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Abstract—Global warming is one of the fundamental threats
to all living beings today. Various side effects are triggered as a
consequence of global warming. Frequent wildfires are one of the
side effects causing the loss of lives, vegetation, and economies on
a significant scale each year. Therefore, sophisticated mechanisms
for surveilling wildfires, including communication systems that
are resilient enough to transmit surveillance information to first
responders even in the presence of wildfires are urgent. In this
work, we leverage unmanned aerial vehicles (UAVs), cognitive
radio (CR), and deep reinforcement learning (DRL) technolo-
gies to propose a Quality of Experience (QoE)–aware airborne
communication infrastructure that can deliver surveillance video
streams to a destination in a disaster such as wildfire. In our
simulation results, we evaluate the performance of our proposed
communication infrastructure by considering different scenarios.

Index Terms—Wildfires, cognitive radio, DRL, UAVs, airborne
communication

I. INTRODUCTION

The rising temperatures due to global warming and un-
usually warm weather are vital ingredients to fuel wildfires.
Wildfires affect the health of living beings, plants, and vege-
tation, and severely impact economies. One such example is
the recent wildfires in Maui, Hawaii, which has killed over
a hundred people and is one of the deadliest wildfires in the
USA. To enable an effective emergency response to wildfires,
one of the urgent needs is to inform the first responders with
near real-time information of wildfire progression. Considering
that conventional communication systems, such as stationary
ground-based communication systems are susceptible to fire
damage, it is urgent to realize a resilient communication infras-
tructure even in the presence of wildfires [1]. To pave the path
to this goal, we propose a QoE-aware airborne communication
infrastructure for wildfire surveillance by employing UAV, CR,
and DRL techniques.

Various research have been developed to apply UAVs and
CRs for airborne communications. In [2], an airborne UAV
was proposed to transmit data to secondary ground terminals
(SGTs) during its flight time while minimizing disruptions to
a ground-based primary network and maximizing the amount
of data received by each SGT. The authors in [3] proposed a
method to address the trajectory optimization of an airborne
secondary relay that relays information between two ground-
based secondary terminals while coexisting with a primary

network. In [4], a resource allocation and trajectory planning
method was proposed, where an airborne UAV maximizes the
throughput of data it transmits to groud-based secondary ter-
minals during its flight time while minimizing the disruptions
to a primary network. These works only focus on optimizing
the Quality of Service (QoS) of data transmission. Compelling
evidence shows that, in scenarios such as wildfires where
telecommunication environments tend to vary significantly,
improving QoE is realistic compared to QoS. A QoE metric
is typically made of several QoS metrics, and achieving a
target QoE level is possible in such dynamic environments by
trading off the individual QoS metrics, rather than optimizing
each QoS metric individually. Therefore, the existing work on
applying UAVs and CRs for airborne communications cannot
be directly used for wildfire surveillance as a QoE-aware near
real-time video streaming framework is needed. The authors in
[5] proposed a QoE-aware video stream delivery framework,
where a set of surveillance UAVs capture continuous video
streams of wildfires and transmit those data to an airborne base
station (BS). This is effective in providing QoE-aware traffic
delivery amidst wildfires. However, in cases where wildfires
spread across a vast geographical region, a single airborne
BS is not sufficient in providing coverage to all the fire
surveillance UAVs. To address these shortcomings, our paper
provides a framework for enabling a QoE-aware video delivery
framework with multiple airborne BSs providing coverage to
fire surveillance UAVs. Furthermore, our work also introduces
a routing functionality for airborne BSs to route the received
surveillance data to a remote ground-based operator.

The rest of the paper is organized as follows. In Section
II, we will present the problem formulation. In Section III,
we will introduce our proposed surveillance infrastructure for
wildfires. In Section IV, we will illustrate simulation results,
followed by conclusions in Section V.

II. PROBLEM FORMULATION

In our work, we propose a QoE-aware airborne communica-
tion infrastructure for surveillance in wildfires. An overview of
our proposed communication system is illustrated in Fig. 1. As
shown in the figure, our proposed communication infrastruc-
ture has a two-layer framework. To design the first layer, we
assume multiple fire areas spread across a geographical region
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and consider multiple CR-integrated UAVs to surveil each fire
area. For simplicity, we assume four UAVs, denoted as Ui,1,
Ui,2, Ui,3, and Ui,4, surveil each fire area i P t1, ¨ ¨ ¨ , Iu.
These UAVs continuously capture the fire areas and transmit
a video stream to a remote BS which we denote by B. As
illustrated in Fig. 1, the second layer in our work is proposed to
realize the functionality of a routing layer, where K UAVs with
high computational power route the traffic received from the
first layer to B. The environment in our work also consists of a
stationary primary user (PU) denoted by P that transmits on a
particular frequency at a given time. This frequency can vary at
different time steps. Since the UAVs considered are integrated
with CRs, they have the capabilities to prevent disruptions to
any PU communications. There are N number of channels in
the environment.

III. PROPOSED COMMUNICATION INFRASTRUCTURE

The overview of our proposed communication infrastructure
is illustrated in Fig. 1. For simplicity, in our current work, we
assume that the horizontal movement of surveillance UAVs is
limited to a rectangle, as illustrated in Fig. 2. As shown in
Fig. 2, the fire area has a radius of ri. rs is the minimum
separation distance between the fire area and the UAVs. l is
the maximum distance a UAV can travel along the fire center
in x and y directions. Let the center of the fire area i be
pxi, yiq. Letting the position of surveillance UAV Ui,m, where
m P t1, 2, 3, 4u, at time step t be pxt

Ui,m
, ytUi,m

, ztUi,m
q, we are

able to model the position constraints of Ui,1,Ui,2,Ui,3,Ui,4

at t as follows:

xi ´ a ď x
t
Ui,1

ď xi ` a, yi ` a ď y
t
Ui,1

ď yi ` b, hi ď z
t
Ui,1

ď hmax

xi ´ b ď x
t
Ui,2

ď xi ´ a, yi ´ a ď y
t
Ui,2

ď yi ` a, hi ď z
t
Ui,2

ď hmax

xi ´ a ď x
t
Ui,3

ď xi ` a, yi ´ b ď y
t
Ui,3

ď yi ´ a, hi ď z
t
Ui,3

ď hmax

xi ` a ď x
t
Ui,4

ď xi ` b, yi ´ a ď y
t
Ui,4

ď yi ` a, hi ď z
t
Ui,4

ď hmax

(1)

Fire surveillance
layer (Layer 1)

Routing

layer (Layer 2)

BS that is not impacted by wildfire

PU

Communication links in the routing layer
Data transmission links from fire sensing layer to routing layer

Fig. 1: Illustration of our proposed communication
infrastructure.

TABLE I: Video quality-bit rate mapping [5].

Video quality Resolution Bit rate range

144p 256 ˆ 144 80 „ 100 kbps
240p 426 ˆ 240 300 „ 700 kbps
360p 640 ˆ 360 400 „ 1000 kbps
480p 854 ˆ 480 500 „ 2000 kbps

𝒃 = 𝒓𝒊 + 𝒓𝒔 + 𝒍

𝒓𝒊
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𝒍
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𝒙

𝒚
1

2

4

3

Fig. 2: Illustration of the horizontal movement of
surveillance UAVs around the fire area i.

where hi is the height of the fire i, and hmax is the maximum
height that a UAV can fly. Letting the position of the routing
UAV Lk at t be pxt

Lk
, ytLk

, ztLk
q, the positional constraints of

Lk at time step t can be formulated as follows:
$

’

&

’

%

b

pxt
Lk

´ xjq2 ` pyt
Lk

´ yjq2 ě a

max
j

thju ď zt
Lk

ď hmax

(2)

where j P t1, ¨ ¨ ¨ , Iu. The first condition in Eq. (2) is
formulated to ensure that the routing UAVs will not get too
close to the fire areas. The second condition is formulated
to ensure that all the routing UAVs will fly higher than the
maximum height of the fire areas. In our work, there are two
BSs, P and B, where P refers to the PU and B refers to the
BS that is the final destination of all the video streams, as
illustrated in Fig. 1. At each time step, a surveillance UAV
Ui,m in Layer 1 transmits a video stream about the wildfire to
a routing UAV Lk in Layer 2. In Layer 2, the routing UAVs
route the traffic received from Layer 1 to B. In our current
work, we consider that the routing protocol employed by these
UAVs is Ad-hoc On-Demand Distance Vector (AODV) routing
[6]. We would like to claim that our proposed work can be
generalized by considering other routing protocols.

Additionally, it is reasonable to consider that the video
stream transmitted from the surveillance UAVs consists of
multiple frames with variable size rpx ˆ rpy . Therefore,
depending on the frame size, we consider different video
qualities in the work presented in this paper. Different video
qualities used in our work and the average data rate used to
achieve those qualities are stated in Table I. Let the video
quality of fire area i at time step t be Qt

i. As mentioned
previously, each surveillance UAV will transmit a frame at
each time step to the routing layer. Let us consider that
the surveillance UAV Ui,m transmits its current frame to the
routing UAV LUd

i,m
over the channel CUc

i,m
. Routing UAV and

channel selection of Ui,m should satisfy
řK

k“1 I1pkq “ 1, and
řN

n“1 I2pnq “ 1, where I1pkq “ 1 if k “ Ud
i,m and I1pkq “ 0

otherwise, and I2pnq “ 1 if n “ Uc
i,m, and I2pnq “ 0

otherwise. Ui,m also chooses the receiving channel of B as
CUc

1

i,m

. In other words,
řN

n“1 I3pnq “ 1, where I3pnq “ 1 if
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n “ Uc
1

i,m, and I3pnq “ 0 otherwise. Here, I1p¨q, I2p¨q, and
I3p¨q are indicator functions. The received datarate from Ui,m

to B at t is Rt
Ui,m

. Let the time taken to transmit a frame from
Ui,m to B at time step t be T t

i,m. Therefore, the maximum time
taken to receive all the frames at B at t is T t

max “ max
i,m

tT t
i,mu

where i P t1, . . . , Iu, and m P t1, 2, 3, 4u.

A. Path loss models

To model the path losses in our work, we need to take into
account the spatial diversity of different components in our
proposed work. Therefore, we leverage path loss models that
cover both air and ground communications based on the work
in [7].

1) Air to air model: The communication between two
UAVs can be formulated via an exponential decaying path
loss model [7]. Furthermore, as stated in [8], Rayleigh fading
coefficient is formulated as h “ σpN p0, 1q ` jN p0, 1qq,
where σ2 “ 1

2 and N p0, 1q denotes standard normal dis-
tribution. Additionally, it is reasonable to assume that the
communication between two UAVs is line-of-sight (LOS), and
thus we can formulate the Rician coefficient by adding the
LOS component to the Rayleigh fading coefficient. Therefore,
h for the Rican fading coefficient can be formulated as
h “ 1 ` σpN p0, 1q ` jN p0, 1qq where σ2 “ 1

2 . Ultimately,
we realize the modeling of the UAV-to-UAV communications
by using Rician fast fading along with exponentially decaying
loss function. Then, the received power from UAV γ2 to γ1 can
be formulated as PR

γ1
“ P T

γ2
Gdpγ1, γ2q´α|h|2, where UAVs

γ1 and γ2 can be two routing UAVs, or one routing UAV and
one surveillance UAV, respectively, G is the channel gain, α
denotes the path loss exponent, and dpγ1, γ2q is a function
used to find the Euclidean distance between UAVs γ1 and γ2.

2) Ground to ground model: To formulate the ground-to-
ground communication between P and B, we leverage the
model proposed in [7] to model the path loss between two BSs
γ1 and γ2 as PLdB,BS´BS

γ1,γ2
“ ´55.9 ` 38 log2 pdpγ1, γ2qq `

ˆ

24.5 `
1.5F
925

˙

log2pFq. Based on the formulation, the re-

ceived power from P to B can be calculated as PR
B “

P T
P

10PLdB,BS´BS
P,B {10

.

3) Air to ground model: The average path loss be-
tween a UAV γ2 and a BS γ1 can be modeled in dB as
PLdB,BS´UAV

γ2,γ1
“ PLOS

γ2,γ1
¨ PLLOS

γ2,γ1
` PNLOS

γ2,γ1
¨ PLNLOS

γ2,γ1
,

where PLOS
γ2,γ1

“ 1 ´ PNLOS
γ2,γ1

, and PLOS
γ2,γ1

, PLLOS
γ2,γ1

, and
PLNLOS

γ2,γ1
are given as follows:

$

’

’

’

’

&

’

’

’

’

%

PLOS
γ2,γ1

“
1

1 ` aep´bpδγ2,γ1
´aqq

PLLOS
γ2,γ1

“ 20 log2pFq ` 20 log2

`

4π
c

˘

` 20 log2pdpγ2, γ1qq ` ηLOS

PLNLOS
γ2,γ1

“ 20 log2pFq ` 20 log2

`

4π
c

˘

` 20 log2pdpγ2, γ1qq ` ηNLOS

(3)

where δγ2,γ1 “ sin´1
´

hpγ2q´hpγ1q

dpγ2,γ1q

¯

and hp¨q is a function
to calculate the height of an object. Then, the received power

from γ2 to γ1 can be stated as PR
γ1

“
PT

γ2

10
PL

dB,BS´UAV
γ2,γ1

{10
, where

γ1 and γ2 can be the BS B and a routing UAV, respectively,

or the PU P and a UAV (i.e., routing or surveillance UAV),
respectively.

B. Co-existence with PUs
In this work, we consider that all UAVs and the BS B have

spectrum-sensing capabilities by following a spectrum overlay
co-existence strategy. At the beginning of each time slot, each
UAV will perform spectrum sensing to identify any active PU
communications and turn off the radio interface where the
active communication is detected. Furthermore, B also has
the spectrum sensing capabilities. It will turn off the radio
interface, in which the PU is active, at the beginning of each
time slot. This strategy aims to discourage routing UAVs to
send data to B when there’s already interference at B from P .

C. QoE-aware communication
Our proposed airborne communication infrastructure is de-

signed to optimize QoE for enabling smooth and near real-
time video streaming for surveillance of wildfires. To achieve
this goal, we propose to minimize the successive throughput
variation while maximizing the throughput of each surveil-
lance UAV. Additionally, we also aim to ensure the maximum
delay of the system at each step does not exceed a certain
threshold. To achieve this, the model of the overall QoE of the
communication infrastructure at time step t can be formulated
as:

QoE “ θ

˜

I
ÿ

i“1

4
ÿ

m“1

Rt
Ui,m

´ |Rt
Ui,m

´ Rt´1
Ui,m

|

¸

´ ω ¨ Dt (4)

where, |Rt
Ui,m

´Rt´1
Ui,m

| is formulated for minimizing through-
put variation of UAV Ui,m at time step t. Dt “ T t

max ´ T is
formulated for ensuring maximum delay does not exceed the
delay threshold T , and θ and ω are coefficients.

D. Overall optimization formulation for our proposed com-
munication infrastructure

To achieve the objective function described in Eq. (4), each
surveillance UAV will adaptively optimize its transmission
power, intermediate routing UAV, intermediate channel, des-
tination channel, and position. Furthermore, the video quality
for each fire area at each time step is adaptively determined.
To adjust UAV positions, each UAV determines changes on
its coordinates. If the UAV γ determines the change on its
position at time step t as p∆xt

γ ,∆ytγ ,∆ztγq, then its position
at t is pxt´1

γ , yt´1
γ , zt´1

γ q ` p∆xt
γ ,∆ytγ ,∆ztγq Ñ pxt

γ , y
t
γ , z

t
γq.

We can formulate the overall optimization problem as follows:

max
ρ

θ

˜

I
ÿ

i“1

4
ÿ

m“1

Rt
Ui,m

´ |Rt
Ui,m

´ Rt´1
Ui,m

|

¸

´ ω ¨ Dt

subject to
K
ÿ

k“1

I1pkq “ 1

N
ÿ

n“1

I2pnq “ 1

N
ÿ

n“1

I3pnq “ 1

Pmin ď P
T
Lk

, P
T
Ui,m

ď Pmax

Positional constraints in Eqs. (1) and (2)

(5)
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where ρ = LUd
i,m

, CUc
i,m

, P T
Ui,m

, Qt
i, CUc

1

i,m

, ∆xt
Ui,m

, ∆ytUi,m
,

∆ztUi,m
, ∆xt

Lk
, ∆ytLk

, ∆ztLk
, P T

Lk
, i P t1, . . . , Iu, m P

t1, 2, 3, 4u, and k P t1, ¨ ¨ ¨ ,Ku.

E. DRL-enabled optimization realization

Considering that the optimization model in Eq. (5) has
high complexity and one type of emerging machine learning
techniques, DRLs, have demonstrated powerful capabilities
in solving complex optimization problems, in our work, we
exploit DRL techniques to deploy our proposed optimization
model for communication management. We propose to model
the procedure of determining the transmission and spatial pa-
rameters based on the environment state as a Markov Decision
Process (MDP). Additionally, considering our optimization
model involves a combination of continuous and discrete
action space, we leverage one type of DRL technique, the Deep
Deterministic Policy Gradient (DDPG) method in our work.
To achieve our optimization goal, we consider the objective
function stated in Eq. (5) as the DRL reward function to
evaluate and optimize the decision-making of the routing and
surveillance UAVs. Furthermore, we can define the state and
action of the DRL algorithm as follows:

st “ rQt´1,POSt´1
U ,POSt´1

L ,Rt´1, T t´1
max,SS

t
U ,SSt

L,SS
t
Bs

at “ rLUd ,LUc ,L
Uc

1 , PT
U , PT

L ,∆POSt
U ,∆POSt

L,Qts

(6)

where Qt is the vector of the video quality of each fire area at
time step t. POSt´1

U is the position of surveillance UAVs at
time step t´1, and POSt´1

L is the position of routing UAVs at
time step t´1. Rt´1 is the throughput of surveillance UAVs at
time step t´1. LUd is the intermediate routing UAV selection
of each surveillance UAV at t. LUc is the intermediate channel
selection of each surveillance UAV at t. Similarly, LUc

1 is the
destination channel selection of each surveillance UAV at t.
P T
U is the transmission power vector of each surveillance UAV,

and P T
L is the transmission power vector of the routing UAVs.

∆POSt
U is the position changes of the surveillance UAVs at

time step t, and ∆POSt
L is the position changes for routing

UAVs at time step t. These vector variables are defined as
follows:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

LUd “ rLUd
1,1

, ¨ ¨ ¨ ,LUd
1.4

, ¨ ¨ ¨ ,LUd
I,1

, ¨ ¨ ¨ ,LUd
I,4

s

LUc “ rLUc
1,1

, ¨ ¨ ¨ ,LUc
1.4

, ¨ ¨ ¨ ,LUc
I,1

, ¨ ¨ ¨ ,LUc
I,4

s

L
Uc

1 “ rL
Uc

1

1,1

, ¨ ¨ ¨ ,L
Uc

1

1.4

, ¨ ¨ ¨ ,L
Uc

1

I,1

, ¨ ¨ ¨ ,L
Uc

1

I,4

s

PT
U “ rPT

U1,1
, ¨ ¨ ¨ , PT

U1,4
, ¨ ¨ ¨ , PT

UI,1
, ¨ ¨ ¨ , PT

UI,4
s

PT
L “ rPT

L1
, ¨ ¨ ¨ , PT

LK
s

∆POSt
U “ r∆xt

U1,1
,∆yt

U1,1
,∆zt

U1,1
, ¨ ¨ ¨ ,∆xt

UI,4
,∆yt

UI,4
,∆zt

UI,4
s

∆POSt
L “ r∆xt

L1
,∆yt

L1
,∆zt

L1
, ¨ ¨ ¨ ,∆xt

LK
,∆yt

LK
,∆zt

LK
s

Qt “ rQt
1, ¨ ¨ ¨ ,Qt

Is

POSt´1
U “ rxt´1

U1,1
, yt´1

U1,1
, zt´1

U1,1
, ¨ ¨ ¨ , xt´1

UI,4
, yt´1

UI,4
, zt´1

UI,4
s

POSt´1
L “ rxt´1

L1
, yt´1

L1
, zt´1

L1
, ¨ ¨ ¨ , xt´1

LK
, yt´1

LK
, zt´1

LK
s

Rt´1 “ rRt´1
U1,1

, ¨ ¨ ¨ ,Rt´1
UI,4

s

(7)

TABLE II: Simulation parameters

Parameters Values

Transmission gain 15 dB
Pmin 16.0206 dBm
Pmax 31.0206 dBm
Reception gain 35 dB
θ 1
ω 0.1
ri 250 m [5]
rs 9 m [9]
l 10 m
hmax 100 m [5]
Height of P,B 30 m [10]
α 2 [7]
G 10´3.15 or (´31.5 dB) [7]
a 12
b 0.135
ηLOS 1
ηNLOS 20

Furthermore, SSt
U is a vector consisting of spectrum sensing

results of surveillance UAVs, and SSt
L is a vector consisting of

spectrum sensing results of routing UAVs. If the surveillance
UAV Ui,m senses a PU present on channel n, we can denote
this as SSt

Un
i,m

“ 1, otherwise SSt
Un

i,m
“ 0. Similarly, if the

routing UAV k senses a PU present on channel n, we can
denote this as SSt

Ln
k

“ 1, otherwise SSt
Ln

k
“ 0. SSt

B is the

spectrum sensing result of B at t. We can denote SSt
U and

SSt
L as follows:

SSt
U “ rSS

t

U1
1,1

, ¨ ¨ ¨ ,SS
t

UN
1,1

, ¨ ¨ ¨ ,SS
t

U1
I,4

, ¨ ¨ ¨ ,SS
t

UN
I,4

s

SSt
L “ rSS

t

L1
1
, ¨ ¨ ¨ ,SS

t

LN
1

, ¨ ¨ ¨ ,SS
t

L1
K
, ¨ ¨ ¨ ,SS

t

LN
K

s

(8)

IV. SIMULATION RESULTS

We leverage NS-3, which is a widely used network sim-
ulator, to conduct the simulations for evaluating the per-
formance of our proposed airborne communication infras-
tructure. Throughout our simulation results, we consider an
environment consisting of three fire areas, where each fire
area is surveilled by 4 surveillance UAVs. Additionally, there

0 200 400 600
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1e5

Fig. 3: Reward of our proposed communication infrastructure
during training.
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(b) Individual throughput
variations
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(c) Individual throughputs

Fig. 4: Performance of individual surveillance UAVs (blue
dots represent successful frame receptions, red dots represent
frame losses, and green lines represent the moving average

of each performance metric).

are 5 routing UAVs. We consider a geographical area of
2000mˆ2000m. The fire areas are arbitrarily placed in the ge-
ographical area. At the start of each episode, each routing UAV
is placed at the center of the geographical area. Furthermore, B
and P are placed arbitrarily in the environment. Additionally,
the wireless environment consists of four channels with center
frequencies of 2000MHz, 3000MHz, 4000MHz, 5000MHz,
respectively. To enable operating on different center frequen-
cies, we set each UAV, B, and P with 4 radio interfaces.
Besides the spatial parameters mentioned in Section III, all
the UAVs can ascend or descend 50m at each step of the
episode. Furthermore, they can move 25m horizontally. Other
simulation parameters are detailed in Table II.

Fig. 3 illustrates the total reward variation during DRL
training. From Fig. 3, it is clear that the total reward increases
as the training progresses. Fig. 4 illustrates the performance of
individual surveillance UAVs for a single episode consisting
of 100 steps. In Fig. 4(a), we can observe the delay of the
individual UAVs. In some UAVs, we can observe some frame
losses characterized by a high value of delay (identified by
red scatters). However, the majority of the delay values are
low. Fig. 4(b), and 4(c) show individual throughput variation
and throughput, respectively. From Fig. 4(b), we can see
that our proposed method enables the system to maintain
the average throughput variation at a low level that varies

approximately between 50 to 250 kbps. As shown in Fig. 4(c),
the average throughput is in the range from 200 to 600 kbps,
which is a relatively moderate range. This is reasonable since
our proposed QoE-aware multi-objective optimization model
for airborne communication infrastructure aims to achieve a
tradeoff amongst maximizing the throughput, enforcing the
maximum delay at a low level, and minimizing throughput
variation. In our ongoing work, we are exploring appropriate
strategies to enable an optimal tradeoff between high through-
put, low throughput variation, and low maximum delay.

V. CONCLUSIONS

In this work, we propose a QoE-aware airborne commu-
nication infrastructure for scalable surveillance of wildfires.
Our proposed communication infrastructure has a two-layer
hierarchical framework, where the first layer consists of fire
surveillance UAVs and the second layer consists of routing
UAVs that receive surveillance video streams from the first
layer and routes them to the destination BS. Simulation results
illustrate that our proposed communication infrastructure is
effective in ensuring QoE requirements for delivering video
streams for wildfire surveillance. In our ongoing work, we
are improving our proposed communication infrastructure to
further optimize QoE metrics. Additionally, we are exploring
appropriate strategies to carry out in-field experiments.
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