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Abstract—With the widespread popularity of mobile internet,
an increasing number of IoT devices can use cloud services
to invoke deep learning to accomplish computer vision tasks.
Decision-based attacks (DBA), wherein attackers perturb inputs
to spoof learning algorithms by observing solely the output labels,
are a type of severe adversarial attacks against Deep Neural
Networks (DNNs) that require minimal knowledge of attackers.
Most existing DBA attacks rely on zeroth-order gradient estima-
tion and require an excessive number (>20,000) of queries to
converge. To better understand the attack, this paper presents
an efficient DBA attack technique, namely QE-DBA, that greatly
improves the query efficiency. We achieve this by introducing
dimension reduction techniques and derivative-free optimization
to the process of closest decision boundary search. In QE-
DBA, we adopt the Gaussian process to model the distribution
of decision boundary radius over a low-dimensional search
space defined by perturbation generator functions. Bayesian
Optimization is then leveraged to find the optimal direction.
Experimental results on pre-trained ImageNet classifiers show
that QE-DBA converges within 200 queries while the state-of-
the-art DBA techniques using zeroth-order optimization need
over 15,000 queries to achieve the same level of perturbation
distortion.

Index Terms—Adversarial Attack, Bayesian Optimization, Im-
age Classification, Internet of Things

I. INTRODUCTION

Recent advances in computation and learning have made
deep neural networks (DNNs) an important enabler for the
Internet of Things. However, DNNs have also shown vul-
nerabilities to adversarial examples - a type of maliciously
perturbed examples that are almost identical to original sam-
ples in human perception but can cause models to make
incorrect decisions ( [1]). Such vulnerabilities can lead to
severe and sometimes fatal consequences in many real-world
DNN applications such as autonomous vehicles, financial
services, and robotics. Therefore, it is critical to understand
limitations of current learning algorithms and identify their
vulnerabilities, which in turn helps to improve the robustness
of learning.

According to the knowledge available to the attacker, ad-
versarial attacks can be categorized into three primary types:
white-box attacks, score-based attacks, and decision-based
attacks. In white-box attacks e.g. [2] and [3], the attacker re-
quires complete knowledge of the architecture and parameters
of the target network. The latter two are black-box attacks in
which the attacker only observes inputs and outputs without
knowing internal architecture and parameters. In score-based

attacks (SBA), the attacker can only access the soft-label
output (real-valued probability scores) of the target model for
a given input. In decision-based attacks (DBA), a.k.a. hard-
label attacks, only the hard label of a given input is available.

Of the three attacks, DBA can lead to severe and ubiquitous
threats to practical systems because of the minimal required
knowledge on the victim model, and hence has attracted great
interests recently. However, DBA is also the most challenging
adversarial attack to design because of the relative insensitivity
of model outputs to input perturbation - it is often difficult for
the attacker to determine whether the change of perturbation
is preferred or not when the target model’s prediction does
not change. To make the attack stealthy, a DBA attacker
shall discover the decision boundary where a slight change of
perturbation will cause the model to yield different prediction
labels. In reality, cloud-based machine learning platforms often
limit the query frequency to thwart malicious queries. For
example, the Google cloud vision API only allows 1,800
requests per minute. Therefore, improving query efficiency is
critical for successful DBA attacks in practical systems. While
current research is mostly focused on improving the efficiency
of zeroth-order gradient estimation ( [4]–[7]), the overall query
complexity of DBA attacks remains impractically high – it
usually takes tens of thousands of queries to estimate the
gradient at each iteration of optimization.

In this work, we propose an efficient decision-based black-
box attack, namely QE-DBA, that searches adversarial exam-
ples via statistical information of the decision boundary radius.
Specifically, to reduce the search space, we introduce the
perturbation generation function to map the decision boundary
radius to a low-dimensional subspace. Instead of searching the
adversarial perturbation in the image-scale dimension directly,
we model the distribution of the decision boundary radius on a
reduced dimension using the Gaussian Process and search the
most possible low dimensional input that yields the optimal
perturbation using Gaussian optimization (BO). Experimental
results show that our method reduces the query complexity by
up to one order of magnitude as compared to the state of the
art including RayS.

The rest of the paper is organized as follows: Section II
reviews adversarial attacks and technical preliminaries. Section
III describes our technical intuition and Section IV elaborates
the design of QE-DBA. Experimental results are provided in
Section V. We conclude the paper in Section VI.
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II. RELATED WORK

A. Decision-based Adversial attacks

Decision-based Adversial attack (DBA) are one type of
adversarial attacks against learning systems where the attacker
has no knowledge about the model and can only observe inputs
and their corresponding output labels by querying the model.

DBA attacks are detrimental to learning systems because of
the minimal requirements on the knowledge of attackers. There
have been several DBA techniques in the literature. In [8], a
perturbed example is generated starting with a large perturba-
tion sampled from a proposed distribution. It then iteratively
reduces the distance of the perturbed example to the original
input through a random walk along the decision boundary. [9]
first proposed a formulation which turns DBA problem into
the problem of finding the optimal direction that leads to the
shortest l2 distance to decision boundary and optimized the
new problem via zeroth-order optimization methods. [5] and
[4] furthermore improve [9]’s query efficiency via estimating
the sign of gradient or optimizing the hyperparameters of
optimizing procedural. Recently, [7] further reduce the query
complexity of zeroth-order gradient estimation by projecting
the input space into a low dimensional subspace. However, this
work still relies on gradient estimation and does not support
arbitrary projection methods that may violate the smoothness
of the optimization function.

B. Bayesian Optimization

Bayesian optimization (BO) is a sequential optimization
method particularly suitable for problems with low dimensions
and expensive query budgets ( [10]). It contains two main com-
ponents - a probabilistic surrogate model, usually a Gaussian
Process (GP), for approximating the objective function, and
an acquisition function that assigns a value to each query that
describes how optimal the query is.

Gaussian Process is a statistic surrogate that induces a
posterior distribution over the objective functions ( [11]). In
particular, a Gaussian Process GP(µ0,Σ0) can be described
by a prior mean function µ0 and positive-definite kernel or
covariance function Σ0. In this paper, we adapt the Matern
5/2 Kernel ( [12]) as the covariance function, which is defined
as:

Σ(x, x′) = (1 +

√
5r

l
+

5r2

3l2
)exp(−

√
5r

l
)

where r = x− x′ and l is the length-scale parameter ( [13]).
Acquisition Function in Bayesian optimization is a func-

tion that evaluates the utility of model querying at each point,
given the surrogate model, to find the optimal candidate query
point for the next iteration ( [14]). Expected Improvement
(EI) and Upper Confidence Bound (UCB) are the two most
popular acquisition functions that have been shown effective
in real black-box optimization problems ( [12]). In black-box
adversarial attacks, most studies like [15] and [16] adopted EI
as the acquisition function because of its better convergence

performance ( [12], [13]). In this paper, we also use EI as the
acquisition function which is defined as:

EIn(x) = En[max(h(x)− h∗
n, 0)]

where h is the objective function and h∗
n is the best-observed

value so far. En[·] = En[·|D1:n−1] denotes the expectation
taken over the posterior distribution given evaluations of h at
x1, · · · , xn−1.

III. TECHNICAL INTUITION

In this section, we provide the technical intuition of our QE-
DBA attack. We first take an overview of problem formulation
and analyze the limitations of existing gradient-based methods.
Then we describe the motivation for our design.

A. Formulation of Decision-based Attack

The classification model F takes images as inputs and
outputs a K−dimensional probability vector which represents
confidence scores over the K classes (without loss of gen-
erality, we will take images as examples in the rest of this
paper). In decision-based setting, we can define a Boolean-
valued objective function hb : [0, 1]

d → {−1, 1} as following:

hb(γ) =

sign{max
i̸=y

[Fi(x+ γ)]− Fy(x+ γ)} (Untargeted)

sign{Fk(x+ γ)−max
i̸=k

[Fi(x+ γ)]} (Targeted)

(1)
where x ∈ Rd is the targeted data sample, y ∈ {1...K} is
its true label and Fi means i − th element of probability
vector. γ ∈ Rd is the perturbation added to the input data.
k ∈ {1...K} represents the target label. Notes that the
output of F is unavailable for decision-based attacker. So
the objective function hb can be considered as a black-box
function:

hb(γ) =

{
1 Attack success
−1 Attack failed

(2)

Obviously, directly maximizing hb is very difficult because
hb is neither continuous nor differentiable. To overcome this
problem, [9] formulate the decision-based attack problem as:

min
θ

g(θ) where g(θ) = argmin
∆>0

(
hb(x0 +∆θ) = 1

)
(3)

g(θ) represents the decision boundary radius from input x
along the ray direction θ. Then the DBA attack problem can be
converted to finding the ray direction with minimum decision
boundary radius regarding the original example x. While most
of existing works focus on how to solve the formula by
estimating the gradient through zeroth-order optimization, only
being able to access the decision in DBA makes solving (3)
inefficient in terms of query complexity. Specifically, the de-
cision boundary radius g(θ) is typically estimated by a binary
search procedure, and approximation of the gradient of g(θ)
via finite difference requires multiple rounds of computation
of g(θ). RayS, on the other hand, adopts hierarchical searching
to solve the formulation in a gradient-free fashion. However,
straightforward searching will discard statistical information
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that can be utilized in optimization methods. Moreover, RayS
conducts the searching process directly on the input space
which introduces significant query complexity especially when
the input dimension is large (e.g. color images).

B. Technical Intuition

In this work, we design an efficient DBA attack based
on the statistical properties of the decision boundary and
a reduced input search space. To this end, we define the
perturbation generator as a function S : Rd′ → Rd that takes
low dimensional inputs δ′ ∈ Rd′

(d′ << d) and outputs an
image-size perturbation δ ∈ Rd. Then we can formulate our
objective function g′(δ′) as:

min
δ′

g′(δ′) where g′(δ′) = argmin
∆>0

(
hb(x0 +∆

S(δ′)

|S(δ′)|
) = 1

)
(4)

In this formulation, we define the search direction in (3) using
normalized perturbation generated by S: θ = S(δ′)

|S(δ′)| . The value
of g′ can be evaluated via multiple decision-based queries
which we will discuss in section IV. Note that, although prior
work [7] has also adapted a projection matrix to reduce the
searching space in decision-based attack, they still aim to solve
problem (3) by approximating gradient g′(θ). This requires
the projection matrix to preserve smoothness of the objective
function. On the other hand, our method adopts derivative-free
optimization which allows us to support more complex or non-
differentiable perturbation generation functions to gain better
control over searching space selection. For example, the Perlin
noise generator will reduce the input space from all possible
images into images of Perlin noise.

Targeted Model

 Surrogate ModelAcquisition Function

Fig. 1: Workflow of Bayesian Optimization in QE-DBA

With objective function g′(δ′) available, the optimization
problem (4) is solvable using Bayesian Optimization. Adopt-
ing the logic in Figure (1), the attacker will query the boundary
radius g′(δ′) on the searching direction θ generated by the low
dimensional input δ′. The optimizer models the distribution of
decision boundary radius over the input space and acquires
the next most possible optimal input for querying until an
adversarial example near enough is found. In particular, for
each iteration t, based on observation set {δ′i, g′(δ′i)}

t−1
i=1 , we

use Gaussian process to model the radius distribution of all
possible directions. Then we use Acquisition Function to select

δ′t with the highest probability to generate the lowest radius
(smallest perturbation) according to the statistic distribution.
Then we query the model to compute g′(δ′t) and add the result
{δ′t, g′(δ′t)} to the observation set.

Compared to state-of-the-art methods that also adopt BO
in SBA ( [16], [17]) and DBA ( [18]), where both of them
formulate the attack as a constrained optimization problem
to maximizes the probability score (implicitly in DBA) of
the incorrect label, our optimization framework focuses on
optimizing the boundary distance which can be evaluated
via querying the decision-based model solely. Moreover, our
algorithm does not rely on predefined distortion constraints
like other BO-based attacks, where the attacker needs to define
the required boundary distance beforehand to trade the success
rate for perturbation quality.

IV. DECISION-BASED BAYESIAN OPTIMIZATION ATTACK

In this section, we describe an optimization framework for
finding adversarial instances for a classification model F in
detail. First we discuss how to compute g′(δ′) up to certain
accuracy using the Boolean-valued function hb. Then we will
solve the optimization problem via Bayesian Optimization and
present our full algorithm.

Algorithm 1: Distance Evaluation Algorithm
input : Boolean-valued query function hb of target

model, original image x0, low dimensional
input δ′, increase step size η, stopping
tolerance ϵ, maximum distance ∆max

output: g′(δ′)
θ ← S(δ′)

S(δ′) ; // Compute the searching

direction
// Fine-grained search
if hb(x0 + ηθ) = −1 then

vlow ← x0 + ηθ, vhigh ← x0 + 2ηθ;
while hb(vhigh) = −1 do

vlow ← vhigh, vhigh ← vhigh + ηθ;
if |vlow| ≥ ∆max then

return g′(δ′) = ∆max;
end

end
else

vlow ← 0, vhigh ← x0 + ηθ;
end
// Binary search between [vlow, vhigh]
while |vhigh − vlow > ϵ| do

vmid ← (vhigh + vlow)/2;
if hb(vmid) = −1 then

vhigh ← vmid;
else

vlow ← vmid;
end

end
return g′(δ′) = |vhigh|;
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A. Distance Evaluation Algorithm

Algorithm 1 elaborates how to evaluate g′(δ′) via queries
on Boolean-value function hb.

First, the attacker computes the search direction locally θ =
S(δ′)
|S(δ′)| . For a given low dimensional input δ′, attacker first
generates an image-size perturbation S(δ′) via the perturbation
generator S. Then normalize S(δ′) into a unit vector S(δ′)

|S(δ′)|
to represent the search direction θ. It is easy to notice that for
any given input δ′, there is always a search direction θ that
can be computed.

To evaluate the distance from input x0 to the decision
boundary along the direction θ, the attacker performs a fine-
grain search and then a binary search. For simplicity, we
assume the l2 distance here, but the same procedure can also
be applied to other distance measurements as long as vector
operations are well defined in their respective spaces. In the
fine-grained search phase, we cumulatively increase the search
distance to query the points {x0 + ηθ, x0 + 2ηθ, . . . } one by
one until hb(x0 + iηθ) = 1. Then we conduct a binary search
between the interval [x0+(i−1)ηθ, x0+iηθ], within which the
classification boundary is located. Note that, in practice, the
fine-grained search may exceed the numerical bounds defined
by the image (E.g. attacker cannot find an adversarial example
along this direction). We can simply assign a maximum
distance (e.g., the distance between all-black image and all-
white image) for this searching direction to guide the optimizer
away from the “hopeless” direction. Unlike the gradient-based
method that needs an accurate radius estimation via small ϵ
to evaluate the gradient, Bayesian Optimization only needs
statistical knowledge about each direction. Therefore, we can
use relatively larger ϵ to save query budgets.

B. Bayesian Optimization

The detailed procedure of QE-DBA is presented in Algo-
rithm 2. At beginning, we sample T0 random low dimensional
inputs δ′ from the input space and evaluate the distance g′(δ′)
using Algorithm 1. Then we iteratively update the posterior
distribution of the GP using available data D and query new
δ′ obtained by maximizing the acquisition function over the
current posterior distribution of GP until a valid adversarial
example within the desired distortion is found or the maximum
number of iteration is reached. Note that the query budget
shall be larger than the number of iterations because we need
multiple queries to evaluate the distance in Algorithm 1. The
alternative stop condition of the optimization procedure is to
set a maximum acceptable query budget.

V. EXPERIMENTS

In this section, we carry out an experimental analysis of
our QE-DBA attack. We first compare QE-DBA with other
decision-based attack baselines on naturally trained models.
Moreover, we also show the performance comparison against
models with run-time adversarial example detection. Then, we
examine how different types of perturbation generators affect
attack success rate and perturbation quality. All experiments
are carried out on a 2080 TI GPU.

Algorithm 2: Bayesian Optimization for DBA
input : Targeted input x0, Guassian process model

GP, Acquisition function A, Initialization
sample size T0, Maximum sample size T ,
Distance evaluation function g′(·), stopping
tolerance ϵ, D = ∅.

output: Adversarial Examples x′

// Intialization
for t = 0, 1, 2..., T0 − 1 do

Generate input δ′t randomly;
D ← D ∪ (δ′t, g

′(δ′t));
end
Update the GP on D;
// Optimization via GP and

Acquisition function
while t < T do

t← t+ 1;
δ′t ← argmaxδ′ A(δ′, D);
if |g′(δ′t)| > ϵ then

D ← D ∪ (δ′t, g
′(δ′t)) and update the GP;

else
θ =

S(δ′t)
|S(δ′t)|

;
return x0 + g′(δ′t)θ;

end
end
// Return nearest adversarial example

θ =
S(δ′∗)
|S(δ′∗)|

| (δ′∗, g(δ′∗)) ∈ D such that g(δ′∗) ≤
g(δ′) ∀(δ′, g′(δ′)) ∈ D;

return x0 + g′(δ′∗)θ;

A. Experiments settings

Baselines: We first compare our algorithm with state-of-the-
art decision-based attacks: Opt-Attack ( [9]), HSJA ( [5]),
SignOPT ( [4]), Bayes attack ( [18]) and RayS ( [19]). Note
that we only compare the attack success rate with Bayes
attack because they formulate the attack as an optimization
problem with a constraint on perturbation distance. Therefore,
Beyas attack only outputs adversarial examples with fixed
perturbation distance.
Data and Models: We conduct experiments on two dis-
tinct datasets with different input size: ImageNet ( [20]) and
CIFAR-10 ( [21]). In ImageNet, we use two pre-trained DCN
models: ResNet-50 ( [22]) and Inception V3 ( [23]). ResNet-
50 takes input images with dimensions 224 × 224 × 3 while
Inception V3 take images with dimensions 299× 299× 3. In
CIFAR-10, we pre-trained networks that achieved an accuracy
of 84% and take images with dimensions 32× 32× 3.
Metrics: To measure the efficiency, we use the average l∞
distance between perturbed and original samples over a subset
of test images. For each method, we restrict the maximum
number of queries to 1000. As an alternative metric, we also
evaluate the attack success rate (ASR). An adversarial attack
is considered a success if the distortion distance between
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Fig. 2: Average distance versus query budgets on ResNet and Inception. 1st and 3rd cols: untargeted l∞ distance. 2nd and 4th
cols: untargeted Attack Success Rate

generated adversarial examples and original image does not
exceed a given distance threshold.
Hyperparameters: In our experiments, we use Perlin noise
function from [16] as perturbation generator which has low
dimensional inputs {λx, λy, ϕsin,Ω}. The perturbation value at
point (x, y) with parameters can be formulated using following
equation:

Sper(x, y) = sin((

Ω∑
n=1

p(x · 2
n−1

λx
, y · 2

n−1

λy
)) · 2πϕsin) (5)

where the p(x, y) is the perlin noise value for coordinates
(x, y). In Bayesian Optimization, we use uniformly random-
ized low dimensional inputs as initialization samples for
optimization and the initialization sample size T0 = 5. In the
Distance Evaluation Algorithm, we set the increase step size
η = 16

255 and set the stopping tolerance ϵ = 0.01.

B. Performance Comparison on ImageNet

In this subsection, we compare QE-DBA with other base-
lines on the ImageNet dataset which represent the case that
the target image size is relatively high.

Figure 2 shows the average l∞ distance and attack success
rate against the query budgets. We compare the l∞ distor-
tion and attack success rate of our framework with baseline
DBA attacks on classifiers trained with ResNet and Inception
networks. We can see that QE-DBA consistently achieves a
smaller distortion within 1000 queries than baseline methods.
As a derivative-free method, QE-DBA can converge within
200 query budgets, while zeroth order optimization based
techniques like OPT-Attack, HSJA, and SignOPT1 need over
15,000 queries to achieve the same level of perturbation
distortion ( [5]). Although RayS adopts another derivative-free
method, it is able to achieve similar perturbation distortion
only after around 1000 queries. The obvious advantage of
query efficiency of QE-DBA is mainly attributed to facts:
1) QE-DBA adopts the Bayesian Optimization to utilize
the statistical information while RayS relies solely on a

1Note that the relatively weak performance of SignOPT is due to the fact
that SignOPT is designed for l2 norm attack while this experiment is under
the l∞ norm setting.

straightforward hierarchical searching; 2) QE-DBA reduces
the searching space via perturbation generators, which results
in a much higher convergence rate. In rows 2&4 we also
compare our attack success rate with Beyas attack that also
adopts BO into DBA setting. Although Beyas attack is also
able to converge within very few queries because both of
our methods have introduced dimension reduction to facilitate
optimization efficiency in terms of query number. QE-DBA
can reach a significantly higher attack success rate because
we reformulate the problem to optimize the decision boundary
radius directly which will lead to better perturbation quality.

Notes that QE-DBA shows a much smaller perturbation
distance in query 0 because we set the increase step size
η = 16

255 as hyperparameter to generate perturbation with l∞
norm equal to 16

255 during initialization. Unlike other works
that initialize the algorithm using random perturbations, QE-
DBA uses perturbation generator to reduce the input space
to a relevant subspace with a higher possibility of finding
adversarial examples.

C. Performance comparison Against Run-time Adversarial
Example Detection

In addition to defenseless, we also carried out experiments
on a classifier that has the run-time adversarial sample detec-
tion function ( [24]). The function detects abnormal inputs by
comparing a DNN model’s prediction on the original input
with that on squeezed inputs (by reducing the color bit depth
of each pixel or spatial smoothing). As shown in Fig.3, QE-
DBA achieves the highest overall attack success rate and best
query efficiency as compared with the other four hard-label
attack baselines.

D. Performance Comparison on CIFAR10

In addition to the dataset with high-resolution images, we
also compare our work with RayS and HSJA on the CIFAR-
10 dataset via both l2 and l∞ attacks. For a fair comparison
with previous works, we use the same pre-trained networks
that achieved an accuracy of 84% on CIFAR-10. As shown in
Table I, within 500 query budgets, compare to gradient-based
HSJA attack, QE-DBA consistently achieves a higher attack
success rate while requiring fewer queries. As compared to
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Fig. 3: Average distance versus query budgets on ResNet
with adversarial example detection (row 1) and Inception with
adversarial example detection (row 2). 1st col: l∞ distance.
2nd col: ASR

Avg. l∞ Distance ASR (l∞ ≤ 16
255

)
Queries 50 250 500 50 250 500

QE-DBA 0.112 0.060 0.049 43% 70% 73%
RayS 0.228 0.068 0.039 39% 58% 85%
HSJA 0.298 0.227 0.220 8% 34% 38%

Avg. l2 Distance ASR (l2 ≤ 5)
Queries 50 250 500 50 250 500

QE-DBA 5.19 2.62 2.20 59% 86% 89%
RayS 11.38 3.68 2.10 18% 73% 91%
HSJA 10.10 8.18 7.29 25% 48% 50%

TABLE I: Performance comparison on CIFAR-10 dataset.
Rows 1-5: l∞ attack. Rows 6-10: l2 attack

RayS, our method achieves a better attack success rate and
perturbation quality while the query budget is very low (<
250). RayS will reach a higher attack success rate and lower
perturbation distance as the query budgets keep increasing.
That’s because the input searching space of CIFAR-10 (32×
32×3) is relatively low. The dimension reduction in QE-DBA
will not contribute much in terms of perturbation quality.

VI. CONCLUSION

In this paper we introduce a new decision-based attack QE-
DBA which leverages Bayesian optimization to find adver-
sarial perturbations with high query efficiency. With the op-
timized perturbation generation process, QE-DBA converges
much faster than the state-of-the-art DBA techniques. As
compared to existing decision-based attack methods, QE-DBA
is able to converge within 200 queries while the state-of-the-
art DBA techniques need over 15,000 queries to achieve the
same level of perturbation distortion.
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