
Graph Isomorphism—Characterization and Efficient Algorithms
Jian Ren and Tongtong Li

Department of ECE, Michigan State University, East Lansing, MI 48824 USA. email: {renjian, tongli}@msu.edu

Abstract—The graph isomorphism problem involves determin-
ing whether two graphs are isomorphic and the computational
complexity required for this determination. In general, the
problem is not known to be solvable in polynomial time, nor
to be NP-complete. In this paper, we prove that for undirected
graphs, the complexity in determining whether two graphs are
isomorphic is at most O(n3).

Index Terms—Undirected graph, characterization, isomor-
phism, algorithm, polynomial time complexity

I. INTRODUCTION

Graphs are data structures used to represent objects and
their relationships [1]. The objects are also sometimes referred
to as nodes or vertices, while the relationships are known as
edges. Essentially, graphs provide descriptions of items that
are interconnected by relations.

Graphs are widely used in machine learning as a tool to
predict links and classify nodes [2]. By loading the data into
the graph database, the data science library can be used to
train a machine learning model and make predictions.

Deciding whether two graphs are isomorphic is a classical
algorithmic problem that has been researched since the early
days of computing. Graph isomorphism involves determining
when two graphs possess the same data structures and data
connections [3]. It is widely used in various areas such as
social networks, computer information system, image process-
ing, protein structure, chemical bond structure, etc.

Unfortunately, the general graph isomorphism problem is
not known to be solvable in polynomial time nor to be
NP-complete, and therefore may be in the computational
complexity class NP-intermediate [4], [5]. As a result, this
problem was viewed as an open problem [6], [7].

In this paper, we investigate the graph isomorphism prob-
lem using the eigenvalues and eigenvectors of the adjacency
matrices of the graphs. Eigenvalues and eigenvectors of square
matrices have found extensive applications across various
domains. Eigenvalues are used in computer graphics to per-
form transformations on objects, such as rotating or scaling.
For example, when an image is resized, the eigenvalues of
its covariance matrix can be used to preserve its principal
components and avoid distortion, because the eigenvectors
of the covariance matrix are actually the directions of the
axes, while eigenvalues are simply the coefficients attached to
eigenvectors, which given the amount of variance carried in
each principal component [8]. Eigenvalues have been widely
used in signal processing to extract meaningful features from
large datasets. For example, in image processing, the eigen-
values of a matrix of pixel intensities can be used to identify
the most significant patterns and structures in the image [9].
Google’s extraordinary success as a search engine was due to
their clever use of eigenvalues and eigenvectors [10]. Claude
Shannon utilized eigenvalues to calculate the theoretical limit
of channel capacity. The eigenvalues are then essentially the

gains of the channel’s fundamental modes, which are recorded
by the eigenvectors. Eigenvalues have also been employed
to analyze the stability of structures and machines, such as
determining the natural frequency of a bridge and assessing
the likelihood of bridge oscillations or even collapse under
specific conditions.

The rest of this paper is organized as follows: In Section II,
the preliminary is provided. Our main results are presented in
Section III. We conclude in Section IV.

II. PRELIMINARY

A. Undirected Graph and Adjacency Matrix
An undirected graph is generally represented as a pair G =

(V,E), where V is the set of vertices, and E ⊂ V × V is the
set of edges satisfying (u, v) ∈ E if and only if (v, u) ∈ E.
The neighbors of a vertex v is N(v) = {w : (v, w) ∈ E}.

In graph theory, we say that G1 = (V1, E1) and G2 =
(V2, E2) are isomorphic if there exists a bijection f between
the vertex sets of V1 and V2 f : V1 → V2, such that any two
vertices u and v of G1 are connected in G1 if and only if f(u)
and f(v) are connected in G2, i.e., (u, v) ∈ E1 if and only
if (f(u), f(v)) ∈ E2. If an isomorphism exists between two
graphs, then the graphs are called isomorphic and denoted as
G1 ≃ G2.

In graph theory, the degree of a vertex v is the number of
edges connecting it, called degree of the vertex v and denoted
as deg(v). It is obvious that deg(v) = |N(v)|. From the
definition of isomorphism, G1 ≃ G2 implies that deg(v) =
deg(f(v)), which also implies that if deg(v) ̸= deg(f(v)),
then we cannot match up the two vertices.

In many applications, each edge E of a graph is associated
with a numerical value called a weight, denoted as w(E),
which might represent for example costs, lengths or capacities,
depending on the problem at hand. In this paper, we consider
the weight of all edges to be 1.

For a graph with vertex set V = {v1, · · · , vn}, the adja-
cency matrix, sometimes also called the connection matrix,
is a square n × n (0, 1)-matrix A such that its element
Aij = Aji = 1 if there is an edge from vertex vi to vertex vj ,
and 0 if there is no edge, and also Aii = 1 for all i, that is
1’s on its diagonal elements [11]. The elements of the matrix
indicate whether pairs of vertices are adjacent or connected
in the graph. If the graph is undirected (i.e., all of its edges
are bidirectional), the adjacency matrix is symmetric, that is
Aij = Aji.

Example 1. For the graph given below, the corresponding
adjacency matrix is shown to the right.

a

c

b

c

=⇒


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 .

2024 International Conference on Computing, Networking and Communications (ICNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 789

Definition 1. Let A be an adjacency matrix of a graph G. We
represent the matrix obtained by interchanging the ith and the
jth rows and the ith and the jth columns of matrix A as A[i↔
j]. We will refer to this operation as the (i, j) interchanging
of matrix A for simplicity.

The A[i ↔ j] operation defined in Definition 1 can be
represented in matrix multiplication form as follows:

A[i↔j] = EijAET
ij ,

where Eij is the matrix derived by interchanging the ith and
jth rows of the identity matrix In, that is

Eij =

1 i j n



1 1
. . .

0 · · · 1 i
...

. . .
...

1 · · · 0 j
. . .

1 n

.

The number of 1’s in a row or a column of matrix A is referred
as the weight of the row or column.

B. Eigenvalues and Eigenvectors

For an n × n square matrix A, a scale λ is called an
eigenvalue [12] if there exists a vector u such that

Au = λu. (1)

In this case, u is called an eigenvector of matrix A associated
with eigenvalue λ.

Let A be an n× n matrix, then the expression

det(xI −A) (2)

is a polynomial, called the characteristic polynomial of matrix
A, and

det(xI −A) = 0 (3)

is called the characteristic equation. The eigenvalues λ’s of
A defined in equation (1) are solutions of the characteristic
equation (3).

It follows from equation (3) that if λ is an eigenvalue of A,
then there exists a nonzero eigenvector u for equation (1).

For an n×n matrix A with characteristic polynomial given
by equation (2), the multiplicity of an eigenvalue λ of A is
the number of times λ occurs as a root of that characteristic
polynomial equation (3).

If A is a real symmetric matrix, then its eigenvalues are all
real numbers and the eigenvectors corresponding to distinct
eigenvalues are orthogonal. If A is a real n × n symmetric
matrix, then there exists an orthonormal (orthogonal and unit
vector) set of eigenvectors that forms the basis of the n
dimensional vector space.

III. OUR MAIN RESULTS

Theorem 1. The interchange operations on adjacency matri-
ces will not alter the weight of the columns or rows of the
matrix.

Proof. Let A be an n × n adjacency matrix of a graph and
1 ≤ i, j ≤ n are two integers, i ̸= j. The matrix A[i↔ j] is
derived from matrix A by interchanging the ith and jth rows
and columns of A, resulting in the interchanging Aii with
Ajj , and Aij with Aji. Since A is a symmetric matrix with
diagonal elements equal to 1, these four elements in A remain
unchanged. Therefore, the weight of the ith row or column
is simply exchanged with the jth row or column, while the
overall weight of the matrix A remains unchanged.

Note that this theorem holds due to the special structure of
the adjacency matrix, and it does not hold true in general even
for symmetric matrices.

Theorem 2. Let A1 and A2 be the adjacency matrices
of graphs G1 and G2, respectively. Then G1 and G2 are
isomorphic if and only if there exists a sequence of interchange
operations (i.e., a permutation matrix) that transforms the
adjacency matrix A1 to A2.

The proof of this theorem can be found in the full paper.
In addition to bridge isomorphism and interchange oper-

ations, Theorem 2 also provides an efficient algorithm to
transform graph G1 into its isomorphic counterpart G2, as
presented in Algorithm 1.

Algorithm 1 Transform graph G1 to its isomorphic graph G2

by transforming adjacency matrices A1 to A2

1: Let V1 = {1, 2, · · · , n}, V2 = {f(1), f(2), · · · , f(n)}
2: for i = 1 to n do
3: t = f(i)
4: for j = 1 to n do
5: while t < i do
6: t = f(t)
7: end while
8: end for
9: g(i) = t

10: A1 = A1[i, g(i)]
11: end for

Example 2. The following two graphs are isomorphic.

1

4

2

5 3

6

5

4

1

26

3

2024 International Conference on Computing, Networking and Communications (ICNC)

790

The adjacency matrices of the two graphs A and B are given
below:

A =


1 1 0 0 0 1
1 1 1 1 0 1
0 1 1 1 0 0
0 1 1 1 1 1
0 0 0 1 1 1
1 1 0 1 1 1

 , B =


1 0 1 1 1 1
0 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 0 1 0 1 0
1 0 0 1 0 1

 .

Suppose we want to transfer the vertices of V1 to V2 =
{2, 5, 3, 4, 1, 6}. Based on Algorithm 1, we can transform the
graph from matrix A to the graph in matrix B through the
following sequence of interchanging operations.

1) A[1↔ 2], which transforms the graph with adjacency
matrix A and the following graph and adjacency matrix
A1:

2

4

1

5 3

6 A1=


1 1 1 1 0 1
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 1 1 1
0 0 0 1 1 1
1 1 0 1 1 1


2) A[2↔5], which further transforms the graph with adja-

cency matrix A1 and the following graph and adjacency
matrix A2:

5 4

1

2

3

6 A2=


1 0 1 1 1 1
0 1 0 1 0 1
1 0 1 1 0 0
1 1 1 1 0 1
1 0 0 0 1 1
1 1 0 1 1 1


3) A[3↔ 6], which finally transforms the graph and the

corresponding adjacency matrix from A2 to B:

5

4

1

26

3

B=


1 0 1 1 1 1
0 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 0 1 0 1 0
1 0 0 1 0 1


Example 3. Based on Algorithm 2, we can transform ma-
trix B to matrix A, which transform the vertices V2 =
{1, 2, 3, 4, 5, 6} to V1 = {5, 1, 6, 4, 2, 3}, through the following
interchanging operations:

1) B[2↔1], which transforms B to

B1 =


1 0 1 1 0 0
0 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 0 1
0 1 1 0 1 0
0 1 0 1 0 1

 .

Algorithm 2 Transform graph G2 back to its isomorphic graph
G1 by transforming adjacency matrices A2 to A1

1: Let V1 = {1, 2, · · · , n}, V2 = {f(1), f(2), · · · , f(n)}
2: for i = 1 to n do
3: t = f(i)
4: for j = 1 to n do
5: while t > i do
6: t = f(t)
7: end while
8: end for
9: h(i) = t

10: A21 = A2[i, h(i)]
11: end for

2) B[5↔1], which transforms B1 to

B2 =


1 1 1 0 0 0
1 1 1 1 0 1
1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1


3) B[6↔3], which transforms B2 to A.

Since the interchange is an elementary matrix operation,
it does not alter the eigenvalues of the adjacency matrix.
Therefore, we have the following corollaries.

Corollary 1. Let A1 and A2 be the adjacency matrices of
graphs G1 and G2, respectively. If G1 and G2 are isomorphic,
then their eigenvalues are the same.

Corollary 2. Let A1 and A2 be the adjacency matrices of
graphs G1 and G2, respectively. If the eigenvalues of A1 and
A2 are different, then they are not isomorphic.

Corollary 3. Let A and B be n × n adjacency matrices of
two graphs. If the two graphs are isomorphic, then the total
number of 1’s (corresponding to the edges in the graphs) in
the two matrices should be the same.

From Corollary 3, we can conclude that if the number of
1’s of two matrices are different, then the two graphs are not
isomorphic.

However, the inverse of Corollary 3 is not true. In other
words, even if two matrices have the same number of 1’s,
they may not be isomorphic.

Example 4. For the following two graphs,

1 2

34

5 6

78

1 2

34

5 6

78

2024 International Conference on Computing, Networking and Communications (ICNC)

791

their adjacency matrices are

G =



1 1 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 0 0
1 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0
0 0 1 0 0 1 1 1
0 0 0 0 1 0 1 1


, H =



1 1 0 1 1 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1


.

Matrices G and H contain the same number of 1’s. However,
due to 0 being an eigenvalue of G but not of H , the two
corresponding graphs are not isomorphic.

Next, suppose two graphs are isomorphic, based on the
definition of graph isomorphism, the corresponding vertices
should have the same degree. Moreover, the subsequent vertex
should also have the same degree and structure. The vertex
and the associated structure are refereed to as the vertex tree.
Therefore, the corresponding vertices should have the same
vertex trees.

Based on this discovery, we can derive Algorithm 3.

Algorithm 3 Derive an isomorphic function to transform graph
G1 to graph G2

1: Let G1 and G2 be two graphs and their vertex sets are
V1 = {v1, · · · , vn} and V2 = {v̄1, · · · , v̄n}, respectively.

2: Derive the degree tree of all the vertex of both graph G1

and graph G2.
3: repeat
4: Select a vertex v ∈ V1.
5: if no vertex in V2 has the same vertex tree as v then
6: G1 ̸≃ G2 and stop
7: else
8: Select a vertex v̄ ∈ V2, that has the same vertex tree

as v and map f : v → v̄.
9: V1 ← V1\{v} and V2 ← V2\{v̄}.

10: end if
11: until V1 = ∅, or no v̄ ∈ V2 for the selected v.

Example 5. For the two graphs given in Example 2, the
degrees for the 6 vertices of graphs A and B are given below:

A : {2, 4, 2, 4, 2, 4}, B : {4, 2, 4, 4, 2, 2}.
Based on the degree information, we can derive the following
mapping g, which transforms graph B to graph A:

1) Since the degree of node 1B is 4, it can only be mapped
to one of the nodes in {2A, 4A, 6A}. Let’s map node 1B
to node 2A, i.e., define g(1B) = 2A.

2) Node 2B has degree 2, so it can only be mapped to a
node in {1A, 3A, 5A}. Define f(2B) = 5A.

3) Similarly, node 3B has degree 4, and can only be
mapped to the remaining nodes that have degree 2,
{2A, 4A, 6A}. However, since we have mapped node 1B

to 2A, we can only map node 3B to 4A or 6A. Let’s
select 6A, i.e., g(3B) = 6A.

4) Finally, we define g(4B) = 4A, g(5B) = 1A, g(6B) =
3A.

The above process can be demonstrated through the follow-
ing figure:

1A

4A

2A

5A3A

6A

1A

4A

2A

5A 3A

6A

5B

4B

1B

2B6B

3B

<latexit sha1_base64="y86fJ6BrebK0Mv+fltxDcqIv/jI=">AAACBnicbVC7SgNBFJ2NrxhfUUsRBoNgFXbFVxm0sbCIYB6QLGF2MrsZMjuzzNxVwpLKxl+xsVDE1m+w82+cPApNPHDhcM693HtPkAhuwHW/ndzC4tLySn61sLa+sblV3N6pG5VqympUCaWbATFMcMlqwEGwZqIZiQPBGkH/auQ37pk2XMk7GCTMj0kkecgpASt1ivttA4T2NRNZNMzaN0pGmkc9IFqrh2GnWHLL7hh4nnhTUkJTVDvFr3ZX0TRmEqggxrQ8NwE/Ixo4FWxYaKeGJXYfiVjLUkliZvxs/MYQH1qli0OlbUnAY/X3REZiYwZxYDtjAj0z643E/7xWCuGFn3GZpMAknSwKU4FB4VEmuMs1oyAGlhCqub0V0x7RhIJNrmBD8GZfnif147J3Vj69PSlVLqdx5NEeOkBHyEPnqIKuURXVEEWP6Bm9ojfnyXlx3p2PSWvOmc7soj9wPn8A9gKaGA==</latexit> g
=) <latexit sha1_base64="MXDYymDXhEQdKbJ6RGnhNKXNQxg=">AAAB9XicbVDJSgNBEK1xjXGLevTSGgRPYUbcjgFBPEYwCyRj6OnUJE16Frt7ImEI+BlePCji1X/x5t/YyeSgiQ+KerxXRVc/LxZcadv+thYWl5ZXVnNr+fWNza3tws5uTUWJZFhlkYhkw6MKBQ+xqrkW2Igl0sATWPf6V2O/PkCpeBTe6WGMbkC7Ifc5o9pI9y18SPigdZD1dqFol+wJyDxxpqQIU1Taha9WJ2JJgKFmgirVdOxYuymVmjOBo3wrURhT1qddbBoa0gCVm06uHpEjo3SIH0lToSYT9fdGSgOlhoFnJgOqe2rWG4v/ec1E+5duysM40Riy7CE/EURHZBwB6XCJTIuhIZRJbm4lrEclZdoElTchOLNfnie1k5JzXjq7PS2Wr5+yOHKwD4dwDA5cQBluoAJVYCDhGV7hzXq0Xqx36yMbXbCmEe7BH1ifP8K9kx0=</latexit>⌘⌘

Corollary 4. The corresponding rows and columns of the
adjacency matrices of two isomorphic graphs have the same
distribution of 0’s and 1’s.

Example 6. Let

A =


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 , B =


1 1 0 1
1 1 0 1
0 0 1 1
1 1 1 1

 .

The corresponding graphs are:

2

3

1

4

2

3

1

4

The characteristic polynomials for matrix A is x4−4x3+2x2+
4x−3 and the characteristic polynomials for matrix B is x4−
4x3 + 2x2 + 2x, which is different from that of A. Therefore,
the two graphs are not isomorphic. The inequivalence of these
two graphs can also be confirmed because the weights of the
rows and columns in their adjacency matrices are different.

Theorem 3. Let A and B be n × n adjacency matrices
of graphs G1 and G2, respectively. Then G1 and G2 are
isomorphic if and only if their adjacency matrices have the
same characteristic polynomial (the same eigenvalues).

The proof of this theorem will be provided in the full paper.

Corollary 5. Let A and B be n × n adjacency matrices of
graphs G1 and G2 that have the same set of eigenvalues
λ1, λ2, · · · , λn, all with single multiplicity. Let ui and vi be
the normalized (length equal to 1) eigenvector corresponding
to eigenvalue λi with respect to matrix A and B, respectively.
Let U = [u1 · · · un], V = [v1 · · · vn], i = 1, · · · , n, and
P = V TU , then P is a permutation matrix such that

PAPT = B.

Corollary 5 provides an efficient algorithm to find a permu-
tation matrix P such that

PAPT = B,

2024 International Conference on Computing, Networking and Communications (ICNC)

792

when all eigenvalues are distinct, that is have single multi-
plicity. In case that the multiplicity of some eigenvalues are
not single, even though the existence of such a permutation
is known, the matrix derived in this way may not be a
permutation matrix anymore.

However, when the multiplicities of some eigenvectors are
not single, the result may not always be true, as shown in the
following example.

Example 7. For the following two graphs

3

4 1

2

4 1

23

5 5

their corresponding adjacency matrices are given below:

A =


1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
0 0 1 1 1
0 0 1 1 1

 , B =


1 0 0 1 1
0 1 1 1 0
0 1 1 1 0
1 1 1 1 1
1 0 0 1 1

 .

The eigenvalues of these two matrices are −1,−1, 1, 1, 4, 2,
where both -1 and 1 are eigenvalues of multiplicity 2. Based
on this order, we derive the orthonormal matrices from the
eigenvectors of matrices A and B as follows:

U=



−
√
2
2 0 − 1

2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272√
2
2 0 − 1

2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272

0 0 0 −
√

34+2
√
17

√
17

34

√
34−2

√
17

√
17

34

0 −
√
2
2

1
2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272

0
√
2
2

1
2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272


,

and

V =



−
√
2
2 0 1

2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272

0 −
√
2
2 − 1

2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272

0
√
2
2 − 1

2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272

0 0 0 −
√

34+2
√
17

√
17

34

√
34−2

√
17

√
17

34√
2
2 0 1

2

√
34+2

√
17(17−

√
17)

272

√
34−2

√
17(17+

√
17)

272


.

It can be verified that

V UT =


1
2

1
2

1
2 0 − 1

2
− 1

2
1
2

1
2 0 1

2
0 0 0 1 0
1
2

1
2 − 1

2 0 1
2

1
2 − 1

2
1
2 0 1

2


is not even an integer matrix, let alone a permutation matrix.

However, it is easy to verify that we can construct a
permutation matrix P from the 5×5 identity matrix through 3
consecutive row interchanging operations: (2, 4), (3, 5), (4, 5),
that is for

P =


1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

 ,

we have
PAPT = B.

Based on Theorem 3, we can derive the following corollary.

Corollary 6. The complexity in determining whether two
undirected graphs are isomorphic is at most O(n3).

IV. CONCLUSION

In this paper, we analyzed the isomorphic problem of
undirected graphs and presented two major theorems to char-
acterize it. Specifically, we proved that determining whether
two undirected graphs are isomorphic has a complexity of
at most O(n3). Additionally, we also designed algorithms
to convert between isomorphic graphs along with multiple
examples.

This work was supported in part by the National Science
Foundation under Grant CCF-1919154 and Grant ECCS-
1923409.

REFERENCES

[1] Graph (discrete mathematics). [Online]. Available: https://en.wikipedia
.org/wiki/Graph (discrete mathematics)

[2] Z. Blumenfeld. Graph machine learning: An overview – key concepts
for getting started. [Online]. Available: https://towardsdatascience.com
/graph-machine-learning-an-overview-c996e53fab90

[3] M. Grohe and P. Schweitzer, “The graph isomorphism problem,”
Communications of the ACM, vol. 63, no. 11, p. 128–134, November
2020. [Online]. Available: https://doi.org/10.1145/3372123

[4] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,”
Journal of Symbolic Computation, pp. 94–112, January 2014. [Online].
Available: https://doi.org/10.1016/j.jsc.2013.09.003

[5] Graph isomorphism problem. [Online]. Available: https://en.wikipedia
.org/wiki/Graph isomorphism problem

[6] R. Karp, “Reducibilities among combinatorial problems,” in Complexity
of Computer Computations, R. Miller and J. Thatcher, Eds. Plenum
Press, New York, 1972, p. 85–103.

[7] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[8] Principal component analysis part 1: The different formulations.
[Online]. Available: https://towardsdatascience.com/principal-compone
nt-analysis-part-1-the-different-formulations-6508f63a5553

[9] How are eigenvalues used in real life?
[10] Applications of eigenvalues and eigenvectors. [Online]. Available:

https://www.intmath.com/matrices-determinants/8-applications-eigenva
lues-eigenvectors.php

[11] Adjacency matrix. [Online]. Available: https://mathworld.wolfram.com/
AdjacencyMatrix.html

[12] D. Margalit and J. Rabinoff. Interactive linear algebra. [Online].
Available: https://textbooks.math.gatech.edu/ila/ila.pdf

2024 International Conference on Computing, Networking and Communications (ICNC)

793

