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Abstract—Edge AI has been recently proposed to facilitate the
training and deployment of Deep Neural Network (DNN) models
in proximity to the sources of data. To enable the training of
large models on resource-constraint edge devices and protect
data privacy, parallel split learning is becoming a practical
and popular approach. However, current parallel split learning
neglects the resource heterogeneity of edge devices, which may
lead to the straggler issue. In this paper, we propose EdgeSplit,
a novel parallel split learning framework to better acceler-
ate distributed model training on heterogeneous and resource-
constraint edge devices. EdgeSplit enhances the efficiency of
model training on less powerful edge devices by adaptively
segmenting the model into varying depths. Our approach focuses
on reducing total training time by formulating and solving a task
scheduling problem, which determines the most efficient model
partition points and bandwidth allocation for each device. We
employ a straightforward yet effective alternating algorithm for
this purpose. Comprehensive tests conducted with a range of
DNN models and datasets demonstrate that EdgeSplit not only
facilitates the training of large models on resource-restricted edge
devices but also surpasses existing baselines in performance.

Index Terms—Edge Computing, Federated Learning, Edge AI,
Task Scheduling.

I. INTRODUCTION

AI models have traditionally been trained and deployed
in centralized cloud environments due to their intensive re-
source requirements, using data gathered from various end-
user devices. Despite its popularity, it often encounters issues
such as high communication costs, delayed responses, and
privacy risks [1]. To address these challenges, a new paradigm
known as Edge AI has emerged, emphasizing the training
and implementation of AI models on edge devices (like edge
servers, gateways, and smartphones), which are situated closer
to where the data originates [2].

A crucial challenge within Edge AI is the development
of accurate models that learn quickly from distributed data
across numerous edge devices. Federated Learning (FL) [3], a
leading approach in this context, facilitates collaborative model
training among a variety of edge devices while safeguarding
user privacy. In FL, edge devices locally train the AI model
required by the FL server and only send model updates, such
as weights or gradients, back to the server for integration. The
server then dispatches the combined parameters for the next
training cycle. This iterative process continues until the model
reaches satisfactory accuracy levels. FL has proven effective
in several applications [4], [5].

To enhance the performance of edge AI applications, it’s
often beneficial to increase the parameters of Deep Learning
(DL) models. However, the training of large models poses a
challenge for resource-limited workers, primarily due to their
restricted CPU and memory capabilities. Hence, split learning
[6], [7] was proposed to enable the model training on low-
resource mobile devices by splitting the full model between
server and clients. SL partitions a full model into two partial
models, i.e., client model and server model. The client model
is trained on edge devices, while the server model is trained
on the server with the representation of the partition layer
(also known as activations) transmitted between the server
and the clients. Since these representations are considerably
smaller than the full model, the burden on communication is
also significantly reduced.

However, split learning is a sequential training paradigm.
Edge devices take turns to collaboratively train with the server.
It is not suitable for parallel federated learning. Recently,
parallel split learning [8]–[10] was proposed to combine the
benefits of both federated learning and split learning. SplitFed
[8] is the first attempt to enable the parallel training of the
client-side model. [9] adaptively adjust the mini-batch size
considering the amount of local data on each edge device. [10]
introduce an auxiliary network to avoid frequent intermediate
data transmission. However, current parallel split learning
seldom considers the resource heterogeneity of edge devices.
There are various edge devices, such as mobile phones, edge
servers, and Raspberry Pi. The computing and networking
capabilities of those devices are usually vastly different. In
each training round, the FL server is required to wait for the
updated parameters of all the participants, which may lead to
long waiting time due to device heterogeneity.

In this paper, we propose EdgeSplit, a novel parallel split
learning framework, aiming at enhancing the efficiency of
federated learning on heterogeneous and resource-constraint
edge devices. EdgeSplit is designed to optimize resource
utilization and orchestrate the training tasks between edge
devices and the FL server. More specifically, a full model is
partitioned into a set of shallow models with different depths,
adapting to the heterogeneous computation resources of edge
devices. Each device trains a segment of the full model, while
offloading a portion of the training task to the FL server. The
server plays a dual role: completing the remaining training
tasks and aggregating the model parameters.

However, it is non-trivial to decide the optimal model
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partition point for each edge device. DNN models are char-
acterized by significant variations in computational workload
and parameter sizes across their different layers. Simple model
partitioning approach is often ineffective in decreasing the
overall end-to-end latency, as it fails to account for the
complex, layered nature of DNN models and the unique
demands of each layer. Hence, to reduce the training time, we
mathematically formulate a training task scheduling problem
to decide how to split the training model for each edge device
and the bandwidth between an edge device and the server, in
terms of both edge devices computing capabilities and network
bandwidth. We propose an efficient alternating algorithm to
solve the problem with the objective of minimizing the over-
all training time. The algorithm iteratively optimizes model
splitting and bandwidth allocation strategy and can quickly
reach the optimal objective.

We develop a real-world testbed with both physical and
virtual edge devices to emulate the system in large scale. We
have comprehensively evaluated the performance of EdgeSplit
under various DNN models and datasets. The evaluation
results show that our proposed EdgeSplit can achieve up
to 5.5x training speed improvement. Our contributions are
summarized as follows:

• We propose a novel parallel split learning framework to
adaptively split the model among edge devices and the
FL server in heterogeneous and resource-constraint edge
computing environments and achieving training acceler-
ation without compromising accuracy.

• We formulate a training task scheduling problem by
jointly considering the neural network splitting and band-
width allocation with the objective of reducing the model
training time.

• We propose an efficient alternating algorithm to solve the
problem and evaluate the performance of EdgeSplit on
a real-world testbed with various benchmark models and
datasets. The results indicate the superiority of EdgeSplit.

II. FRAMEWORK OF EDGESPLIT

Fig. 1 shows the overview of the parallel split learning
framework. EdgeSplit first decides the partition points and
bandwidth for each edge device, according to the hetero-
geneous computation capabilities, the bandwidth, and the
characteristics of the DNN models, such as the size of output
for each layer. The details are shown in Sec. III.

After getting the best partition points, EdgeSplit will per-
form online split training. The training process consists of the
following steps.

• Step 1: Each edge device performs feed training with
localized data and shares the outputs/activations of the
partial models with the server

• Step 2: The server performs the rest of the feed training
and back propagation and sends back the gradients to
edge devices

• Step 3: Each edge device gets the gradients and does
local back propagation and updates its weights

FL Server

Back 

propagation
Feed 

forward

Full model

Partial model Partial model Partial modelHeterogeneous 

Edge Devices

Deploy

Training &
aggregation

Fig. 1. Framework of EdgeSplit. Edge devices train part of the full model
with different depths adapting to local resources and offload the rest of model
training task to the FL server for acceleration.

• Step 4: Repeat the following steps according to the
number of batches

• Step 5: Each edge device sends the updated weights to
the server for aggregation

• Step 6: The server aggregates all updated weights from
edge devices and sends back the aggregated weights to
edge devices

Benefits. EdgeSplit is suitable for accelerating federated
learning on heterogeneous edge devices for three reasons.

• Resource-efficient. Edge devices only need to train part
of the full model, subjecting to the local computing
capabilities and the bandwidth between an edge node and
the server. It enables training resource-greedy AI models
on resource-constraint edge devices, such as raspberry pi,
which has only 1GB memory.

• Communication-efficient. In EdgeSplit, only activations
of the partition layer and partial of full weights are
transmitted between edge devices and the server, which
reduces network pressure and achieves fast training.

• No Accuracy Loss. EdgeSplit only offloads partial train-
ing tasks to the FL server. It does not compress the data
or modify any hyper-parameters of the training. There is
no accuracy loss of EdgeSplit compared to FL.

III. MODEL SPLITTING AND BANDWIDTH ALLOCATION

This section shows details about the task scheduling to
decide the best model partition points for each edge device.

System Model. We consider a network consisting of M
edge devices and a server. The edge devices have heteroge-
neous computation capabilities, and the server is located in the
remote cloud and is much more powerful than edge devices
in terms of computation capability. The edge devices and the
server are interconnected, and the total bandwidth between the
server and edge devices is denoted by B. Bandwidth between
an edge device i and the server is Bi, 1 ≤ i ≤ M . We
assume the DNN model is with N feasible partition layers. Oj

represents the size of output/activations of layer j, 1 ≤ i ≤ N .
Pj is number of parameters from layer 1 to layer j.

Problem Formulation. The forward computation time
T f
batch, the back propagation time T b

batch, and communication
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time for edge device i in a batch is calculated by the following
equations:

T f
batch =

N∑
j=1

T f
i,j ∗Xi,j +

N∑
j=1

Sf
i,j ∗Xi,j (1)

T b
batch =

N∑
j=1

(Sb
i,j + T b

i,j) ∗Xi,j (2)

T g
batch =

∑N
j=1 Oj ∗Xi,j

Bi
∗ 2 (3)

where Xi,j is a binary variable. Xi,j equals to 1 if layer j of
the model is selected as the partition point for edge device i.
Otherwise, Xi,j equals to 0. T f

i,j is the forward time from layer
1 to layer j on device i. Sf

i,j is the forward time from layer
j+1 to end layer on the server. T b

i,j is the backward time from
layer j to layer 1 on device i. Sb

i,j is the backward time from
end layer to layer j + 1 on the server. Hence,

∑N
j=1 T

f
i,j ∗

Xi,j represents the feed forward time on local edge device
i, and

∑N
j=1 S

f
i,j ∗ Xi,j represents the rest of feed forward

time performed on the server.
∑N

j=1 Oj ∗ Xi,j indicates the
amount of activations/gradients for device i. The activations
and gradients are assumed to have the same size, as they are
decided by the shape of the partition layer, i.e., the number of
neurons in this layer.

Note that edge device i also has to receive the initial weights
from the server at the beginning of the training and send
back the updated weights when finishing a round of training.
The communication time to receive and send the weights is
calculated by Eq. (4), where Pj is the number of parameters
from layer 1 to layer j.

Tw
batch =

∑N
j=1 Pj ∗Xi,j

Bi
∗ 2 (4)

The time for a round of training of edge device i is shown
in Eq. 5, where b is the number of batches.

T r
i = b ∗ (T f

batch + T b
batch + T g

batch) + Tw
batch (5)

Objective. The problem of minimizing the training time of
EdgeSplit is formulated as follows. We denote this problem
as P1. As shown in the objective function Eq. (6), the overall
training time is determined by the maximum training time of
edge devices, and our objective is to minimize the maximum
training time for acceleration.

P1: min
Xi,j ,Bi

max {T r
1 , T

r
2 , ..., T

r
i }

M
i=1 (6)

N∑
j=1

Xi,j = 1, ∀i (7)

M∑
i=1

Bi ≤ B (8)

Algorithm 1: Joint model partition and bandwidth
allocation
Input: Profiled data T f

i,j , Sf
i,j , Sb

i,j , T b
i,j , Oj , Pj ; total

bandwidth B; number of batches b
Output: the model splitting strategy Xi,j and

bandwidth allocation strategy Bi

1 Initialize Bi for all edge devices;
2 Initialize a large one-round training time Topt ← INF ;
3 for iterations do

// Step 1
4 Calculate X∗

i,j∗ by solving Eq. (10);
5 Fix model splitting strategy by assigning

X∗
i,j∗ ← 1;

// Step 2
6 Solve convex problem P2 and get optimal

objective value T r∗

i∗ and B∗
i for all edge devices;

7 if Topt > T r∗

i∗ then
8 Topt ← T r∗

i∗ ;
9 Fix B∗

i for all edge devices;
10 else
11 break;
12 end
13 end
14 return X∗

i,j∗ , B∗
i

Problem Solution. There are both binary variable Xi,j and
continuous variable Bi in P1. The problem is a mixed integer
non-linear problem, which is proven to be NP-hard in literature
and is hard to solve. To solve the problem, we first simplify the
original problem P1 and then propose an efficient alternating
algorithm to solve it. T r

i can be simplified and rewritten as
follows:

T r
i =

N∑
j=1

(Ai,j +
Cj

Bi
) ∗Xi,j (9)

where Ai,j = b∗ (T f
i,j +Sf

i,j +Sb
i,j +T b

i,j) and Cj = (b∗Oj +
Pj) ∗ 2. In Eq. (9), Ai,j and Cj are deterministic and there
are two variables Xi,j and Bi. We observe that once fix Bi,
there is an analytical solution for Xi,j , indicated by Eq. 10,
and once fix Xi,j , the original problem P1 becomes a convex
problem P2, indicating by Eq. 11. Instead of relaxing Xi,j to a
continuous variable, which is usually adopted, we propose an
alternative minimization method to solve the problem, which
alternatively searches and optimizes Xi,j and Bi. There are
three steps of the method.

Xi,j =

1, j = argmin
j

(Ai,j +
Cj

Bi
)

0 otherwise.
(10)

P2: min
Bi

max {T r
1 , T

r
2 , ..., T

r
i }

M
i=1 (11)

The algorithm is shown in Alg. 1.
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IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We use Nvidia Jetson Xavier AGX to represent physical
devices. Xavier AGX is with 32GB memory and 12 cores.
For the FL server, we employ a robust server equipped with
64GB memory to manage the edge devices and the training
process. To simulate virtual edge devices, we utilize an edge
server capable of hosting Docker containers emulating virtual
edge devices. The edge server is with 192GB Memory and
128 cores CPUs. Docker’s flexibility allows us to easily
adjust the number of CPU cores and the memory allocated to
each container, effectively varying their computational power.
Consequently, a container with a greater number of CPU cores
exhibits enhanced computational capabilities.

B. Datasets and Models

We conduct tests using various DNN models, including
LeNet, VGG-16, ResNet-50, and ResNet-101. They are classi-
cal and representative models and are extensively used in both
academia and industry. Moreover, they have a variant depth
of neural network from 5 to 101 layers, with varying sizes of
parameters and computation workloads. We use three standard
datasets, i.e., Fashion-MNIST, MNIST, and CIFAR-10.

C. Baselines and Metrics

We compare EdgeSplit with the following three baselines.
1) FedAvg [3]. Edge devices perform the local training of the
full model, and the server only conducts weights aggregation.
The bandwidth is equally shared among edge devices. 2)
Adaptive FL. Adaptive bandwidth allocation for accelerating
FL is used in [11], [12]. In this case, model training is also
done locally. However, the bandwidth allocation is decided by
solving problem P2 in § III. 3) SplitFed [8]. Partition points
for all the edge devices are identical. We allocate half of the
layers on the edge devices and half of them on the server.

D. Results and Analysis

In our experiments, we evaluate the performance of EdgeS-
plit and compare it with other baseline methods under a variety
of conditions. Throughout these tests, we maintain a client
selection ratio of 1, implying that all edge devices are involved
in the training process. Additionally, we set the batch size to
128 and keep the number of local epochs at 1.

A hybrid testbed is utilized to simulate the diversity of
heterogeneous edge devices, enabling a quantitative analysis
of EdgeSplit’s performance. For this purpose, we configure
the memory of the emulated devices (represented by Docker
containers) to be 12GB, which is suitable for training larger
models, e.g., ResNet50 and ResNet101. To further emulate
a range of virtual edge devices with varying computational
powers, we set up these containers with different CPU core
configurations: 1 core, 3 cores, and 5 cores. The number of
four types of edge devices is identical.

Table I presents the training times per round involving
eight edge devices operating under a 30Mbps bandwidth.
It’s evident that model partitioning methods, namely SplitFed

and EdgeSplit, significantly enhance training speeds. This
improvement is attributed to the model split, which not only
shortens local training duration but also delegates a portion
of computational tasks to the more capable FL server, thus
speeding up the process. Notably, EdgeSplit surpasses SplitFed
in performance, with up to a 5.5x increase in training speed
for ResNet50. This is due to EdgeSplit’s ability to adaptively
select partition points according to the varying resource ca-
pacities of each edge device. We also note that Adaptive
FL exhibits performance akin to Vanilla FL in this scenario.
This similarity in performance is likely because the avail-
able bandwidth is relatively sufficient, making computation
the primary limiting factor. Furthermore, Figure 2 illustrates
the relationship between training time and accuracy. Here,
EdgeSplit demonstrates a reduced training time per round and
achieves rapid convergence without compromising accuracy.

V. RELATED WORK

A. Efficient Federated Learning

Previous works usually focused on reducing the total
amount of transmission bits to improve communication ef-
ficiency. Sparsification [13] and quantization [14] are two
notable methods. The former selects only a fraction of the
parameters (e.g., gradient or weights) to be sent to the FL
server. The latter aims to represent the model update with
fewer bits, e.g., using 8-bit or 16-bit low-precision repre-
sentation. Other works consider heterogeneous computation
and networking resources to improve efficiency. [11] jointly
optimize the batch size selection and communication resource
allocation in wireless federated edge learning systems. [12]
and [15], [16] optimize the aggregation frequency considering
heterogeneous local edge resources. [17] formulates a joint
user selection and resource allocation policy under limited
bandwidth to minimize the training loss. However, those works
neglect the resource constraint of edge devices. Some edge
devices with limited memory may not have the ability to
burden the training tasks due to memory constraint.

B. Split Learning

Model spliting is previously used for collaborative model
inference [18], [19]. Recently, some works also use model
splitting to train the model in edge computing environments.
[6], [7] proposed split learning, which partitions the deep
neural network into two parts, where the shallow part is trained
on the client, and the deep part is trained on the server. Such
schema can leverage the heterogeneous computing capacity of
the clients and server to enable large model training on low-
resource mobile devices. However, the training is performed
in a sequential manner. SplitFed [8] is the first attempt to
integrate splitting learning and federated learning to support
parallel and distributed model training. [9] fixes the first layer
of the model on clients and adaptively adjusts the local batch
size catering to the amount of local data. LocSplitFed [10]
leverage local loss function to avoid model aggregation in
each round for reducing the amount of data transmission.
However, they do not consider how to split the model for faster
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TABLE I
COMPARISON OF PER-ROUND TRAINING TIME. BEST PARTITION POINTS AND ACCELERATION RATIO TO VANILLA FL ARE GIVEN.

Model FedAvg Adaptive FL SplitFed Acceleration EdgeSplit Best Partition Points Acceleration

LeNet 237.9 234.2 164.3 1.4x 134.8 [1,1,1,1,2,2,4,4] 1.76x
VGG16 969.6 953.2 384.2 2.5x 243.4 [1,1,3,3,13,13,13,13] 3.9x

ResNet50 1806 1800.4 696.6 3.0x 330.2 [1,1,1,1,2,2,49,49] 5.5x
ResNet101 1355.7 1352.3 693.6 1.9x 308.1 [1,1,1,1,1,1,8,8] 4.4x
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Fig. 2. Convergence Time v.s. Accuracy. EdgeSplit achieves fast convergence without accuracy loss

convergence with respect to the heterogeneous computation
resources, and they do not consider the networking model in
practical federated learning systems.

VI. CONCLUSION

In this work, we propose EdgeSplit to expedite feder-
ated learning on heterogeneous and resource-limited edge
devices. By segmenting a full DNN model adapting to the
heterogeneous resources of edge devices, EdgeSplit facilitates
the training of large-scale models on devices with limited
resources. It offloads a portion of the training workload to
the more powerful FL server, thereby significantly reducing
the total training duration. Experiments under various settings
show the performance of EdgeSplit surpasses the baselines.
EdgeSplit can achieve notable acceleration by jointly deciding
the optimal model partition point and bandwidth allocation for
each edge device.
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