
Correlation-Aware and Personalized
Privacy-Preserving Data Collection

Dongxiao Yu∗, Kaiyi Zhang∗, Youming Tao∗‡, Wenlu Xu†, Yifei Zou∗, Xiuzhen Cheng∗
∗School of Computer Science and Technology, Shandong University, P.R. China
†Department of Statistics, University of California, Los Angeles (UCLA), U.S.

‡School of Electrical Engineering and Computer Science, TU Berlin, 10587 Berlin, Germany

Abstract—Data collection from users is essential for various
IoT services. However, privacy concerns may prevent users from
sharing their raw data truthfully. The problem becomes more
complex when the data and relationships are correlated and
the privacy preferences are personalized. In particular, users’
data are influenced by social interactions, which implies that
others’ data can affect users’ privacy. Moreover, users care
not only about their own privacy leakage, but also about their
social contacts’ privacy leakage, due to the social ties in reality.
Furthermore, different users have different levels of privacy
sensitivity for their own data, which poses a challenge for bal-
ancing user privacy and data utility. In this paper, we investigate
the correlation-aware and personalized private data collection
problem. We formulate the private data collection process as a
Stackelberg game, where the platform sets its reward policy and
users select their noise levels for privacy preservation. To tackle
the challenges above, we adopt the Gaussian correlation model
to represent the data correlation among users and integrate the
relationship correlation and personalization when deriving the
optimal strategies for both users and the platform. Notably, we
employ mutual information differential privacy for a rigorous
quantification of the correlated privacy loss. Through rigorous
theoretical analysis, we first establish the connection between
users’ Nash equilibrium and the payment mechanism, and then
optimize the platform’s accuracy under a budget constraint by
designing the reward policy. We also demonstrate the effective-
ness of our proposed framework through extensive numerical
experiments.

Index Terms—Data collection, privacy preservation, Stackel-
berg game

I. INTRODUCTION

Data collection from users is a key component of many
IoT applications, e.g., intelligent transportation [15] and smart
city [10], as it enables the platform to understand the users’
needs, preferences, and behaviors, and to provide personalized
and optimized services. However, data collection poses signif-
icant privacy risks for the users who provide their data. Due
to pervasive privacy concerns [1], users may be disinclined to
share their raw data candidly. For instance, users may not want
to divulge their locations, health conditions, or personal pref-
erences to the platform or other third parties. These data can
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reveal sensitive information about users’ identities, behaviors,
and lifestyles, which can be exploited for malicious purposes
[12]. Specifically, one has to contend with the following
inevitable challenges.

One challenge is that users’ data are often correlated due
to social interactions, which implies that users’ privacy can
be jeopardized by others’ data [19]. For instance, if two
users are neighbours and one of them shares his location, the
other user’s location can be deduced with high probability.
Furthermore, with the social relationship forged in reality,
users care about the privacy leakage of not only themselves
but also those individuals who are socially related to them.
This necessitates that the measurement of users’ privacy loss
incorporates both the data and social correlation with their
peers. Thus, it is imperative to safeguard users’ privacy under
correlation.

Another challenge lies in the diversity of users’ privacy
sensitivities, intensifying the delicate balance between user
privacy and data utility [16]. For instance, certain users may
willingly share more data in return for increased rewards or
enhanced services, while others may exercise caution and
demand higher levels of privacy protection. Consequently, it
becomes imperative to tailor the degree of privacy preservation
during the data collection process to accommodate varying
user preferences and requirements.

Several works have made attempts to tackling these chal-
lenges. Due to space limit, here we just discuss the most
related works. [13] introduces a two-stage Stackelberg game
to analyze the participation level of the mobile users and
the optimal incentive mechanism of the crowdsensing service
provider. But they neglected the privacy leakage issue. [11]
then investigated correlated data collection while protecting
users’ privacy at the same time. They assume the data collector
will perturb the aggregation result by adding noise while
having no access to the exact aggregation result, which limits
the applicability of the proposed mechanism. Also, in [11],
users and the platform are assumed to have the same objective,
i.e., maximizing the data aggregation accuracy, which is not
practical in general. Based on this insight, [18] focused on
a more general non-cooperative game. That is, the platform
is interested in maximizing its accuracy, whereas users only
care their payoffs, which is also the focus of this paper. This
way, the payment mechanism needs to be devised to strike a
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good balance between the different objectives of both sides.
However, there are still several defects need to be addressed.
Firstly, in both [11] and [18], every user’s privacy loss is
measured by the mutual informant that indicates its individual
information contained by the analysis result. This concept,
however, is not rigorous enough compared with the de facto
standard notion of differential privacy. As demonstrated in
[2], [3], differential privacy implies a bound on the mutual
information leakage, but not vice-versa. Thus, it is necessary
to extend the equilibrium analysis and payment mechanism
design to the differential privacy framework. Secondly, none
of these work have ever incorporated users’ different privacy
preferences to provide personalized payments for them.

To address these issues, in this paper, we propose a
correlation-aware and personalized privacy-preserving data
collection framework. Our framework leverages the two-stage
Stackelberg game where the platform determines its reward
policy and users choose their noise levels while considering
the social influence among users and their personal privacy
requirements. We adopt the Gaussian correlation model to
characterize the data correlation among users. Specifically, we
employ the notion of mutual-information differential privacy
(MIDP) [4], a variant of differential privacy for correlated
data, to rigorously measure privacy loss of each user for the
first time (to the best of our knowledge). Moreover, by taking
into account the different levels of personal privacy sensitivity
of different users, we conduct a refined analysis for the
connection between users’ Nash equilibrium and the payment
mechanism and provide a personalized payment mechanism
for the platform while optimizing its accuracy under the budget
constraint. We also conduct extensive numerical experiments
to evaluate the performance of our framework over several
real-world datasets. Our results demonstrate that our frame-
work can effectively collect useful data for smart city while
preserving users’ privacy from correlation leakage.

II. PROBLEM FORMULATION

A. Private Data Collection Problem Setting

A platform aims to collect individual data from n users in
the set ι = {1, 2, . . . , n} for analytics. The individual data of
user i is xi ∈ R. After the collection, the platform aggregates
all users’ reported data to obtain some statistics. Specifically,
we consider the sum aggregation, which serves as the core
of many intelligent data analysis tasks, such as training large-
scale neural networks and other statistical models, and also
federated learning. The aggregation result in principle is

y :=

n∑
i=1

xi. (1)

Unfortunately, due to privacy concern, users may not report
their data truthfully. To protect their privacy, users can perturb
their data by adding some random noise. We assume that the
noise is a zero-mean Gaussian random variable, just as most
of the previous works on private data collection did, such
as [11], [14]. This kind of assumption is reasonable since

Gaussian noise is effective for privacy preserving as indicated
by the Gaussian mechanism of differential privacy [6]. Thus,
the actual results obtained by the platform should be

ŷ :=

n∑
i=1

(xi + ξi) = y + ξg, (2)

where ξi ∼ N (0, σ2
i ) is the random noise added by each user

i, σi is the standard deviation indicating the noise magnitude,
ξg ∼ N(0, λ2) represents the whole noise with λ2 =

∑n
i=1 σ

2
i

for simplicity. Typically, the noise variances of all users are
bounded, i.e., σi ∈ [σ, σ].

The platform provides rewards to users for their data shar-
ing. Specifically, the reward payment pi for user i is set as a
linear function of its noise magnitude, i.e.,

pi := r − θiσ
2
i , (3)

where r is the original reward each user can get if he does not
add any noise to his reported data and θi is a positive weight
factor to indicate user i’s type.

B. Data and Social Correlation Model

User’s data are unavoidably correlated due to social interac-
tions. We use the Gaussian correlation model [17] to capture
the data correlation among users, just as [11], [18] did. Gaus-
sian correlation model is a special case of the Markov random
field [8] and it presents the correlation among data as a non-
negative weighted undirected graph. Specifically, let G(V,W)
be a weighted undirected graph, where V is the vertex set and
W is the set of all weighted edges in G. Each vertex vi ∈ V
represents the user i and each weighted edge (i, j, wij) ∈ W
with wij ≥ 0 describes the correlation between user i and
user j. Intuitively, the larger wij is, the more tightly is i and j
correlated. Let W = (wij) ∈ Rn×n be the weighted adjacent
matrix and D = diag(w1, w2......wn) be the weighted degree
matrix of G(V,W) where wi :=

∑
j ̸=i wij . The Laplacian

matrix of G(V,W) is defined as

L := D −W =


w1 −w12 · · · −w1n

−w21 w2 · · · −w2n

...
...

. . .
...

−wn1 −wn2 · · · wn

 . (4)

Let x be the vector containing all the user data, i.e., x :=
(x1, x2, · · · , xn)

⊤, and x−i be denote all the components in
x but xi. For ∀i, the conditional joint probability of x−i is

p(x−i|xi) ∝ exp

(
−x⊤Lx

2

)
. (5)

C. Privacy Loss and Threat Model

Based on the Gaussian correlation model above, we char-
acterize the privacy loss of each user i ∈ ι for the weighted
aggregation analysis. Before doing this, we first clarify the
threat model. Typically, the strong adversary assumption is
widely used for the independent data case. For use i, we
refer to a strong adversary as one who knows the entire data
except for xi. Differential privacy [5] is implicitly designed
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as a protection against further information leakage to this
adversary. However, in the correlated data case, it has been
shown in [17] that a weak adversary who has less background
knowledge of the dataset may gain much more information
than the strong adversary who knows all data but the target
one. Thus, we define each adversary for each user i by exactly
specifying the known and unknown data sets. Let Ii ⊆ be the
set of user whose data are known by the adversary. Then,
for any user i ∈ ι, it holds that Ii ⊆ ι\{i}. We denote an
adversary as A(i, Ii), if he knows the data of users in I and
aims to attack the data of user i. For simplicity, we denote all
the data in Ii known by the adversary as xIi .

Given the threat model above, we adopt the concept of
mutual-information differential privacy (MI-DP), proposed in
[4], as the measurement for privacy loss. More specifically, we
use the generalized version discussed in [4, Section 6.3], which
is adapted to protect simultaneously against all adversaries,
both strong and weak ones.

Definition 1 (Mutual Information Differential Privacy
(MI-DP) [4]). We say ϵ-mutual-information differential pri-
vacy is satisfied for user i if

sup
xi,xIi ,i

I(ŷ|xIi ;xi) ≤ ϵ, (6)

where for any random variable X and Y , I(X;Y ) denotes
the mutual information between X and Y .

In contrast to previous works using unconditional mutual
information [11], [18], we can see that differential privacy is
fundamentally related to conditional mutual information. And
as we mentioned before, since differential privacy implies a
bound on the mutual information leakage, but not vice-versa
[2], [3], our framework can provide more reliable privacy
measure for users.

The Proposition 1 below characterizes the variance of the
aggregation result in (2) conditional on each user’s data.

Proposition 1. The variance of ŷ in (2) conditional on user
i’s data xi is given by

Var(ŷ|xi,xIi) = λ2 +
(m− 1)2

wi
(7)

Proof (Sketch). For any given xi
I , we first calculate the con-

ditional probability density of x̄i :=
(∑

j∈ι\Ii\{i} xi

)
/(n −

1 − |Ii|), i.e., p(x̄i|xi,xIi) according to (5). With this, the
conditional probability density of y, i.e., p(y|xi,xIi) can be
obtained. Then, considering that the noise ξg is independent
of y, the conditional density of ŷ is just a convolution of y and
ξg . Finally, by an integration, we get the conditional density
of ŷ, which gives its conditional variance shown in (7).

Utilizing (7), we now capture the privacy loss for each
user i, which is based on the concept of MI-DP. Note that
I(ŷ|xIi ;xi) = H(ŷ|xIi) − H(ŷ|xI , xi). Here we assume
H(ŷ|xIi) equals to a constant C for all i, which corresponds
that impacts of the adversary for different users are the same
to the final aggregation results. And we mainly focus on

H(ŷ|xIi , xi). Since p(ŷ|xi) has a Gaussian form, we have
H(ŷ|xIi , xi) = 1

2 ln(2πeVar(ŷ|xIi , xi)). In summary, we
define the privacy loss li of user i as:

li = C − ln

(
λ2 +

(m− 1)2

wi

)
. (8)

D. Utility Functions
1) Users: Each user i’s utility function Ui comprises two

parts: the reward from the platform and the total loss of
privacy. The payment rule has been clearly given in (3). For
the total privacy loss for each user i, we have to additional take
the social relationship among users and their diverge privacy
sensitivities into consideration. The total privacy loss for user
i is specified as follows:

siC −
∑
j∈ι

sij ln

(
λ2 +

(m− 1)2

wj

)
, (9)

where sij is the weight factor that captures the social relation-
ship strength between i and j, a larger sij indicates a closer
relationship between user j and i, thus i cares more about j’s
privacy loss. Notably, when i = j, sii reflects user i’s privacy
sensitivity to his own data, which achieves personalized pri-
vacy. Here we use si :=

∑
j∈ι sij for simplicity. The utility

function of user i is formally defined as follows,

Ui(σi, σ−i) = r− θiσ
2
i +

n∑
j=1

sij ln

(
λ2 +

(m− 1)2

wj

)
− siC.

(10)
2) Platform: The gain of platform is determined by two

factors. One is the accuracy rate for achieving certain ag-
gregation error ϵ. The other one is whether the price P :=
(p1, p2, · · · , pn)⊤ he pays for the accuracy rate exceeds the
budget B. For any given aggregation error ϵ, the platform
wants to maximize the accuracy rate, that is, he wants to find
an as large as possible α such that P(|y − ŷ| < ϵ) ≥ α.
By using the Bienaymé–Chebyshev inequality [7], we have
Pr(|r − s| < ϵ) ≥ 1 − λ2

ϵ2 . Then, for a given error ϵ, the
accuracy rate α is upper bounded as follows:

α ≤ 1− λ2

ϵ2
. (11)

Next, for the payment, we use LB(·) to provide penalty if the
budget constraint B is not respected, i.e.,

LB(P) =

{
0, if

∑
i pi ≤ B,

−∞, otherwise.
(12)

We define the platform’s utility function Up as follows,

Up(ϵ,B,P) = 1− λ2

ϵ2
+ LB(P). (13)

E. Stackelberg Game Formulation

We model the interaction between the platform and users
as a two-stage Stackelberg game. The platform first specifies
its reward policy or payment mechanism, and then the users
decide their noise-adding strategy.
Stage I: The platform gives the payment mechanism P∗:

P∗ = argmax
P

Up(ϵ,B,P). (14)
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Stage II: Each use i decides the noise magnitude σi:

σ∗
i = argmax

σi

Ui(σi, σ−i,P) (15)

Through backward induction, We will first analyze users’
decisions on given payment mechanism next.Then we maxi-
mize the platform’s utility base on the users’ decisions.

III. MAIN RESULTS

A. Nash-Equilibrium of Users

We first analyze one user’s best noise-adding strategy with
fixed strategies of others. Then, we derive the relationship
between the platform’s payment mechanism and users’ Nash
Equilibrium. For user i, given other users’ noise magnitude as
σ−i, the optimal strategy σ∗

i is given by

σ∗
i = argmax

σi

Ui(σi, σ−i). (16)

Take the derivative of Ui(σi, σ−i) with respect to σi, we have,

∂Ui

∂σi
=

n∑
j=1

2sijσi∑
j σ

2
j +

(m−1)2

wj

− 2σiθi. (17)

Let ϕi be the quantity satisfying that
n∑

j=1

sij

ϕi +
(m−1)2

wj

− θi = 0. (18)

Note that ϕi is a constant and can be calculated beforehand.
Thus, given σ−i, the best noise magnitude of user i can be
easily calculated as follows

σ∗
i = max

σ,min

ϕi −
∑
j ̸=i

σj , σ


 . (19)

Investigating the optimal noise-adding strategy shown above,
we first make the following claim.

Claim 1. For any two users i and j with ϕi < ϕj , it holds
that σi ≤ σj

With this claim, we provide our main result for the Nash-
Equilibrium of users as follows:

Theorem 1. Suppose that n1, n2 and n3 are three arbitrary
non-negative integers such that n1 +n2 +n3 = n. The noise-
adding strategy σ = (σ1, σ2, · · · , σn) is a Nash-Equilibrium if
and only if there are n1 users with their noise magnitude being
σ, n2 users with their noise magnitude falling in the range of
(σ, σ) and their solution of (18) being

∑n
j=1 σj , and n3 users

with their noise magnitude being σ.

Proof. As per (19), if there is some user i whose σi is in
(σ, σ), then σi = ϕi−

∑
j ̸=i σj , which means ϕi =

∑n
j=1 σj .

This means that, for all users whose noise magnitude is in
range of (σ, σ), their solutions of (18) equal to the same value
of

∑n
j=1 σj . By Claim 1, we know that for any other user i′ ̸=

i that σi′ =

{
σ, if ϕi′ < ϕi,
σ, if ϕi′ < ϕi.

This concludes the proof.

From Theorem 1, we can see, the Nash-Equilibrium of users
is not unique in general, and ϕ = (ϕ1, ϕ2, · · · , ϕn) plays a
key role in determining the specific Nash-Equilibrium. Define
ϕ := maxi ϕi and ϕ := mini ϕi. Next, we specify two special
cases, where the Nash-Equilibrium is unique: Case I: ϕ < nσ,
Case II: ϕ > nσ.

We make another claim below and then use it to obtain the
unique Nash-Equilibrium for each case above.

Claim 2. For user i, if ϕi ≤ nσ, then σi = σ. If ϕi ≥ nσ,
then σi = σ.

Proof. Since for ∀j, σj ≥ σ, when ϕi ≤ nσ, we have ϕi −∑
j ̸=i σj ≤ nσ − (n− 1)σ = σ, which lead to σi = σ due to

(19). Similarly, because of σj ≤ σ for ∀j, when ϕi ≥ nσ, it
holds that ϕi −

∑
j ̸=i σj ≥ nσ− (n− 1)σ = σ, which means

σi = σ as per (19).

Theorem 2. For Case I, the unique Nash Equilibrium of users’
noise magnitude is σi = σ for ∀i. For Case II, the unique Nash
Equilibrium of User’s noise magnitude is σi = σ for ∀i.

B. Optimal Reward Policy of the Platform

As we mentioned above, the Nash-Equilibrium of users’
noise magnitude is determined by ϕ = (ϕ1, ϕ2, · · · , ϕn),
which is affected by θ = (θ1, θ2, · · · , θn), i.e., the payment
mechanism of the platform. So the platform needs to elabo-
rately design its payment mechanism (θ∗, r∗) under a given
budget to strike a good balance between users’ privacy and
the platform’s accuracy. Specifically, the accuracy optimization
problem can be formulated as

min
θ,r

λ2 =

n∑
i=1

σ2
i

s.t. nr −
n∑

i=1

θiσ
2
i ≤ B

Ui(σi, σ−i) ≥ 0, ∀i ∈ ι

σ∗
i = max

σ,min

ϕi −
∑
j ̸=i

σj , σ


 ,∀i ∈ ι

n∑
j=1

sij

ϕi +
(m−1)2

wj

− θi = 0, ∀i ∈ ι

The first two conditions come from the Budget constraint
and the rationality of users. And the last two conditions come
from the Nash-Equilibrium of users’ noise magnitude. By
combining the first two conditions, we obtain

B +

n∑
i=1

n∑
j=1

sij ln

(
λ2 +

(m− 1)2

wj

)
−

n∑
i=1

siC ≥ 0, (20)

which is totally independent of the payment mechanism of the
platform, i.e., θ and r. By utilizing this key property, we can
solve the optimization problem via a two-step method. In the
first step, we first optimize the accuracy under the constraint
(20) by finding the optimal noise magnitude of users (i.e.,
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TABLE I: Details of Social Network Settings

Networks Vertex # Edges # Dmax Davg Density

S1 (Facebook [9]) 20 99 14 9.9 0.521
S2 (Facebook [9]) 30 232 22 15.45 0.533
S3 (Facebook [9]) 40 371 25 18.55 0.476
S4 (Facebook [9]) 50 571 27 22.48 0.466

their optimal Nash-Equilibrium). Then, for the optimal Nash-
Equilibrium we find, we calculate the desired θ and r that
induce them. In summary, the accuracy optimization problem
is converted into the following two sub-problems P1 and P2.

min
σ={σ1,σ2,··· ,σn}

λ2 =

n∑
i=1

σ2
i

s.t.
n∑

i=1

n∑
j=1

sijσ
2
i∑

j ̸=i σ
2
j + σ2

i +
(m−1)2

wj

≥ nr − B
(P1)


∑n

j=1
sij

ϕi+
(m−1)2

wj

− θi = 0, ∀i ∈ ι

Ui(σi, σ−i) = 0, ∀i ∈ ι
(P2)

It is easy to see that both P1 and P2 are tractable, as P1 is
a convex problem and P2 is a system of equations. To solve
P2, we first need to find a set of solutions of (18) based on
Theorem 1. Then by solving corresponding equations, we haveθi =

∑n
j=1

sij

ϕi+
(m−1)2

wj

,

r = θiσ
2
i −

∑n
j=1 sij ln

(
λ2 + (m−1)2

wj

)
+ siC.

(21)

Note that, in P2, we adopt the same approach as [18] to set
each user’s final utility to zero so that the platform can fully
utilize its budget. This implies that the solution of θ∗ and r∗ is
not unique. In fact, we can easily generalize to the case where
all users have positive utilities. To do this, we can allocate
some of the users’ utilities and use the adjusted budget to
derive the optimal payment mechanism.

IV. EXPERIMENTS

In this section, we demonstrate the empirical performance
of our framework on a real-world dataset. We evaluate the
effectiveness of our framework by analyzing how different
factors affect the trade-off between the platform’s accuracy and
the users’ privacy preservation, such as platform’s budget, data
correlation intensity and social relationship strength (which
encompasses the personalized privacy sensitivity).

1) Experimental Setup: We construct four social networks,
denoted by S1 to S4 respectively, which are all derived from
real-world network datasets Facebook [9]. Specifically, for
each social network, we extracted denser subgraphs with
varying numbers of nodes from the entire dataset. On one
hand, different network topology with various vertex degree
and graph density reflects the correlation number of users.
On the other hand, the correlation weight per edge indicates
the correlation intensity between each pair of users. For
each undirected edge (i, j) ∈ W, (i < j), we generate the
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Fig. 1: Impact of Platform’s Budget
correlation weight wij from a truncated Gaussian distribution
with its probability density function Ψ defined as follows,

Ψ(µw, σw, 0,+∞;x) =

{
0, x ≤ 0
φ(µw,σ2

w;x)
1−Φ(µw,σ2

w;0) , 0 < x ≤ +∞

where φ(·) and Φ(·) are the probability density function
and cumulative distribution function of Gaussian distribution,
respectively, and the mean of Ψ is proportional to µw > 0
given σw, thus µw captures the average intensity of data
correlations. For (i, j) ∈ W, (i > j), we set wij = wji by
symmetry. As for users’ social relationship strength, for any
i, j ∈ V , sij is drawn from the truncated normal distribution
Ψ(0, σs, 0, 1;x). Notably, sij can be different from sji in
general. Throughout our experiments, we set σw = 0.02
ϵ2 = 200, and C = 10. By default, B = 50, µw = 2, σs = 0.2.

2) Numerical Results:
a) Impact of Platform’s Budget: We explore how the

platform’s budget B influences the trade-off between the plat-
form’s accuracy and users’ privacy loss by varying B from 100
to 1500 with step 100. We present the platform’s accuracy and
users’ privacy loss for different networks (S1-S4) in Figure 1.
It can be observed that, as the platform’s budget B increases,
the accuracy rate of the platform also increases for all networks
(S1-S4), as shown in Figure 1(a). The accuracy rate reaches a
saturation point with different budget thresholds for different
network, after which it does not improve any more. On the
other hand, users’ privacy loss also increases with the increase
in budget as depicted in Figure 1(b). Each network (S1-S4)
exhibits a different rate of increase in privacy loss, with S4
having the steepest slope. Moreover, each network also has a
different saturation point for privacy loss, with S1 reaching it
at the lowest budget and S4 at the highest. Therefore, there is
a trade-off between the platform’s accuracy and users’ privacy
loss, and the optimal budget depends on the network structure
and the desired level of accuracy and privacy.

b) Impact of Data Correlation Weight: We examine the
effect of the data correlation intensity on both the platform’s
accuracy and users’ privacy loss by varying the average data
correlation weight µw from 0.5 to 5 with step 0.5. In this
experiment, to make the results more pronounced, we let
B = 5, C = 6 and ϵ2 = 40. As depicted in Figure 2,
the platform’s accuracy rate decreases as the average data
correlation weight (µw) increases. All four scenarios (S1 to S4)
exhibit a similar trend of declining accuracy, with S4 having
the steepest decline. On users’ privacy loss, it is observed that
all four scenarios remain relatively stable throughout. This
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Fig. 3: Impact of Data Social Relationship Strength

implies that the data correlation intensity has a negative impact
on the platform’s accuracy and a limited impact on the users’
privacy loss, depending on the network structure and the data
distribution.

c) Impact of Data Social Relationship Strength: We
investigate the influence of users’ social relationship strength
on the platform’s accuracy and users’ privacy loss by varying
the average data correlation strength σs from 0.05 to 1 with
step 0.05. The results are shown in Figure 3, where two
distinct trends are observed. In Figure 3(a), it is evident that
as the data correlation strength σs increases, the platform’s
accuracy rate decreases for all social relationship strengths
(S1 to S4). This indicates a negative correlation between
data social relationship strength and platform accuracy. On
the other hand, Figure 3(b) illustrates that users’ privacy
loss decreases with an increase in σs, showing an inverse
relationship between these two variables. This implies that
the data social relationship strength has a positive impact on
the users’ privacy and a negative impact on the platform’s
accuracy, and the optimal trade-off depends on the network
structure and the data distribution.

V. CONCLUSION

In this paper, we studied the correlation-aware and per-
sonalized private data collection problem in IoT services.
We proposed a game-theoretic framework that captures the
trade-off between user privacy and data utility, taking into
account the data correlation, social interactions, and privacy
preferences of users. We derived the optimal strategies for
both the platform and the users under the Gaussian correlation
model and the differential privacy guarantee. We showed
that the platform can incentivize users to share their data
truthfully by designing a proper reward policy that depends
on the correlation structure and the privacy sensitivity of
users. We also conducted numerical experiments to validate

our theoretical results and to illustrate the performance of our
framework in various scenarios. Our work provides a novel
and rigorous approach to address the challenges of private
data collection in IoT services.
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