiang and G. Jia, ”A Survey
of Computation Offloading in Edge Computing,” 2020 Interna-
tional Conference on Computer, Information and Telecommuni-
cation Systems (CITS), 2020, pp. 1-6.

2024 Workshop on Computing, Networking and Communications (CNC)

87

