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Abstract—Over the past few decades, agricultural systems
have encountered significant global challenges, including short-
age of food supply, declining water availability, rising input
costs, and diminishing agricultural labor. The advancement of
Agricultural Technology (AgTech) in recent years has increased
farm productivity and replaced manual monotonous tasks that
are unsafe or inefficient for farm labor workers to do by
hand. In this paper, we propose to develop and implement
a smart agricultural robot named SARDOG that is based on
the Farm-ng Amiga robot framework. SARDOG makes use of
advanced artificial intelligence (AI), LiDAR, Internet-of-Things
(IoT) sensors, and a robotic arm all of which work hand in hand
to perform multiple intelligent farming tasks autonomously
and effectively. SARDOG is capable of autonomous GPS-less
navigation using LiDAR, picking fruits using the robotic arm,
testing the soil properties using a robotic actuator sensor
framework, it can follow the farmers in the field and carry the
produce for them among many other applications. The purpose
of SARDOG is to make multiple major farming processes more
efficient, cost-effective, and humane, as well as to perform some
new farming processes that are not widely explored.

Index Terms—Precision Agriculture, Farm Robotics, LiDAR
SLAM Navigation, Computer Vision, Deep Learning.

I. INTRODUCTION

The world’s population is expected to reach 9.7 billion
by 2050, putting a strain on the global food supply. Efficient
farming practices can help to increase crop yields and reduce
food waste, which will be essential to meet the needs of a
growing population. In recent years, there has been a rise in
the use of robotics in the agricultural industry, particularly
through the adoption of precision agriculture. Naik et al. [1]
showcased a prototype of an agriculture robot that focuses
solely on seed sowing.

Zhang et al. [2] used multi-sensor information with the
RTAB-Map algorithm, by combining data from a red-green-
blue depth sensor (RGB-D) camera and a single-line lidar,
a gyroscope, odometers, and other sensors to achieve a
task completion rate of 100%, surpassing the lidar-only
scheme (45%) and the RGB-D camera-only approach (75%).
Ramachandran and Sahin [3] explored the issue of navigation
and mapping using RTAB-Map, utilizing the RGB and depth
sensor for capturing accurate and real-time data. Wang et al.
[4] presented a LiDAR location and navigation system based
on multisensor fusion in urban road environments, utilizing
a low-cost VLP-16 LiDAR as the primary sensor as well as
with an inertial measurement unit (IMU) to eliminate motion
distortion. Warku et al. [5] created a three-dimensional map
of both indoor and outdoor environments using Velodyne

VLP-16 to form a three-dimensional point cloud, and Xsens
MTI-G-700 inertial measurement unit (IMU) to perform
point cloud deskew, employing the Lidar Inertia Odometry
via Smoothing and Mapping (LIO-SAM) algorithm. Mihai
et al. [6] presented a machine learning-based approach for
detecting pedestrians using Velodyne VLP-16, utilizing linear
interpolation between layers, effectively creating 15 pseudo-
layers to overcome the low resolution of the LiDAR. Velas et
al. [7] estimated odometry by employing convolutional neural
networks on Velodyne VLP-16 with IMU support, which
can serve as a substitute for wheel encoders in odometry
estimation or as a supplement when GPS data is unavailable,
such as in indoor mapping scenarios.

MobileNet v2 is a popular and widely used lightweight
Convolutional Neural Network (CNN) architecture that is
often employed for people detection. Katiyar et al. [8]
demonstrated that MobileNet-SSD surpasses traditional deep
learning techniques in terms of detecting surface defects
with greater frequency, accuracy, and precision, which is also
resource-efficient as it requires minimal memory setup and
utilizes the lower processing power of the CPU.

Zhang et al. [9] integrated MobileNet V2 with SSD
to ensure both real-time performance and high recognition
accuracy, which holds great importance in facilitating real-
time detection and recognition capabilities on the Nao robot.

Song et al. [10] utilized multi-sensor technology to gather
obstacle-related data, which is subsequently analyzed and
identified, creating a robot obstacle avoidance method based
on the analyzed obstacle information, enhancing the accuracy
of obstacle avoidance and optimizing the robot’s route.

Cen [11] introduced a method that utilizes laser technology
for tracking and following individuals, while also ensuring
avoidance of obstacles, incorporating a unique aspect of
evaluating potential risks associated with a robot following a
person in an unfamiliar setting.

You Look Only Once (YOLO) V5 algorithm is a powerful
tool for weed detection and elimination due to its speed,
accuracy, object localization capabilities, adaptability, and
integration potential with automation systems. Zhang et al.
[12] reviewed various techniques for detecting weeds and the
use of weeder robots in precision weed management, divided
into machine learning (ML) and deep learning (DL).

Unlike all the related works, our all-in-one solution SAR-
DOG is a smart agricultural robot that can improve farming
practices by automating repetitive tasks and enhancing crop
productivity through individualized treatment of each plant
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with 7 features: Autonomous Navigation, People Following
with Obstacle Avoidance, Weed Detection and Elimination,
Smart Harvesting, Soil Data Acquisition, Crop Tailored Care,
and Energy Harvesting. SLAM (Simultaneous Localization
and Mapping) Navigation offers the advantage of compre-
hensive mapping and accurate self-localization within the
map. While the Autonomous Navigation of a robot can raise
concerns about collision hazards with humans in the field,
we are using a combination of people detection and distance
detection to avoid collisions. The combination of Computer
Vision and Deep Learning methods has significantly con-
tributed to SARDOG’s precise weed detection and spraying
system. For crop harvesting, a 6-axis robotic arm equipped
with a Raspberry Pi and Computer Vision scripts for color
and edge detection, and a servo-controlled adaptive gripper
are utilized to pick the fruits. For IoT implementation, small
solar-powered devices with microcontrollers and soil sensors
can upload and store the data of soil for farm owners. The
Automated Crop Care System with ArUco Marker Detec-
tion is designed to facilitate efficient and tailored care for
different types of crops in an orchard. SARDOG can self-
charge while in use which will save not only time but also
money for the farmer. Furthermore, certain produce items,
such as strawberries, would experience advantages during
transportation on the SARDOG if conveyed within a shaded
vehicle, shielded from direct sunlight – a provision offered
by the Solar Canopy.

II. PROPOSED DESIGN METHODOLOGY

A. SLAM Navigation using LiDAR
The Velodyne Puck LITE module, equipped with 16 chan-

nels, is employed for SARDOG. These channels spin to cover
a full 360◦ around the module, producing individual point
cloud maps. SARDOG utilizes the robot operating system
(ROS) Noetic with an installed RTAB-Map wrapper, facili-
tating SLAM Navigation. This navigation technique allows
SARDOG to create a detailed map of an entire crop field
using a LiDAR sensor. To execute the steering commands
from the RTAB-Map setup, SARDOG employs a ROS bridge
to convert them into CANBUS protocols for motor control.
The movement states are monitored and modified using Twist
commands. Depthai-ROS package is used to retrieve the IMU
parameters for Mapping.

B. People Following with Obstacle Avoidance
In order to enhance its autonomous navigation capabili-

ties, SARDOG utilizes a deep learning model MobileNetV2
SSD as its people detection algorithm. MobileNetV2 is a
lightweight Convolutional Neural Network architecture de-
signed for efficient computation on mobile and embedded
devices. Single Shot MultiBox Detector (SSD) is an object
detection framework that combines object localization and
classification into a single neural network. The people detec-
tion algorithm will identify people by passing each camera
frame received from the same Oak camera port on SARDOG
to the MobileNetV2 SSD model.

A Kivy application based on the NVIDIA Jetson Xavier
NX assists as a visualization tool to detect people with
bounding boxes, what message it will send to the CAN

Fig. 1: Mobile Joystick Application.

bus, and status indicators to show whether SARDOG is in
autonomous mode or not.

Employing detection outcomes, a collision avoidance algo-
rithm initiates the transmission of relevant messages to the
CAN bus, effectively regulating SARDOG’s motion. The X-
axis location of the bounding box center plays a pivotal role
in establishing the position of detected individuals within the
frame. Moreover, the ratio of a bounding box’s height to
that of the camera frame is harnessed to gauge the distance
between SARDOG and individuals. When a farmer emerges
out of a specific range in the camera’s field of view, the
NVIDIA Jetson Xavier NX, functioning as the controller, will
transmit a message via its CAN bus to direct the SARDOG
to advance toward the farmer’s location.

In the event of a farmer making an abrupt change in
direction, SARDOG will respond by promptly adapting its
trajectory. This adjustment entails real-time modifications to
its speed and angular rate, determined by the positioning
of the detected bounding box within the camera frame.
As SARDOG draws near to the farmer within a specified
proximity, its controller initiates a message transmission via
the CAN bus to halt its movement.

To augment the versatility and user-friendliness of our
project, we incorporated the Virtual Network Connection
(VNC) Viewer. This integration facilitates the operation of
Kivy applications across diverse devices, including mobile
phones. Figure 1 illustrates remotely directing SARDOG’s
movement using a phone. This implementation offers a
smooth and user-intuitive experience, allowing farmers to
issue advanced commands or intervene if any issues arise.

C. Precision Weed Elimination
Precision Weed Elimination was implemented on a Rasp-

berry Pi with a 4K USB camera for wireless real-time weed
detection and classification. A custom YOLOv5m object
detection and classification AI model was created to be able
to detect and classify two types of weeds (Poaceae and
Brassicaceae). The dataset used to train the model was taken
from the Weed-AI database: the roboweedmap dataset by
Teimouri et al. [13]. Several sample images from the trained
model are depicted in Fig. 2.

The model underwent training over the course of 40
epochs, and the most successful run outcomes were em-
ployed as custom weights for the weed detection program
on the Raspberry Pi. Subsequent to training, the model was
transferred to the Raspberry Pi, which was paired with the
4K USB Camera. Access was established wirelessly through
SSH and VNC protocols. Subsequently, a Python script is
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executed to engage the camera, enabling real-time detection
and classification of weeds. This process triggers the activa-
tion of the sprayer for the purpose of weed elimination.

Figure 3 shows a 5-gallon Capacity, 1 GPM, 12 Volt prayer
in action after it detects e.g., a weed.

D. Smart Harvesting
A Hue Saturation Value (HSV) color mask script is em-

ployed to detect crop color and shape in real-time RGB video
feeds, drawing bounding boxes around them. The center point
of the bounding box tracks the crop’s position in the output
frame, enabling movement of the robotic arm’s axes for
precise gripping of the produce.

In Fig. 4, the operational robotic arm is depicted in the
process of identifying an orange, determining its ripeness,
and subsequently utilizing the attached camera to track
its location. Employing both the gripper and a specialized
3D-printed attachment designed for orange harvesting, the
robotic arm adeptly approaches the identified orange, picks
it, and deposits it into a basket.

The Adaptive Gripper was not suitable for picking different
types of fruits, accordingly, we have modeled and 3D printed
an add-on attachment to the gripper to make it compatible
with gripping e.g., oranges.

In Fig. 5, the captured image frame, displayed on the left, is
transmitted to the algorithm for analysis. The algorithm’s task
involves detecting the presence of an orange and assessing its
ripeness. A bounding box, as depicted on the right, encloses
the center of the orange. The algorithm subsequently tracks
the orange’s location and guides the robotic arm toward it.
Upon achieving sufficient proximity, the robotic arm adeptly
retrieves the orange and deposits it into a designated basket.

The placement of the robotic arm on the SARDOG can
be varied to fulfill various tasks, including weed detection
and removal. While this study focuses on one application –
harvesting fruits like oranges – the versatility of the system
allows for the adaptation of the robotic arm to harvest differ-
ent types of fruits. By designing supplementary attachments
through 3D printing, the robotic arm can be customized for
diverse harvesting needs.

E. Soil Data Acquisition
Compact and readily reproducible devices, comprising an

ESP8266 microcontroller, a 5W mini solar panel, and various
soil data sensors, are employed to consistently gather diverse
soil condition data.

Numerous such IoT devices are strategically positioned
across the field, harnessing solar power to ensure uninter-
rupted operation without the need for battery replacement. As
SARDOG traverses the field, the ESP8266 modules establish

Fig. 2: Trained Models for Weed Detection.

Fig. 3: Spot Sprayer (Ironton ATV).

connections with the onboard mobile hotspot WiFi, enabling
them to transmit captured data to an HTML web page. This
webpage can be accessed by NVIDIA Xavier, facilitating
data storage in a designated directory, ultimately intended
for analysis by farm proprietors. This process facilitates year-
round data collection, enabling seasonal comparisons – for
instance, assessing yield variations across different years.

The RS485 5Pin Soil PH NPK (nitrogen, phosphorus, and
potassium), Temperature, and Humidity EC Sensor is a robust
soil sensing instrument, adept at measuring seven parameters
with precision and steadfastness. Illustrated in Fig. 6 is an
IoT Device integrating an EC sensor, humidity sensor, and
NPK sensor to facilitate the acquisition of soil data.

F. Crop Tailored Care
SARDOG optimizes spraying efficiency using ArUco

markers for crop recognition and targeted spraying. A ded-
icated Kivy app detects these markers as SARDOG moves
through the orchard. Its cameras capture plant images recog-
nized by proprietary ArUco markers. The Computer Vision
module identifies these markers, creating specifications for
tailored actions, such as water volume, pesticide, herbicide
dosage, and fungicide distribution.

SARDOG incorporates a linear actuator, as depicted in Fig.
8, that can be submerged into the soil as required to cap-
ture diverse soil parameters, encompassing soil salinity, pH,
NPK levels, temperature, and humidity. This data acquisition
process facilitates the analysis and correlation of potential
irregularities between soil measurements and atypical plant
growth. In instances where discrepancies arise, SARDOG
promptly notifies the farmer, enabling swift corrective action

Fig. 4: Fruit Picking with the Robotic Arm.
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Fig. 5: Orange Detection and Following.

to address soil-related issues that might be affecting the
orchard’s nutrient balance.

G. Energy Harvesting

The SARDOG has a self-sustained power generation
mechanism utilizing a 265W SunPower Solar Panel, as
depicted in Fig. 11. For power distribution, we’ve established
a power bus system, outlined in Figs. 9 and 10. This system
employs a sequential configuration: solar power is initially
directed through a 48V to 24V DC-DC buck converter
(Converter 1), subsequently passing through a 24V to 48V
DC-DC boost converter (Converter 2) to ensure voltage
stability before charging the Amiga battery pack. The output
of Converter 2 is further directed to a 24V to 12V DC-DC
buck converter (Converter 3), generating a 12V output for
powering the LiDAR, Sprayer Pump, and Linear Actuator.
Moreover, the 12V output undergoes transformation through
a 12V to 5V DC-DC buck converter to supply power to
devices such as the Raspberry Pi and various other USB-
dependent applications.

Considerable engineering effort was dedicated to the con-
ception of the solar panel farm and the corresponding canopy,
devised to accommodate a sizable solar panel measuring 31.4
inches by 61.4 inches and weighing 33.1 pounds. Our design
needed to strike a balance between being lightweight and
resilient enough to bear the panel’s weight while enduring the
abrupt movements of the SARDOG. To meet these criteria,
we opted for aluminum L-shaped rails measuring 1.5 inches
in breadth and 1/8-inch in thickness, providing robust support
for the panel’s load. Throughout the design process, careful
consideration was given to ensure that the frames remained
unobtrusive to the robotic arm, spray pump, and LiDAR.

With Vmax 40V, Imax 5.88A, Pmax 238W, SunPower 72
cell Solar Panel charges the SARDOG’s battery pack in 2.5

Fig. 6: Raspberry Pi to MAX485 to Soil Sensor.

Fig. 7: ArUco Markers Detection Application.

Fig. 8: Linear Actuator for Soil Data Aggregation.

hours during sunny days and 3 hours when in use.

III. RESULTS AND DISCUSSION

The YOLO v5 model for Weed Elimination demonstrated
commendable performance metrics, showcasing elevated pre-
cision, recall, and F1 score values. With an mAP@0.5 of
0.818 for all classes, the model adeptly maintains a har-
monious equilibrium between precision and recall. Figure
12 corroborates the model’s ability to accurately identify
objects with a marked degree of certainty, detect a substantial
quantity of objects, and achieve exceptional levels of both
precision and recall.

A precision-confidence curve depicted in Fig. 12 (left) for
all classes with a precision of 1 at 0.957 confidence means
that the model is able to identify all of the positive instances
when it is 95.7% confident in its prediction. This is a very
good score, indicating that the model is able to identify true
positives with a very high degree of confidence.

The F1 confidence-curve for all classes is 0.79 at 0.384
as shown in Fig. 12 (right), which means that the classifier
is 79% accurate at identifying positive instances when it
is 38.4% confident in its prediction. F1 is a measure of
the harmonic mean of precision and recall. It is a more
comprehensive metric than precision and recall because it
considers both the number of true positives and the number
of false positives.

IV. CONCLUSION
We’ve fully integrated cutting-edge tech into the Smart

Agricultural Robot. Key achievements include autonomous
GPS-less navigation using LiDAR and SLAM, People Fol-
lowing via Mobilenet SSD Deep Learning, and Collision
Avoidance. All Computer Vision and machine learning op-
erate seamlessly within ROS Noetic bridge architecture, pre-
sented through a user-friendly Kivy app. For precise herbicide
spraying, real-time object detection is enabled by YOLO v5.
Crop harvesting combines Computer Vision scripts, color,

770



Fig. 9: Energy Harvesting System.

Fig. 10: Power Bank Bus Converters.

and edge detection with a robotic arm. The SARDOG frame-
work includes diverse soil sensing and mounting mechanisms
crafted via CAD and 3D printing, aided by IoT devices
for soil insights, and optimizing crop nourishment. ArUco
markers personalize crop care, while soil data correlation
informs growth issues. Emphasis on energy conservation
incorporates solar panels, ensuring SARDOG fully charges
in just 2.5 hours. For a visual demonstration of our SARDOG
in operation, a video showcase is available via this link [14].

V. ACKNOWLEDGMENT

The work was partially supported by the Economic De-
velopment Administration (EDA) Project Grant 077907908,

Fig. 11: SunPower Mounted on SARDOG.

Fig. 12: Precision Confidence and F1 Confidence Curves.

Fresno-Merced Future of Food Innovation (F3) Coalition.
Special thanks to the Lyles College of Engineering at Cal-
ifornia State University, Fresno for their support and to
all the students who contributed to the SARDOG project.
including Vidith Balasa, Jonathan Vazquez, Lawrence Rede,
Luis Villanueva, Lauren Main, John Estrada and Tori Estrada.

REFERENCES

[1] N. S. Naik, V. V. Shete, and S. R. Danve, “Precision agriculture robot
for seeding function,” in 2016 International Conference on Inventive
Computation Technologies (ICICT), vol. 2, 2016, pp. 1–3.

[2] G. Zhang, Z. Zhisheng, X. Zhijie, D. Min, P. Meng, and J. Cen, “Imple-
mentation and research on indoor mobile robot mapping and navigation
based on rtab-map,” in International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), 2022, pp. 1–6.

[3] S. Ramachandran and F. Sahin, “Smart Walker V: Implementation of
RTAB-Map Algorithm,” in 2019 14th Annual Conference System of
Systems Engineering (SoSE), 2019, pp. 340–345.

[4] K. Wang, N. Jiasheng, and L. Yanqiang, “A Robust LiDAR State
Estimation and Map Building Approach for Urban Road,” in 2021
IEEE 2nd International Conference on Big Data, Artificial Intelligence
and Internet of Things Engineering (ICBAIE), 2021, pp. 502–506.

[5] H. T. Warku, N. Y. Ko, H. G. Yeom, and W. Choi, “Three-Dimensional
Mapping of Indoor and Outdoor Environment Using LIO-SAM,”
in 2021 21st International Conference on Control, Automation and
Systems (ICCAS), 2021, pp. 1455–1458.

[6] S. Mihai, P. Shah, G. Mapp, H. Nguyen, and R. Trestian, “Towards
autonomous driving: A machine learning-based pedestrian detection
system using 16-layer lidar,” in 2020 13th International Conference
on Communications (COMM), 2020, pp. 271–276.

[7] M. Velas, M. Spanel, M. Hradis, and A. Herout, “CNN for IMU
assisted odometry estimation using velodyne LiDAR,” in IEEE Inter-
national Conference on Autonomous Robot Systems and Competitions
(ICARSC), 2018, pp. 71–77.

[8] A. Katiyar, S. Behal, and J. Singh, “Automated defect detection in
physical components using machine learning,” in 2021 8th Interna-
tional Conference on Computing for Sustainable Global Development
(INDIACom), 2021, pp. 527–532.

[9] F. Zhang, Q. Li, Y. Ren, H. Xu, Y. Song, and S. Liu, “An Expression
Recognition Method on Robots Based on Mobilenet V2-SSD,” in Inter.
Conference on Systems and Informatics (ICSAI), 2019, pp. 118–122.

[10] X. Song, “Research and design of robot obstacle avoidance strategy
based on multi-sensor and fuzzy control,” in 2022 IEEE 2nd In-
ternational Conference on Data Science and Computer Application
(ICDSCA), 2022, pp. 930–933.

[11] M. Cen, Y. Huang, X. Zhong, X. Peng, and C. Zou, “Real-time
obstacle avoidance and person following based on adaptive window
approach,” in 2019 IEEE International Conference on Mechatronics
and Automation (ICMA), 2019, pp. 64–69.

[12] W. Zhang, Z. Miao, N. Li, C. He, and T. Sun, “Review of Cur-
rent Robotic Approaches for Precision Weed Management,” Current
Robotics Reports, vol. 3, no. 3, pp. 139–151, Sep. 2022.

[13] N. Teimouri, R. N. Jørgensen, and O. Green, “Novel assessment of
region-based cnns for detecting monocot/dicot weeds in dense field
environments,” Agronomy, vol. 12, no. 5, 2022. [Online]. Available:
https://www.mdpi.com/2073-4395/12/5/1167

[14] H. Kulhandjian, “SARDOG Demo Fresno State,” YouTube, May 2023.
[Online]. Available: https://www.youtube.com/watch?v=xH7gShrxuqI

771


