
Multi-agent DQN with sample-efficient updates for
large inter-slice orchestration problems

Pavlos Doanis1 and Thrasyvoulos Spyropoulos1, 2

1 EURECOM, France, first.last@eurecom.fr
2 Technical University of Crete, Greece

Abstract— Data-driven network slicing has been recently
explored as a major driver for beyond 5G networks. Nevertheless,
we are still a long way before such solutions are practically
applicable in real problems. Reinforcement learning based
solutions, addressing the problem of dynamically placing virtual
network function chains on top of a physical topology, have
to deal with astronomically high action spaces (especially in
in multi-VNF, multi-domain, and multi-slice setups). Moreover,
their training is not particularly data-efficient, which can
pose shortcomings, given the scarce(r) availability of cellular
network related data. Multi-agent DQN can reduce the action
space complexity by many orders of magnitude compared to
standard DQN. Nevertheless, these algorithms are data-hungry
and convergence can still be slow. To this end, in this work
we introduce two additional mechanisms on top of (multi-agent)
DQN to speed up training. These mechanisms intelligently decide
how to store to, and how to pick from the experience replay
buffer, in order to achieve more efficient parameter updates
(faster learning). The convergence speed gains of the proposed
scheme are validated using real traffic data.

Index Terms—Slice orchestration, Beyond 5G Networks, Rein-
forcement Learning, Deep-Q Network

I. INTRODUCTION

Network slicing is a paradigm that promises to enable one
of the key-characteristics envisioned for beyond 5G networks,
the reliable support of a massive number of services with
widely diverse Quality of Service (QoS) requirements [1]. It
leverages network function virtualization and software-defined
networking technologies to create virtual networks (“slices”)
on top of the physical network infrastructure, which can be
tailored to the needs of a specific service. The two main
goals of slicing are: (i) the fulfilment of the desired QoS
metrics (defined by Service Level Agreements (SLAs)); (ii)
the efficient utilization of the limited network resources. Since
the resource demands of the hosted slices are dynamically
changing (due to traffic variations), dynamic slice orchestration
is necessary to accomplish the aforementioned goals [2].

A slice is a “VNF chain” comprising Virtual Network Func-
tions (VNFs) and Virtual Links (VLs). Different optimization
problems for network slicing have been considered in the
literature, with the main representatives being (i) the placement
(embedding) of slices onto the physical network (VNFs and
VLs must be mapped to physical nodes and links respectively)
[3]; (ii) the allocation of a physical node’s resources to the

The research leading to these results has been supported in part by the
H2020 SEMANTIC Project (grant agreement no. 861165) and in part by the
H2020 MonB5G Project (grant agreement no. 871780).

hosted slices (users) [4], [5]. Recently we have proposed in [6]
a system model that tackles the former problem by capturing
also the impact of the (per node) resource allocation scheduler.

Initial attempts tried to tackle slice placement as an “one-
shot” optimization problem, using mainly heuristic algorithms
(due to non-polynomial complexity) [7]. More recent works
formulated it as a Reinforcement Learning (RL) problem to
account for the (unknown) changing VNF demands and the
reconfiguration cost [8], [9]. However a number of chal-
lenges still remain: (i) most works focus on single domain
setups [7] or simple VNF chains [9], and/or consider simple
performance metrics [8], [9] (no end-to-end slice-specific
Key Performance Indicators); (ii) RL based solutions have
to deal with astronomically high action spaces [8], [9], due
to the combinatorial nature of placing multiple VNFs upon
multiple physical nodes (considering multiple slices/domains
exacerbates this problem); (iii) data-efficient algorithms are
required, given the scarce(r) availability of cellular network
related data [8].

In a recent work [6], we have addressed challenge (i) by
introducing a generic, queuing network based model that cap-
tures complex VNF chain topologies and end-to-end perfor-
mance metrics (supporting multi-domain, multi-slice, end-to-
end setups), and (ii) by a multi-agent algorithm of independent
Deep-Q-Network (iDQN) agents that can reduce the action
space complexity by many orders of magnitude compared to
standard, single-agent, Deep-Q-Network (DQN). Nevertheless,
convergence can still be slow, requiring a large amount of
training data. To this end, here we focus on improving the
training speed of DQN agents (challenge (iii)), by introducing
two mechanisms to store to and select from the experience
replay buffer (for more efficient parameter updates). We sum-
marize below the main contributions:

(C.1) We introduce a prioritized experience replay [10] on
top of standard DQN (either single-agent or multi-agent) (Sec-
tion III-C) and investigate its performance gains in the inter-
slice orchestration problem (including a sensitivity analysis on
its hyperparameters) (Section IV-A).

(C.2) We introduce a mechanism that stores some additional
information per experience to reduce the number of computa-
tions during parameter updates (Section III-C).

(C.3) We validate the proposed multiagent DQN scheme
with all the above speed up extensions (iDQN+) in a large
scale scenario, and confirm its superior performance compared
to vanilla iDQN and static baselines (Section IV-B).

2024 International Conference on Computing, Networking and Communications (ICNC): AI and Machine Learning
for Communications and Networking

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 772

II. RL FRAMEWORK FOR INTER-SLICE ORCHESTRATION

A. The Environment: A Beyond 5G system

In this work we adopt the system model of [6] (the reader
can refer to that paper for a more detailed description).
Fig. 1 outlines its main components, the physical network and
network slices, as well as the notation, in a toy example1.

Fig. 1. Toy example exhibiting the main components of our environment.

Slice orchestration. The assignment of each VNF/VL to
a physical node/link2 (at every timestep t) determines both
the slice and the network performance. Slice performance
deteriorates by SLA violations while network performance by
unnecessary use of network resources. Hence, a VNF might
“migrate” to another node at a next time unit with a view to
improve system’s performance. But migration of VNFs does
not come for free; a reconfiguration cost should be taken
into account (e.g. management overhead, delays leading to
monetary penalties [5], [9]). See Fig. 2 for an example.

Configuration c ∈ C: mapping of all VNFs to physical
nodes3 at time t. (e.g. in Fig. 2(a), the configuration is: c =
(ck0

n0
, ck0

n1
, ck1

n0
, ck1

n1
) = (v0, v3, v0, v3), where c

kj
ni indicates the

host node of VNF ni, slice kj).
Demand d ∈ D: denotes the resource demands of all

hosted slices at time t (e.g. in Fig. 1, the demand is: d =
(dk0

n0
, dk0

n1
, dk0

n0,1
, dk1

n0
, dk1

n1
, dk1

n0,1
)).

Queuing Model. The impact on the performance of slices
when multiple VNFs are assigned to the same physical node
and their aggregate resource demand is close to or exceeds
the node’s capacity is captured using a queuing model. Each

1We stress that the above system model goes well beyond the depicted toy
example, being able to capture VNF chains with probabilistic routing between
VNFs, loops (i.e. traffic potentially going through the same VNF more than
once), etc. See [6] for more details.

2A VL can be mapped to a path (its load is imposed to each traversed link).
3To simplify our discussion, and w.l.o.g., we consider the mapping of VLs is

predetermined. Routing variables could be easily included in our framework.

(a) System at time t

(b) System at time t+ 1

Fig. 2. Slice orchestration example. (a) initial embedding of slices (at time t)
for the toy scenario of Fig. 1. The aggregate resource demand of the hosted
VNFs at physical node v0 (zv0 = dk0

n0 + dk1
n0) is close to bv0 ; the node

is congested and causes high delays (and probably SLA violations) for both
slices k0 and k1. (b) at the next timestep (t+1), VNF n0 of slice k1 migrates
to v1 to avoid SLA violations, in exchange with i) a reconfiguration cost; ii)
a node activation cost (server v1 is turned “on” from the idle state).

physical node/link is modeled as an M/G/1/PS queue (Memo-
ryless arrivals (Poisson)/General distribution of service times/1
server/Processor Sharing scheduling) [11]. Such models tend
to capture well the characteristics of proportionally fair sched-
ulers, commonly used for resource scheduling [12]. Then,
the average delay experienced by any VNF/VL hosted on
node/link vi is given by the function4:

f delay
vi (c, d) =

1

bvi − zvi(c, d)
, (1)

where zvi(c, d) =
∑
kj∈K

∑
nl∈Nkj

∪Lkj

dkj
nl
· xkj

nl,vi
. (2)

In (2), K is the set of slices, Nkj
, Lkj

the sets of VNFs
and VLs of slice kj respectively, and x

kj
nl,vi a binary variable

(1 if VNF/VL nl of slice kj is hosted by physical node/link
vi). For complex slices the end-to-end delay can be calculated
by a Jackson network type of analysis. For a simple slice
(VNF chain) the corresponding end-to-end delay F delay

ki
(c, d)

is the sum of delays across all host nodes and links along its
path (e.g. in Fig. 2(a) the delay of slice k0 is: F delay

k0
(c, d) =

f delay
v0 (c, d) + f delay

v0,2 (c, d) + f delay
v2,3 (c, d) + f delay

v3
(c, d)).

B. States, actions, and rewards

State space S. The state of the system at timestep t consists
of (i) the assignment of all VNFs to physical nodes; (ii) the

4When demand exceeds capacity, (1) is extended to include a large penalty.

773

resource demands of all VNFs/VLs (both are necessary to
calculate the instantaneous reward, to be elaborated shortly).

Definition 1 (State). s = (c, d), s ∈ S = C × D

Remark: The above state space S grows exponentially fast
with slice and VNF number. What is worse, continuous traffic
demand (as will be the case for the dataset used in our
simulations [13]) essentially renders vanilla RL methods (e.g.
Q-learning) inapplicable, even for toy scenarios. To this end,
approximate RL methods (e.g. using a Deep Neural Network
(DNN) to encode the input) cannot be avoided for such
problem. We are using the popular DQN architecture [14]
to this end.

Action space A. The agent’s action is the configuration to be
applied in the next timestep (combinatorial). Note that we use
an apostrophe to denote all quantities of t+ 1.

Definition 2 (Action). a = c′, a ∈ A = C

Action complexity example. In a physical network with V =
10 nodes and K = 10 slices (one VNF per slice), the number
of possible actions is |A| = V K = 1010! Standard DQN
algorithms [14] are designed for small action spaces. To deal
with this problem (on top of state space complexity), we use
a multi-agent DQN architecture , that can reduce action state
complexity by orders of magnitude [6].

Reward function R. We consider three individual costs that
determine the total cost performance of the system. Given
some observed state s, an agent action a, and the next state
s′, these costs are the following.

Type 1 cost: SLA violation. A penalty is paid when the
end-to-end delay F delay

ki
(s′) perceived by a slice ki is higher

than qki
(defined by the SLA). This may take any suitable form

(linear, quadratic, etc.). We give as an example the linear form:
g1(s

′) =
∑
ki∈K

(F delay
ki

(s′)− qki) · 1{F delay
ki

(s′)>qki
}. (3)

Type 2 cost: Reconfiguration. Migrating VNFs from their
host servers causes network overhead or even service down-
time [5], [9].

g2(s, a) = 1/2 ·
∑
ki∈K

∑
nj∈Nki

∑
vl∈V
|(xki

nj ,vl
)′ − xki

nj ,vl
|, (4)

where V is the set of physical nodes.
Type 3 cost : Active nodes. It is the number of physical

nodes that are “on” (hosting at least one VNF). The idle
servers/VMs can be turned off (or set to sleep mode) and save
energy/free up resources [15].

g3(a) =
∑
vi∈V

1
{
∑

kj∈K
∑

nl∈Nk
x
kj
nl,vi

≥1}
. (5)

Definition 3 (Reward r). The reward obtained is the negative
weighted sum of the individual costs5 (3) - (5):

r = −(w1 · g1(s′) + w2 · g2(s, a) + w3 · g3(a)). (6)

5Note that the goal of the RL agents is to maximize the accumulated
rewards, and this is why we introduce a negative sign in Def. 3 (in our
problem we want to minimize the accumulated cost).

III. APPROXIMATE RL SCHEMES

As is evident by the problem model, the inter-slice orches-
tration problem at hand is characterized by (i) unknown future
resource demands; and (ii) delayed rewards (e.g. if the demand
of a VNF is predicted to increase soon and stay high for a
while, paying now a reconfiguration cost for its migration to a
less busy server could lead to high future rewards). While this
is the standard “playground” of RL, vanilla algorithms like Q-
learning [16] are unable to handle the problem at hand, due to
the prohibitive state and action spaces even in relatively small
setups. We will first describe here the basic DQN and iDQN
(multi-agent DQN) solutions we use as our starting point
to deal with state and action complexity, respectively, then
proceed with the proposed experience replay buffer heuristics.

A. DQN

In order to deal with the combinatorially large (potentially
infinite) state space, an approach that has found significant
success recently in many applications (e.g., games) is to learn a
parameterized function Qθ(s, a) (with the function commonly
being a DNN), that approximates the original Q function
(using much fewer learnable parameters than a complete state-
action table). The advantage of a DNN is the automatic
encoding of important features that would otherwise be prob-
lem dependent and tough to track (e.g. the discretization of
continuous traffic demands). However, simply adding a DNN
forfeits the convergence guarantees of tabular RL algorithms,
and leads to unstable learning in most practical scenarios. The
recent Deep Q-Network (DQN) algorithm [14] is shown to
often overcome these issues, and will be our starting point.

A DQN agent is equipped with two DNNs, the so called pol-
icy and target networks (Qθ(s, ·) and Qθ′(s, ·) respectively),
which take as an input the state and output the Q values
of all possible actions (configurations). Moreover, the visited
transitions are stored in a replay buffer (B). In Fig. 3 we outline
the main steps of the DQN algorithm.
Drawbacks. DQN does not scale well for very large action
spaces. In our case, larger problem size means (a) (combina-
torially) more outputs/actions for the DNN, (b) harder argmax
operations, (c) slower exploration of the action space.

B. iDQN

To deal with the above bottlenecks (a) and (b), we employ
a multi-agent scheme to decompose the combinatorial action
space into smaller subspaces. To this end, we consider one
independent DQN agent (iDQN) per VNF, responsible only
for placing the specific VNF on the physical network. The
introduced modifications are outlined in Fig. 4.

With iDQN we have managed to reduce memory require-
ments by avoiding the combinatorial output layer of the single-
agent DQN scheme. Also, we have replaced the computa-
tionally expensive maximization operations of (7), (9), with
much less expensive operations over Aj . However, there is
still much room for improvement regarding convergence speed
and sample efficiency (drawbacks (b) and (c) of Section III-A),
which are crucial characteristics for a practical algorithm.

774

DQN algorithm
Step 1 (in agent): When at state s (Def. 1), take an ϵ-
greedy action (Def. 2):

a←

random a ∈ A, with probability ϵ;

argmax
a∈A

Qθ(s, a), with probability 1− ϵ. (7)

Step 2 (in env): Returns the next state s′ and reward r
(Def. 3).
Step 3 (in agent): Store transition (s, a, s′, r) in the replay
buffer B.
Step 4 (in agent): Copy the policy network parameters θ
to the target network θ′ (only every T timesteps).
Step 5 (in agent): Pick M samples randomly from replay
buffer and perform a gradient step on the minibatch:

θ ← θ − η∇θ(Ei∼U(B)[δ
2
i]), (8)

where δi = Qθ(si, ai)− (ri + γ max
a′
i∈A

Qθ′(s′i, a
′
i)). (9)

In (8) η is the learning rate and δi the Temporal Difference
(TD)-error of transition i.
Repeat steps 1 to 5 till termination criterion.

Fig. 3. Algorithmic steps of DQN

iDQN Modifications
Multi-agent scheme: One DQN agent j per VNF.
Step 1: Each agent j takes an ϵ-greedy action:

aj ←

random aj ∈ Aj , with probability ϵ;

argmax
aj∈Aj

Qθ(s, a
j), with probability 1− ϵ.

(10)
Then, the collective action is:

a = (a0, a1, ..., ajmax).

Step 3: Each agent stores (s, aj , s′, r).
Steps 4-5: Applied to all agents (with Aj instead of A).

Fig. 4. Modifications of iDQN algorithm, with respect to DQN (Fig. 3).

C. DQN+/iDQN+

The last step towards a more scalable solution is to improve
convergence speed by (i) smarter picking of minibatches;
(ii) DNN parameter updates with fewer computations (we
introduce the “lazy” computation of the TD-target). Following,
we demonstrate how DQN must be modified to incorporate
these two speedup tricks (DQN+), which can be readily
applied in the multiagent scheme (iDQN+) to further improve
its convergence speed (especially in large scale scenarios).

Prioritized experience replay. We have observed that as
the action space in our problem grows larger, actions with
similar effect are over-represented in the replay buffer, while
potentially more effective actions are under-represented (slow-
ing down convergence). To this end, we employ a prioritized
experience replay [10], which prioritizes transitions with a
larger Temporal Difference error (TD-error) to boost sample
efficiency. Fig. 5 outlines the modifications on top of the DQN
algorithm. In (11), αrep is a hyperparameter that determines
the amount of prioritization (αrep = 0 leads to uniform
sampling while αrep = 1 to full prioritization), while βrep

in (13) determines the amount of compensation applied by

DQN+ Modification 1:
Step 5 (in agent): M samples are picked from the buffer
with a probability P (i) for each of the N transitions:

P (i) = pα
rep

i /

N∑
j=1

pα
rep

j , (11)

where pi = |δi| + ϵ and ϵ is a small positive constant.
Then, the gradient step is:

θ ← θ − η∇θ(Ei∼P (B)[(w
rep
i δi)

2]), (12)

where wrep
i = (

1

N
· 1

P (i)
)β

rep
. (13)

Fig. 5. Modification 1 of DQN+ algorithm, with respect to DQN (Fig. 3).

DQN+ Modification 2:
Step 3 (in agent): Calculate Qnext,

Qnext = max
a′∈A

Qθ′(s′, a′), (14)

and store (s, a, s′, r,Qnext) in the replay buffer.
Step 5 (in agent): The TD-error for all M minibatch
samples is now computed using the stored Qnext values:

δi = Qθ(si, ai)− (ri + γQnext
i). (15)

Fig. 6. Modification 2 of DQN+ algorithm, with respect to DQN (Fig. 3).

weighted importance sampling (to balance the bias introduced
by prioritization).
Lazy computation of TD-target. The maximization operation
in (9), required for every sample of the minibatch, becomes
very expensive as the action space grows larger. In order
to reduce the number of such computations we introduce a
second modification (Fig. 6). This trick offers important real
time gains, as DQN+ performs M times less computations
per timestep, compared to DQN, for the calculation of the
TD-target (in DQN+, (14) is calculated only for the visited
transition while in DQN for each one of the M samples).

IV. SIMULATION RESULTS

In this section we aim to (i) find good values for the
hyperparameters of prioritized experience replay in a relatively
small slicing setup (allowing for sensitivity analysis in rea-
sonable time); (ii) verify if the proposed speedup heuristics
of Section III-C can improve convergence speed, and thus
scalability, of DQN/iDQN (in the same setup); (iii) verify the
performance gains of iDQN+ in a large scale scenario.
Algorithms. (i) DQN (the single-agent approximate RL algo-
rithm of Section III-A); (ii) iDQN (the multi-agent approx-
imate RL algorithm of Section III-B); (iii) DQN+/iDQN+
(these variants are the above DQN/iDQN but with all the
speedup heuristics we have proposed in Section III-C).

Considering the limited training data and computing re-
sources available, we choose to use simple and relatively
small DNNs that offer better sample efficiency and faster
convergence compared to larger and more complex networks.
To this end, all agents use multilayer perceptron DNNs with
3 hidden layers and 60 neurons per layer. Regarding their
hyperparameters, we set replay buffer size to 5000, target
update period to 500, minibatch size to 32, and learning rate to
10−3 (typical values [14]). Finally, we use a discount factor

775

γ = 0.9 that allows the agent plan “roughly” 10 timesteps
ahead without making convergence too slow. We chose all the
above parameters as they performed well in various scenarios.
Demand. We import VNF resource demands from the Milano
dataset [13]. Due to their continuous values the state space is
infinite for all RL algorithms of this section. Milano timeseries
consist of 8928 samples per base station (1 sample every 10
minutes), so we map to each VNF the normalized “internet”
traffic demand of a different base station. W.l.o.g., we assume
that VL demands are zero. We use the first 4464 Milano
samples for training and the rest for testing, hence the duration
of each training/testing episode is 4464 timesteps.

A. Part I: Performance gains of DQN+/iDQN+

In this part we quantify the impact of the proposed speedup
heuristics on the performance of DQN/iDQN algorithms,
after first finding suitable values for the hyperparameters of
prioritized experience replay (αrep, βrep) in our setup. DQN
is used as a baseline, since we have tested it in many scenarios
(smaller ones, where Q learning can be applied), and it tends
to eventually converge to the optimal solution [6].
System Setup. The physical network consists of 2 domains,
each of them comprising 2 nodes (servers) respectively. On top
of it there are 4 slices (simple VNF chains) with 2 VNFs each
(one VNF per domain). This results to 256 possible actions
for single-agent DQN. The size of this setup was specifically
chosen for the purpose of sensitivity analysis, as it allows for
multiple runs of the algorithms in reasonable time.
Training. Each algorithm is trained over 12 episodes, while
this procedure is repeated over 20 individual runs with differ-
ent random seeds (to get averaged results).
Sensitivity Analysis. In the paper where prioritized replay
was introduced [10], the corresponding hyperparameters were
set to αrep = 0.6, βrep = 0.4 (for the proportional variant).
However, their optimal values are problem dependent. In order
to adjust them for DQN+ in our setup we performed a coarse
grid search, with the best performing values being αrep = 0.4,
βrep = 0.6. We give two representative plots in Figs. 7(a),
7(b). An important observation is that these parameters can
affect both the sample efficiency and the quality of the
obtained policy. In Fig. 7(a), a low brep leads to suboptimal
policies (almost no importance sampling) and a high brep to
very slow convergence (excessive importance sampling), while
in Fig. 7(b), varying arep affects mostly the sample efficiency.
Note that repeating the same analysis for iDQN resulted in
similar findings, while these parameters performed well in a
variety of scenarios. Thus, we use the same hyperparameters
in the remainder of the section.
Take-away message 1: Hyperparameter tuning can signifi-
cantly affect the performance of prioritized experience replay
Impact on DQN/iDQN. In Fig. 8, we compare the perfor-
mance of vanilla DQN/iDQN algorithms with respect to their
DQN+/iDQN+ counterparts. There are 4 main observations
to take away, (i) iDQN converges faster than DQN (due to
the additional approximation in action space) (ii) the speedup

(a) Sensitivity of βrep (αrep = 0.6)

(b) Sensitivity of αrep (βrep = 0.6)

Fig. 7. Sensitivity analysis of prioritized experience replay. Convergence plots
for (a) varying βrep; (b) varying αrep.

heuristics of DQN+/iDQN+ improve their convergence speed
compared to their vanilla counterparts; (iii) the speed improve-
ment for DQN is much larger than the speed improvement
for iDQN (due to larger action space); (iv) iDQN+ converges
faster than the rest of the tested algorithms.

To better quantify the speed gain, we outline the full
simulation results in Table I, which indicates the timestep
when the average cost of each algorithm goes below some
specified threshold values. So, Table I highlights that DQN
and iDQN converge 7.8 and 0.5 times slower than iDQN+
respectively. Note that the gain of iDQN+ is expected to be
more prominent in larger scenarios, which is what we will
show in the next set of experiments.
Take-away message 2: The proposed speedup heuristics on top
of DQN/iDQN can offer significant convergence speed gains.

B. Part II: Validation in large scale scenario

Having validated the gain offered by the proposed speed ups
in a relatively small scenario, in this last part we examine the
performance of iDQN+ in a larger setup. Since DQN can not
be used as a baseline here (due to the prohibitive action space
size), we use some simple static policies (split-all, group-all),
or even random actions, as minimum benchmarks to assess the
obtained dynamic policies. Split-all aims to merely minimize

776

Fig. 8. Convergence plot for DQN, iDQN, DQN+, iDQN+.
TABLE I

CONVERGENCE SPEED COMPARISON

Average DQN DQN+ iDQN iDQN+
cost

threshold
2.3 13832 7384 6731 4577
2.2 21044 9913 12974 9538
2.1 30233 12900 17440 12444
2.0 36711 14857 24676 16149
1.9 107555 26975 35159 24973

1.85 236139 44433 45361 30465

SLA violations by spreading VNFs equally among all nodes,
while group-all focuses on minimizing the number of active
nodes by placing all VNFs to a small subset of the largest
servers. These policies turn out to be close-to-optimal for a
subset of slots during the episode and have no reconfiguration
cost (our scheme should outperform them as a minimum).
System Setup. The physical network consists of two techno-
logical domains, comprising 9 and 3 nodes (servers) respec-
tively. On top of it there are 10 slices (simple VNF chains)
with 2 VNFs each (one VNF per domain). This results to
2 · 1014 possible actions for single-agent DQN.
Training and Testing. Each algorithm is trained over 22
training episodes, while this procedure is reperated for 10
individual runs with different random seeds. All the obtained
policies are evaluated over 1 testing episode (we rollout the
policy with no exploration and record the mean cost).
Cost performance. The results of the testing phase are given
in the box plot of Fig. 9. This plot compares the performance
of iDQN and iDQN+, including also the static baseline policies
split-all, group-all, and random. The main observations are: (i)
iDQN+ performs 2x better than the split-all policy, which was
the best of the static baselines; (ii) even the worst policies
obtained by iDQN (with or without the speed up extensions)
in all 10 runs perform much better than the static baselines;
(iii) iDQN+ demonstrates 20% cost reduction compared to
iDQN (converges faster as it achieves lower cost in the same
amount of training steps); (iv) the performance gain of iDQN+
is more prominent in this larger scenario, compared to Part I.
Take-away message 3: iDQN+ was validated to improve the
cost performance of iDQN by 20% in a large scale scenario.

Fig. 9. Box plot depicting the distribution of the cost achieved by each
algorithm in the testing dataset.

V. CONCLUSION

In this paper we examined the inter-slice orchestration
problem and introduced two speedup heuristics on top of
multiagent DQN to improve convergence speed and scalabil-
ity. The proposed solution was validated by simulations and
proved to offer significant performance gains.

REFERENCES

[1] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Commun. Surv. Tutor., vol. 20, no. 3, 2018.

[2] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How should i slice my network? a multi-service empirical evaluation
of resource sharing efficiency,” in ACM MobiCom, 2018.

[3] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects
of network slicing,” IEEE Commun. Mag., vol. 55, no. 8, 2017.

[4] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Deepcog: Cognitive network management in sliced 5g networks with
deep learning,” in IEEE INFOCOM, 2019.

[5] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Aztec: Anticipatory capacity allocation for zero-touch network slicing,”
in IEEE INFOCOM, 2020.

[6] P. Doanis, T. Giannakas, and T. Spyropoulos, “Scalable end-to-end slice
embedding and reconfiguration based on independent dqn agents,” in
IEEE GLOBECOM, 2022.

[7] F. Schardong, I. Nunes, and A. Schaeffer-Filho, “Nfv resource allo-
cation: a systematic review and taxonomy of vnf forwarding graph
embedding,” Computer Networks, vol. 185, p. 107726, 2021.

[8] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
TNSM, vol. 16, no. 4, 2019.

[9] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Network
slice reconfiguration by exploiting deep reinforcement learning with
large action space,” IEEE TNSM, vol. 17, no. 4, 2020.

[10] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in ICLR, 2016.

[11] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action, 1st ed. USA: Cambridge
University Press, 2013.

[12] T. Bonald and A. Proutière, “Wireless downlink data channels: User
performance and cell dimensioning,” in MobiCom, 2003.

[13] Telecom Italia, “Milano Grid,” 2015.
[14] V. Mnih et al., “Human-level control through deep reinforcement learn-

ing,” Nature, vol. 518, no. 7540, Feb. 2015.
[15] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive

resource management for real-time vehicular cloud services,” IEEE
Transactions on Cloud computing, vol. 7, no. 1, 2019.

[16] D. Bertsekas, Reinforcement Learning and Optimal Control. Athena
Scientific, 2019.

777

