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Abstract—Malware is one of the leading cybersecurity chal-
lenges, as it disrupts the normal use of devices, causes financial
losses, and steals user information. Deep learning-based methods
have been increasingly used in the malware analysis field recently.
In this work, we propose a novel multi-input Transformer-based
approach for detecting malicious Portable Executable (PE) files.
The PE raw bytes were partitioned into different byte sequences
as multiple inputs in our proposed multi-input framework.
This framework is comprised of convolutional neural networks
(CNNs) and Transformer networks and is capable of independent
learning of each input, thereby enabling a more expressive
representation of the data. As a result, it is possible to capture
both local spatial and time-series features, resulting in greater
data comprehension. Our proposed approach outperforms the
two reference methods, a LightGBM and a CNN-based model,
as indicated by four metrics: accuracy, recall, precision, and F1
score.

Index Terms—malware detection, deep learning, Portable Ex-
ecutable (PE) files, Transformer, multi-input deep learning

I. INTRODUCTION

Identifying malware is a critical priority in cybersecurity, as
malicious software poses serious threats to computer systems,
networks, and sensitive data. Extensive research has been
conducted on malware analysis across different applications.
Howeyver, conventional malware detection methods based on a
set of known signatures show limited scalability when dealing
with a vast number of applications, and they lack the ability
to detect recently produced malicious software. Subsequently,
researchers begin to adopt machine learning (ML) approaches
in malware detection [1].

With the rapid growth of neural networks, deep learning
(DL) techniques have emerged as the cutting-edge of inno-
vation for a wide range of applications, including malware
detection [2]. As Microsoft Windows is one of the dominant
desktop operating systems (OS) worldwide, from a practical
point of view, we would like to investigate DL solutions for
detecting malicious Portable Executable (PE) files. PE is a file
format that provides the Windows OS loader information to
handle wrapped executable code. Recent studies in PE mal-
ware detection using DL-based techniques have investigated
many types of neural network architectures [3]-[7], such as
fully-connected (FC) networks, convolutional neural networks
(CNNs), and long short-term memory (LSTM). CNNs and
recurrent neural networks (RNNs) models are commonly used
in related studies [3], [S], [7]. CNNs are the best at capturing
spatial features, but they are unable to capture representational

979-8-3503-7099-7/24/$31.00 ©2024 IEEE

information in the time-series domain. As for RNNs, despite
the fact that they have achieved significant success in the
natural language processing (NLP) field, the inherent sequen-
tial nature of RNNs prevents parallelization across all time
points in a training sample. Hence, the Transformer architec-
ture [8], which adopts a multi-head self-attention mechanism
that prevents recurrent processing in RNNs, and obviates the
consideration of sequence distance, has emerged as a viable
candidate in our work.

Compared to ML-based methods, DL-based methods,
specifically neural networks, possess the capability to directly
integrate raw data without requiring supplementary feature
extraction procedures. This is because of their ability to
identify and uncover meaningful hidden features and repre-
sentations from the input data. Nevertheless, using extracted
features rather than raw data to train deep learning networks
is still the common methodology in the field of PE malware
detection studies [S]-[7]. According to the literature review,
it indicates that there is a very small amount of research on
training a model with PE raw byte sequences, which leads
us to conclude that the potential of PE raw bytes hasn’t
yet been fully exploited. As such, in this study, we utilize
PE raw data as network inputs for our proposed approach.
Then we design an end-to-end Transformer-based model to
detect malicious PE files and train our model using two public
datasets, DeepDetectNet [6] and Ransomary [11].

The main contributions are summarized as follows:

o We leverage CNNs and Transformer networks and propose
a novel Transformer-based DL approach for static Windows
PE malware detection. By incorporating both architectures,
the model can leverage the strengths of each component
for greater data representation and comprehension, and
effectively identify whether the given unknown PE file is
malicious or benign.

o We explore the potential benefits of leveraging PE raw
byte sequences that are acquired based on PE headers in
our model and introduce a multi-input framework that can
independently learn from each input, thereby enabling a
more expressive representation of the data.

« We experimentally evaluate the performance of our proposed
approach against two reference methods with different data
fusion strategies and demonstrate its viability and applica-
bility using the two public datasets.
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TABLE I
NOTABLE RELATED WORKS IN WINDOWS PE MALWARE DETECTION TASKS

Raw Classifier Network Input
Reference
Data M1, DL Static'  Dynamic’
This paper v - v CNN + Transformer (4 Raw bytes: PE file header (24B), and optional header (240B).
Raff et al., 2018 [4] v - v CNN v Raw bytes: the entire PE file.
Raff et al., 2017 [3] v - v FC, LSTM v Raw bytes (328B): MS-DOS, COFF, and optional header.
Alam et al., 2023 [9] - - v Transformer v 8 groups of hand-crafted features.
Chaganti et al., 2023 [5] - - v CNN v Import functions, 4 general info, API call sequences, and PE image.
Fang et al., 2020 [6] - - v FC v Import functions, 10 general information, and bytes entropy feature.
Zhang et al., 2020 [7] - - v CNN + BiLSTM - API call sequences.
Anderson & Roth, 2018 [10] - v LightGBM v 8 groups of hand-crafted features.

! Static features: Adopting static features has a crucial advantage of allowing for the collection of features without the need to execute the file, which could function as the first

step in recognizing possible threats and shielding the system from risk of infection.

2 Dynamic features: Collecting dynamic features requires executing the file in order to gather information about its operation. Even though the binary is typically executed in a

virtual environment, it still poses a risk to potential threats.

II. RELATED WORK
A. Static vs. Dynamic Malware Analysis

Table I summarizes relevant works that employ various
methods for Windows PE malware detection. Static PE binary
files can be used to derive either hand-crafted features, bytes n-
gram, or raw bytes for static malware analysis. For instance,
in [6], Fang et al. employed feature engineering to extract
hand-crafted features from raw data to perform static feature
extraction of PE files. In [10], Anderson and Roth introduced
the EMBER dataset, which is an open dataset that includes
extracted features from 1.1M binary PE files. They also
demonstrated a baseline model for malware detection using
LightGBM, a ML-based gradient boosting framework, with
the EMBER dataset. Kolter and Maloof [12] used byte-level
n-grams as features to train various ML-based models, yet
it is reported that the performance of the n-gram approach
is relatively poor and computationally expensive [13]. Mean-
while, there are a few studies that apply raw data from PE files
directly to the network [3], [4]. In brief, utilizing raw bytes
has the advantage of requiring less domain expertise and effort
than extracting hand-crafted features.

Static malware analysis has the benefit of being able to
identify unsafe files prior to their execution, whereas dynamic
analysis involves executing the PE file in order to acquire
information on how it functions. However, the main drawback
of dynamic analysis is that it requires executing the PE file in
order to gather information about its operation. Even though
the binary is typically executed in a virtual environment, it still
poses a risk to potential threats. Identifying potential security
threats without infecting the analytic environment is critical.
Hence, it is crucial to detect or identify malicious PE files
prior to execution.

On the other hand, a multimodal deep learning approach
has been proposed for Windows PE malware detection tasks.
In [5], Chaganti et al. employed a feature-fusion method, in
which both static and dynamic features are applied concur-
rently. An early fusion input strategy is adopted in their work
where the four types of features are concatenated as a 2,128
by 1 feature vector before feeding into a single CNN network.
However, in this scenario, the network will acquire features

based on the complete input sequence, potentially limiting
its ability to learn more expressive feature representations
independently based on the four types of features.

To obviate the limitation, in our work, we utilize raw
data, specifically the raw byte sequences derived from the
PE header, to train our malware detection model. Each byte
sequence is fed into a distinct sub-network, with the goal of
learning each input separately to build more expressive feature
representations of the data. As a consequence, the model with a
multi-input approach may learn to generalize across multiple
inputs and recognize shared patterns, resulting in improved
generalization performance and better management of noise or
variations in the data. As such, we would like to explore the
potential benefits of leveraging PE raw byte sequences in our
model and examine the advantages of a multi-input approach.

B. DL Architectures for Windows PE Malware Detection

As most studies use CNNs or LSTM for implementation, the
variations of deep neural network architectures that are trained
using PE raw byte sequences have not been widely researched.
The Transformer architecture, proposed by Vaswani et al.
[8], has emerged as a viable candidate in our work due
to its success in the NLP domain, an area mostly dealing
with sequential data. Transformer is a sequence to sequence
model that typically consists of an encoder and a decoder sub-
network. Transformer and its evolved approaches are now the
state-of-the-art methods for almost all NLP tasks. There are
two prior works that used the Transformer architecture for PE
malware detection [9], [14], and both works show that using
the Transformer architecture is advantageous.

As a result, in this work, in contrast to prior related works
that used only CNN, LSTM, or Transformer as network archi-
tectures [3]-[5], [9], we adopt both the CNN and Transformer
architectures and propose a novel Transformer-based model
for Windows PE malware detection. CNNs are proficient in
capturing local patterns, whereas Transformers are effective
at modeling global dependencies in the time-series domain.
By integrating both architectures, the model can leverage
the strengths of each component, resulting in greater data
representation and comprehension.
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TABLE II
DISTRIBUTION FOR DDN AND RANSOMARY

Dataset Type Number of Files  Total
DDN Malicious 3,628
Benign 3,746 7,374
Ransomary ~ Malicious 2,871
Benign 4,208 7.079
ITII. METHOD

A. Data Description

In this work, we use the two public Windows PE datasets,
the DeepDetectNet [6] dataset and Ransomary [11] dataset
for our experimental studies. They will be denoted as DDN
and Ransomary in the remainder of this paper. DDN and
Ransomary both contain benign and malicious PE binary files,
and has 7,374 and 7,079 PE files in total, respectively. Table II
shows the distribution of each class for DDN and Ransomary.

The PE format is a file format used in 32-bit and 64-
bit Windows OS for executables, object code, dynamic link
libraries, and other types of files. The data structure contains
the details required by the OS loader to control the wrapped
executable code. The structure of a typical PE file is shown in
Fig. 1. Every PE file begins with the DOS header, a 64-byte
structure that defines the PE file as an MS-DOS executable.
The MS-DOS stub is a valid application that runs under MS-
DOS. The file header contains a 4-byte signature that identifies
the file as a PE file and a 24-byte common object file format
(COFF) file header that holds some information about the PE
file. The optional header is the most important header that
provides information to the OS loader. The size of an optional
header can be found in the SizeO fOptional Header field
of the COFF file header. The section table contains section
headers, where the number of sections is recorded in the
NumberO fSections field of the COFF file header. Last, the
sections are where the contents of the PE file are stored.

B. Data Preprocessing and Network Input

Data segmentation is performed to capture the raw data
that will be treated as our network input. The file header and
the optional header are the two header fields that are used
as our network inputs. As prior studies have suggested, the
header information is sufficient and has the ability to identify
malicious PE samples [3]. Moreover, through ablation studies,
we acquire various configurations of header fields and observe
that using the file header and the optional header has superior
performance compared to other variants.

Specifically, the network takes in two sequences of bytes
as inputs, where each byte sequence is given to one separate
CNN sub-network. They will be referred to as Input 1 and

Header Content
r \

r

File Header
" COFF
Signature || 1o Header

Fig. 1. The structure of a typical PE file.
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Fig. 2. Network architectures for (a) Study 1, (b) Study 2, and (c) Study 3.

Input 2 in the remainder of this paper. For both Input 1 and
Input 2, the normalization is performed so that the values for
each byte are scaled to the range of [0, 1].

1) Input 1: The length of Input 1 is 24 bytes, which is
captured from the file header of a Windows PE file. A file
header has 24 bytes in total, including 4 bytes of PE signature
and 20 bytes of COFF file header. Location 0x3C of a PE file
has the file offset to the PE signature.

2) Input 2: The length of Input 2 is 240 bytes. It is captured
from the optional header of a Windows PE file. An optional
header has a total of 224 and 240 bytes for a 32-bit and 64-
bit PE file, respectively. The location of the optional header
follows right after the file header. Input 2 is padded with Os
up to 240 bytes in the case of encountering a 32-bit PE file.

C. Experimental Design and Details

In the following, we describe three studies and two refer-
ence methods. Experiments using two datasets, and different
network architectures with different data fusion strategies
are aimed to evaluate our proposed approach. The overall
architectures for the three studies are shown in Fig. 2, and the
experimental studies are summarized in Table III. In our work,
we conduct the experimental studies twice with DDN and
Ransomary independently in order to show how the proposed
approach generalizes to different datasets.

1) Study 1: A CNN and a FC network with an early fusion
strategy comprise our baseline method, where Input 1, from
the file header, and Input 2, from the optional header, are
concatenated before they are fed into the network. We train
our model using raw data with a length of 264 bytes for each
input sample.

2) Study 2: A Transformer network is added after the CNN
in Study 2. It also employs an early fusion strategy, as in
Study 1. By making a comparison to Study 1, we would like
to evaluate the performance of the Transformer-based model.

3) Study 3: Study 3 is implemented as a Transformer-based
model with a different data fusion strategy from Study 1 and
Study 2. It uses a late fusion strategy, where Input 1, from the

TABLE III
EXPERIMENTAL STUDIES AND INPUT DATA

Study Index Network Architecture Input Strategy

Study 1 CNN Early fusion
Study 2 CNN + Transformer Early fusion
Study 3 CNN + Transformer Late fusion
Ref. [10] LightGBM Early fusion
Ref. [4] CNN Early fusion
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Fig. 3. The proposed end-to-end late fusion network architecture.

file header, and Input 2, from the optional header, are fed into
two separate CNN sub-networks and two separate Transformer
sub-networks. The output of two Transformer networks will
be concatenated as the input of an FC layer. Via Study 3, we
would like to evaluate whether the Transformer-based model
can benefit from the late fusion strategy.

4) Reference Methods: Our comparison methods are based
on two state-of-the-art architectures in Windows PE malware
detection: an ML-based model, LightGBM [10], and a CNN-
based model, MalConv [4]. In its original form, the LightGBM
model uses eight groups of extracted features as the network
input, while the MalConv model uses the entire raw bytes of
a PE file as the network input. To ensure a fair comparison,
we adjust the network input for both reference methods, as in
Study 1 and Study 2.

D. End-to-end Network Architecture

The deep learning model used in this study is based on
the Transformer network design. In the Transformer network
architecture, we only employ the Transformer encoder since
the goal of our research is to use the input sequence to identify
malware rather than to forecast a sequence. A schematic of
the Transformer network is depicted in Fig. 3. The proposed
network is composed of two identical CNN, two identical
Transformer and an FC sub-networks. One pair of a CNN
and a Transformer sub-network is responsible for Input 1, and
the other is for Input 2. The two Transformer sub-networks
have two Transformer encoder layers that use 4 heads for
the multi-head self attention, and 96 for the dimension of the
feedforward network.

Fig. 4. Multi-head self attention layer architecture.

1) Multi-head Self Attention: The multi-head self attention
mechanism is a module that calculates attention for each time
point so that the network can concentrate on the most impor-
tant time points during training. The multi-head self attention
layer architecture is depicted in Fig. 4. The underlying method
is the scaled dot-product attention, that takes these queries (Q),
keys (K), and values (V') as inputs. ), K, and V are identical
and are convolution feature maps extracted from the CNN
sub-networks. There are three FC sub-networks, performing
a linear projection without changing the dimensions, for the
inputs, @, K and V, denoted as F'Cq, FCk, and FCy. It
first computes the dot-product of F'Cq(Q) and FCk (K). The
result is then scaled by the square root of the dimensions of
the keys, denoted as dj, and put into a softmax function to
produce an attention map. The attention map is then utilized to
scale the values F'C'y/ (V') to generate attention. The formula
of attention is defined as:

Attention(Q, K, V') =
FCQ(Q)(FOk (K))"
Vg

Multi-head self attention can be seen as multiple attention
that are concatenated. Then, the concatenated multiple atten-
tion is fed into a F'C network that performs linear projection
and finally, generate self attention features maps. The whole
process of the multi-head attention is defined as:

MultiHead(Q, K, V') =
FC(Concat(heady, ..., head,,)),

softmax ( YECy (V). (1)

2

where head is Attention(Q, K, V'), and n is the total number
of heads.

E. Model Training and Validation

The Transformer-based network is implemented using Py-
Torch with an NVIDIA V100 graphics card. The PE files from
both DDN and Ransomary are split into two portions that
70% is for the training dataset, and the remaining 30% is for
validation. The network is trained using cross-entropy as the
loss function. The parameters of the network are updated by
minimizing the network loss using Adam optimizer with the
learning rate 0.001. The batch size is set to 128, where it is
the sample size from the training dataset that will be used
to calculate a loss for updating the weights once. With these
hyper-parameters, we train our network for 300 epochs.
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TABLE IV
PERFORMANCE COMPARISON

Dataset Study Index ACC Recall Precision F1
DDN Study 1 0.963 0.962 0.971 0.966
Study 2 0.969 0.969 0.973 0.971
Study 3 0.974 0.974 0.978 0.976
LightGBM 0.949 0.926 0.957 0.941
MalConv 0.930 0.929 0.930 0.930
Ransomary  Study 1 0.940 0.936 0.965 0.950
Study 2 0.944 0.939 0.969 0.954
Study 3 0.948 0.945 0.969 0.957
LightGBM 0.940 0.938 0.912 0.925
MalConv 0.908 0.901 0.906 0.904
TABLE V

INFERENCE TIME COMPARISON

Study 3
0.105 ms

LightGBM  MalConv
0.075 ms

Inference Time (per sample) 0.742 ms

IV. RESULTS

The performance metrics used for evaluating our baseline
and proposed Transformer-based models that trained with
DDN and Ransomary are tabulated in Table IV. As shown
in Table IV, all metrics in Study 1 from DDN outperform the
two reference methods. Similarly, Study 1 from Ransomary
also performs better than the MalConv model in all evaluation
metrics. While the LightGBM model from Ransomary has
the same accuracy as Study 1, its precision and F1 score are
significantly lower than Study 1.

Comparisons of the performance metric pairs (Study 1,
Study 2) show that Study 2 outperforms Study 1 in every
metric for both cases in DDN and Ransomary. In light of
the quantitative results, it can be inferred that the Transformer
network is able to supply additional representation information
captured in the time-series domain. In other words, the model
can take advantage of the capabilities of each component by
incorporating both the CNN and Transformer architectures,
resulting in better data representation and comprehension.

As shown in Table IV, our proposed method, Study 3,
outperforms Study 1, Study 2, and the two reference methods
in terms of accuracy, recall, precision, and F1 score for both
DDN and Ransomary. The evaluation results indicate that,
when taking into consideration the underlying structure of PE
header fields, the two CNN sub-networks and two Transformer
sub-networks with a late fusion strategy may benefit from
learning and receiving additional independent representation
information from spatial and temporal localities, respectively.

In addition, the inference time of our proposed model and
the two reference methods are reported in Table V. The
inference time of our proposed model, Study 3, is slightly
longer than the LightGBM model since the trainable parame-
ters of DL-based methods are typically larger than ML-based
algorithms. On the other hand, given that the MalConv model’s
architecture was initially created for longer network input
sequences, it is anticipated that the inference time will be much
longer.

V. CONCLUSION

In this work, we implemented a multi-input Transformer-
based model for Windows PE malware detection, where the
model can learn each input independently using different
sub-networks in order to acquire more expressive feature
representations. Our proposed model demonstrates superiority
in performing binary classification on PE files by leveraging
the CNN and Transformer architectures and outperforms the
two reference methods, a LightGBM and a CNN-based model,
quantitatively, as indicated by the four metrics: accuracy,
recall, precision, and F1 score. In our future work, we will
characterize how the proposed model performs under datasets
with various PE malware types or families and validate our
model on a larger dataset for robustness.
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