
Security-Enhanced WireGuard Protocol Design
using Quantum Key Distribution
Lutong Chen∗, Kaiping Xue∗†, Jian Li∗†, Zhonghui Li∗, Nenghai Yu∗

∗ School of Cyber Science and Technology, University of Science and Technology of China, Hefei, 230027, China
† Corresponding Author: K. Xue (kpxue@ustc.edu.cn) and J. Li (lijian9@ustc.edu.cn)

Abstract—WireGuard is a pioneering and lightweight Virtual
Private Network (VPN) protocol that has been merged into
the Linux kernel. It leverages the Noise secure framework
to provide advanced security functionalities, such as identity
hiding and perfect forward security. Although WireGuard
has an optional pre-shared key mode to ensure key security,
the advanced security features are guaranteed by asymmetric
cryptography algorithms, which cannot be held in the face
of superior quantum computers. To achieve quantum-resistant
security, WireGuard should avoid using vulnerable asymmetric
cryptography algorithms that are currently deeply integrated
into the WireGuard protocol. In this paper, we present a
solution to enhance the security of WireGuard by integrating
Quantum Key Distribution (QKD). We first change the
security mode to tunnel-orient Pre-Shared Keys (PSK) as the
authentication anchor. We also design QKD-assisted ephemeral
keys and corresponding Key Encapsulation Mechanism (KEM)
to achieve WireGuard’s advanced security properties without
using asymmetric cryptography. We also integrate QKD keys
during the key derivation to provide further security. Finally,
we implement the entire protocol named WireGuard-QKD in
Golang and evaluate its performance and security.

Index Terms—Network Security, Security Protocol, Quantum
Key Distribution, Virtual Private Network, Quantum Computing

I. INTRODUCTION

Network security protocols serve as the fundamental
components of modern network security, facilitating confiden-
tial and authorized communication between remote parties.
Recently, WireGuard [1] stands out as an innovative Virtual
Private Network (VPN) protocol that has been integrated
into the Linux kernel since its 5.6 version in 2022. It is
based on the Noise protocol framework, which is widely
recognized as a novel framework for security protocols. It
offers the function of Authenticated Key Exchange (AKE).
Additionally, it incorporates advanced security features such
as Identity Hiding (IH), and Perfect Forward Security (PFS)
through up to four rounds of Elliptic-Curve Diffie–Hellman
(ECDH) operations [2]. Accordingly, the lightweight nature,
exceptional efficiency, and inherent security features lead to
its widespread application in various commercial products,
such as CloudFlare WARP [3], and Mozilla VPN [4], enabling
robust privacy protection for users.

However, we notice that WireGuard may suffer from
security downgrading when confronted with the challenges
posed by the emergence of quantum computing [5]. Quantum
computing represents a novel computing model that is
expected to reach maturity in the next decade, and it introduces

significant challenges to the design of security protocols. For
instance, the Shor algorithm has the potential to compromise
the ECDH. While WireGuard incorporates an optional Pre-
Shared Key (PSK) to partially mitigate this threat, we observe
that the advanced security properties are still compromised as
they heavily rely on ECDH.

There are two primary approaches to enhance WireGuard
to mitigate the threat posed by quantum computing. The
first approach involves the utilization of post-quantum
cryptography algorithms [6]. However, most post-quantum
cryptography algorithms often require more computational
resources or larger key sizes [7]. In this paper, we focus on
proposing a solution as the second category, using Quantum
Key Distribution (QKD) [8] to provide a higher level of
security guarantee. QKD can produce security keys between
two parties with information-theoretic security based on the
fundamental principles of quantum mechanics and has already
been adopted to enhance several classical security protocols
[9]. To the best of our knowledge, there currently exists no
specific scheme for integrating QKD with WireGuard as it is
not only a relatively new protocol but also in-principle relies
on asymmetric cryptography.

We propose a variant implementation of WireGuard,
WireGuard-QKD, aiming to replace the asymmetric cryptog-
raphy algorithms and fully leverage the security provided
by QKD networks. Firstly, we suggest a tunnel-based PSK
authorization scheme as an alternative to the original one
since ECDH is vulnerable to quantum computing. Secondly,
we introduce a QKD-based Key Encapsulation Mechanism
(KEM) to replace all four ECDH operations during the
handshake procedure. Furthermore, we modify the Key
Derivation Function (KDF) to fuse QKD keys for further
security. Meanwhile, we prove that WireGuard-QKD still
holds the original security properties by utilizing the flexibility
and security of QKD keys. To validate our proposed
protocol design, we implement WireGuard-QKD based on the
official cross-platform WireGuard implementation, Wireguard-
go [10]. We conduct experiments to show its high performance
and efficiency. The contributions of our paper can be
summarized as follows:

• We propose a QKD-based WireGuard protocol to mitigate
quantum computing threats. We design a new tunnel-
level pre-shared key authorization scheme to avoid using
ECHD operations.

• We construct a QKD-based KEM method that leverages

2024 International Conference on Computing, Networking and Communications (ICNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 718

only QKD technology and symmetric cryptographies. We
prove its security is inherited from the high-level security
of QKD keys. It also achieves all advanced security
properties.

• We implement a cross-platform demonstration named
WireGuard-QKD. By adopting a dynamic rekey period,
it can fully leverage the QKD keys to secure the
communication.

This paper is organized as follows. First, we brief the
background of QKD and analyze the quantum threats in
the WireGuard protocol in Section II. Then, we propose
our WireGuard-QKD protocol design in Section III and a
secure analysis in Section IV. In Section V, we present our
WireGuard-QKD implementation and conduct a performance
evaluation. Finally, we conclude our work in Section VI.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we introduce the QKD technology, and brief
the WireGuard protocol, especially analyze its security under
quantum computing.

A. Quantum Key Distribution (QKD)

QKD is a novel quantum information technology that
facilitates the secure distribution of cryptographic keys among
remote parties [8], [11]. Since the inception of the pioneering
BB84 protocol proposed in 1984, subsequent protocols [12],
[13] have made significant advancements in terms of both
security and efficiency, making it possible to construct QKD
networks as a robust security infrastructure. As a result, several
countries and regions [14], [15] are devoted to QKD research
and constructing their QKD networks.

The major function of QKD is to negotiate secure keys,
offering the following advantages. First, QKD generates a
greater number of keys compared to classical schemes. In
most classical schemes, all encryption keys are derived from a
fixed-length master key. For example, in WireGuard, it is a 32-
byte string. Oppositely, QKD devices [16] can produce secret
keys at speeds of up to 100 Mbps. This capability enables the
encryption of traffic in a One-Time Password (OTP) manner
and achieves information-theoretical security. Second, QKD
keys offer quantum intrinsic randomness and are independent
of each other, which simplifies the provision of Perfect
Forward Secrecy (PFS) [17]. Third, the QKD mechanism
guarantees that the keys are confidently shared between two
parties. Thus, it is possible to build a quantum AKE protocol
using QKD keys [18] where two parties authorize each other
during the handshake procedure.

B. Security Analysis on WireGuard in post-quantum model

The WireGuard Protocol is a new VPN protocol designed to
surpass the performance and security capabilities of traditional
alternatives. It operates as a connection-less protocol and is
built into the Linux kernel to achieve heightened efficiency
and reduced latency. From a security perspective, WireGuard
adopts the Noise framework [2] to authenticate parties
and establish session keys for subsequent traffic encryption.

Static Public Key Static Private Key

Cryptokey Routing Table

Listen Endpoint
0.0.0.0:10000

Peer Public Key Peer EndpointAllowed Source IPs
10.1.0.0/24
10.2.0.0/24

2.2.2.2:10000
3.3.3.3:10000

static public keys
as the identity

routing items
WireGuard

VPN endpoint

Fig. 1. A cryptokey routing table for node Alice.

In particular, it utilizes Curve25519 for ECDH [19] key
exchange, Chacha20 Poly1305 for symmetric authenticated
encryption, and BLAKE2s for hashing [20]. The handshake
procedure involves two parties, the initiator and the responder,
and is completed within two packets. The first packet is
transmitted from the initiator to the responder, while the
second packet is sent in the opposite direction.

However, the emergence of quantum computing introduces
new threats to WireGuard, particularly concerning the four
rounds of Curve25519 ECDH operations in the handshake.
Therefore, one primary goal of this paper is to substitute
all ECDH operations using QKD keys while preserving
the protocol’s original security properties. Additionally, we
aim to enhance the security of the protocol by harnessing
QKD technologies. Through a comprehensive analysis of the
original WireGuard protocol, we conclude three key aspects
that require a new QKD-enhanced design.

The first and primary aspect is the authentication scheme. In
the original protocol, parties utilize asymmetric cryptography
based on Curve25519 to authenticate each other. Specifically,
each node maintains a cryptokey routing table. For an
example of the initiator, it possesses a static private key sski
(corresponding public key is spki) to authenticate its identity
and also stores the public keys of all its peers, such as spkr
for the responder (corresponding secret key is sskr). In the
cryptokey routing table, the node also employs the public keys
to identify its peers. Fig. 1 illustrates the routing table on
node Alice with two peers, Bob and David. However, since
Curve25519 is not secure under quantum computing threat,
we attempt to avoid using Curve25519 here.

The second challenge is that the ECDH scheme needs to be
changed to address the threat posed by quantum computing.
In WireGuard, to achieve advanced security properties, both
the initiator and responder possess static and long-term
private keys, and also generate ephemeral keys during each
handshake. Let eski and eskr represent the ephemeral private
keys for the initiator and responder, respectively, with epki and
epkr denoting their corresponding public keys. Consequently,
one handshake procedure involves four rounds of ECDH
operations: two occur in the first packet, and two in the
second packet. As depicted in Fig. 2, each of the four ECDH

2024 International Conference on Computing, Networking and Communications (ICNC)

719

 DH_GEN()
Initiator Responder

1st: ECDHE()

Key Functionity

responder authenticate,
encrypt for identity hidding

2nd: ECDH() encrypt timestamp against replay attack

First handshake packet

 DH_GEN()

3rd: ECDHE()

4th: ECDHE()

derivate session keys

initiator autheniticate

Second handshake packet

All static keys and ephemeral keys contributes to derivate session keys and a hash state to protect integrity

High-level ECDH Operations in Handshake

Fig. 2. High-level handshake procedures in WireGuard protocol.

operations serves a distinct purpose, but they all contribute to
derivate session keys (to encryption the following traffic) and
a hashed handshake state (to ensure integrity). Again, since
ECDH should not be used anymore, we intend to use QKD
keys to provide a similar function as the original ECDH does.

The last challenge is to upgrade the KDF procedure to fully
exploit QKD keys to enhance security. Currently, the original
protocol utilizes a fixed-length key to derive a session key for
all subsequent traffic. However, considering the enhanced PFS
offered by QKD keys, we propose incorporating QKD keys
into this KDF procedure. Moreover, we can fully leverage
QKD keys and minimize key reuse by shortening the rekey
period. In WireGuard, the rekey scheme periodically performs
a new handshake to negotiate new session keys. By leveraging
a large amount of available QKD keys, it becomes feasible
to reduce key reuse further, thereby approaching the OTP
encryption method.

III. WIREGUARD-QKD DESIGN

A. Overview

Based on the aforementioned analysis, we now introduce
our proposed design for the WireGuard-QKD protocol.
The protocol is specifically tailored to fully utilize QKD
technology to address quantum computing threats and enhance
overall security. First, we adopt a tunnel-level authentication
scheme instead of relying on asymmetric cryptography
algorithms for mutual authentication. A tunnel-level PSK
is employed as the shared secret for authenticating peers
and contributing to the distribution of session keys, which
is presented in Section III-B. Next, we introduce a novel
cryptographic primitive that utilizes QKD keys to construct
a KEM in Section III-C. The goal is to replace all ECDH
operations in the handshake process. Finally, by integrating
QKD keys into the key derivation procedures, we aim to
achieve a higher level of PFS in Section III-D.

In general, our WireGuard-QKD protocol will use four
32-byte QKD keys during each handshake, including three
keys used in key exchange in replacing ECDH operations,
and one used in the derivation procedure. As a result, at
most 128 bytes of the QKD key will be consumed in one
handshake. The original WireGuard protocol introduces a

constant rekey scheme that performs handshakes at about 90
seconds. However, it will lead to an inefficient use of QKD
keys, considering the QKD keys are produced faster than the
current consumption rate. As a result, we also dynamically
adjust the rekey period so that it can fully use the QKD keys
to approach an OTP encryption manner.

B. A Tunnel-level PSK-based Authentication

In the original WireGuard protocol, a node-based asym-
metric cryptography authentication is employed, wherein
nodes utilize static asymmetric keys as a foundation for
mutual authentication. Although the security of Curve25519
is deemed vulnerable in quantum computing models,
the presence of a pre-configured secure anchor remains
essential. Therefore, we introduce a tunnel-level PSK-based
authentication scheme in WireGuard-QKD.

Specifically, WireGuard-QKD requires that both the initiator
and responder peers maintain a tunnel-level PSK. Each
node generates a random static secure key, referred to as
ssk. Additionally, the two peers involved in a VPN tunnel
share a pre-configured tunnel-level PSK, denoted as tpsk,
which serves as the authenticator secret during the handshake
process. Furthermore, the tpsk can also be utilized as the
peer’s identity within the cryptokey routing table. The pre-
configured tpsk can be manually set or derivated from the
nodes’ ssk according to the following procedure:

tpsk = HKDF(H, k,H(sski)||H(sskr)), (1)

where HKDF is a hash-based KDF standarded in [21], H is
the BLAKE2s hashing function [20], and k is a fixed string.
The sski and sskr are two parties’ static secure keys.

The tpsk, replacing the static public keys spk, are used
in mainly two aspects. First, it is used to authenticate peers
and derivate the session keys (for the following packets’s
encryption). Second, it is also used as the integrity key to
protect the handshake’s integrity as follows:

mac1 = MAC(H(LABEL MAC1||tpsk),msg), (2)

where mac1 is a field to protect the handshake packet’s
integrity, MAC is a keyed Blake2s used in WireGuard,
LABEL MAC1 is a constant string, and msg is the packet
content (except the mac1 and mac2 fields [1]).

In most scenarios, the use of PSK instead of asymmetric
cryptography may introduce some limitations in key manage-
ment. Users would need to manually maintain the PSKs and
keep track of all peers’ keys. However, these limitations will
not occur here. Firstly, WireGuard adopts a Trust-on-First-
Use (TOFU) approach [22], where nodes are still required
to manually maintain the public keys of other nodes due to
the absence of a Certificate Authority (CA) infrastructure.
Secondly, the utilization of a QKD network to provide security
keys typically necessitates a static network topology, where the
VPN tunnels are not likely to be dynamic.

Nevertheless, we acknowledge that using tunnel-based
PSKs does introduce changes to the handshake’s decryption
procedure when a node has multiple peers. In the WireGuard

2024 International Conference on Computing, Networking and Communications (ICNC)

720

protocol, a node can directly utilize its static secret key ssk
to process all incoming packets no matter which peer sends.
However, in WireGuard-QKD, nodes now maintain different
tpsk for each peer and now need to iteratively try all tpsks
to decrypt incoming packets. Fortunately, WireGuard employs
an authenticated encryption scheme, enabling the node to
detect a failed decryption attempt using a particular tpsk
and subsequently try the next available tpsk. As a result,
the decryption overhead increases from O(1) to O(n), but
it is generally acceptable since nodes in WireGuard scenarios
typically communicate with a limited number of peers.

C. QKD-based Key Encapsulation Mechanism

The KEM [23] is a modern cryptographic primitive to
replace traditional Key Exchange or Public Key Encryption
(PKE) methods. It facilitates the secure transmission of
keys between multiple parties. In this paper, we propose
a novel QKD-based KEM to replace the existing ECDH
operations using QKD keys and a hashing function. To ensure
compatibility with the original WireGuard protocol, we modify
the common KEM definitions [7] for the following reasons:
1) The classic KEM typically employs one pair of asymmetric
keys, whereas the WireGuard utilizes ECDH operations that
are associated with the key pairs of two nodes. Consequently,
we need to ensure seamless integration of WireGuard-QKD
with the original protocol. 2) We need to include QKD keys
in the KEM procedure to guarantee security.

As a result, we present our QKD-based QKEM =
(KeyGen, Qkd, Encaps, Decaps) as a tuple of probability
algorithms over a key space K. It runs between two parties,
namely a node and its peer:

• KeyGen returns a pair of ephemeral keys (ske, pke). The
ephemeral secret ske is randomly chosen from {0, 1}|K|,
where |K| is the key’s length, and the ephemeral public
key pke = H(ske).

• Qkd is the function to produce a QKD key kq = Qkd(),
with two properties: 1) It is statistically indistinguishable
from {0, 1}|K|. 2) The QKD keys are used in an
OTP manner, where each pair of Encaps and Decaps
operations invokes the Qkd function to obtain the same
kq . However, the QKD keys are independent across
multiple rounds of Encaps and Decaps operations.

• Encaps is a key encapsulation algorithm that uses a
QKD key kq , node’s ephemeral secret key ske, and
an additional nodes’ public key pkp (for compatibility
consideration) to provide a key k ∈ K, and a ciphertext
ct. Here, ct = H(ske), and

k = HMAC(H, kq,H(ske)⊗ pkp), (3)

where HMAC is the Keyed-Hashing for Message
Authentication algorithm defined in [24].

• Decaps is a decapsulation algorithm that runs on the peer
and decapsulates the key k from ct, the QKD key kq , and
the peer’s public key pkp as follows:

k = HMAC(H, kq, ct⊗ pkp). (4)

It is now possible to construct a similar adversary game
GA

QKEM like other KEM schemes, and we present the
advantage of the adversary A as AdvCCA

QKEM(A) =∣∣∣∣∣∣∣∣∣∣
Pr

ske, pke ← KeyGen();

b← {0, 1};
b = b′ : (ct∗, k∗0)← Encaps(Q(), ske, pkp);

k∗1 ← K;
b′ = ADecaps(Q(),·)(k∗b , ct

∗, , pkp)

∣∣∣∣∣∣∣∣∣∣
, (5)

where Decaps(Q(), ·) is the decapsulation oracle that the
adversary cannot access to the QKD keys, as it is used only
once in each operation. The security of our QKEM relies on
the security of the QKD keys and that HMAC is a secure
Pseudo-Random Function (PRF) [25], in our construction.
However, it does not depend on the secrecy of pkp and
pke, as they might be public information. Here, we present
a brief explanation. First, we employ the QKD keys in an
OTP manner, where each QKD key is confidential to the
adversary and used only once for a specific pair of Encaps
and Decaps operations. Consequently, the adversary’s queries
to the Decaps oracles will not reveal the actual value of kq
used in encapsulating k∗0 . It indicates that the CCA adversary
A falls back to a single-round Known Ciphertext Attack
(KCA) one. Further, since kq is statistically indistinguishable
from {0, 1}|K| and HMAC is a secure PRF, the derived
key k∗0 achieves computationally indistinguishable from a
random distribution. This property ensures the security of the
encapsulated key k∗0 in our QKEM scheme.

We now explain how we use our QKEM in the WireGuard-
QKD protocol, as illustrated in Fig. 3. We treat the static
ECDH operation (the 2nd one) and the ephemeral ECDH
operations (specifically the 1st, 3rd, and 4th ones) differently.
For the ephemeral ECDH operations, we replace them with
the QKEM scheme. We produce the ephemeral esk and epk
using the QKEM.KeyGen. As for the static keys ssk and
spk, we use the tunnel-based PSK tpsk instead. Finally, we
use QKEM.Encaps to replace the ECDH operations. As for
the 2nd static ECDH, it originally uses the two nodes’ static
keys to calculate, which all refer to the tpsk in WireGuard-
QKD. Thus, we use the tpsk as the output directly.

D. QKD Key Derivation and Dynamic Rekey Period

We present how to further integrate the QKD keys into the
key derivation procedure. Fig. 4 shows how session keys are
generated. In Fig. 4(a), the session keys are derived from a
chaining key using HMAC [24] three times to produce the
encryption keys for two directions for the following traffic.
Furthermore, the chaining key is generated in rotation in
the aforementioned handshake procedure with each ECDH or
QKEM in Fig. 4(b). Here, we use a trivial but effective way
to integrate the QKD keys to provide a further PFS. After
finishing the handshake, the initiator and the responder will
request a 32-byte QKD key, namely kq4, and use it to replace
the empty string {0}256 used in the key derivation procedure.

To further leverage the QKD keys, we implement our
WireGuard-QDK platform with a dynamic rekey period. The

2024 International Conference on Computing, Networking and Communications (ICNC)

721

 QKEM.KeyGen()
Initiator Responder

1st: QKEM.Encaps()

Key Functionity

responder authenticate,
encrypt for identity hidding

encrypt timestamp against replay attack

First handshake packet

 QKEM.KeyGen()

3rd: QKEM.Encaps()

4th: QKEM.Encaps()

derivate session keys

initiator autheniticate

Second handshake packet

All static keys and ephemeral keys contributes to derivate session keys and a hash state to protect integrity

High-level QKEM Operations in WireGuard-QKD

2nd:

 QKEM.Qkd()

 QKEM.Qkd()

 QKEM.Qkd()

Fig. 3. High-level handshake procedures in WireGuard-QKD protocol.

chaining key
(from handshake procedure)

HMAC empty

HMAC 0x01

HMAC 0x02

sending key

receiving key

(a) The key derivation procedure

HMAC ECDH/QKEM

chaining key

HMAC

H

initial value
(a 37-byte constant string)

0x01

chaining key
(to the key derivation procedure)

(b) The rotated chaining key

Fig. 4. The modification of integrating QKD keys in WireGuard-QKD

rekey period is a constant value in the original WireGuard
protocol, at about 90 seconds. It indicates that the initiator
should reinitiate a new handshake procedure to re-negotiate
the session keys. In our WireGuard-QKD, we adopt a dynamic
rekey period pr based on the available QKD keys. Note that
one handshake will use four 32-byte QKD keys, we set the
rekey period to

pr = max{128
rq

,mpr}, (6)

where rq is the rate for the QKD network to provide keys, and
mpr is the minimal value of pr to avoid handshake overhead.

IV. SECURITY ANALYSIS

We employ the formal security protocol verification tool
Tamarin [26] to evaluate the security of the WireGuard-
QKD protocol. Tamarin is a widely used tool that has been
extensively utilized for the verification of numerous commonly
used protocols [27]. In this study, we treat all four QKD keys
and the tunnel-level PSK as independent secret keys. We then
generate Tamarin rules and lemmas to establish the security
properties of the protocol. Here, we explain how we achieve
these security properties.

Basic Security of the session keys. The security of the
derivated session keys is protected by both the QKD keys and
the tpsk. Since HMAC can be viewed as a security PRF, the
derivated session keys will be secure if any of the QKD keys
or the tpsk are secure.

Perfect Forward Security. PFS indicates that the leak of
long-term secrets (tpsk here) will not influence the session

d i r e c t W i r e G u a r d - g o W i r e G u a r d - Q K D
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4 D e l a y T h r o u g h p u t

T r a n s m i s s i o n M e t h o d

De
lay

 (m
s)

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

 Th
rou

gh
pu

t (M
bp

s)

Fig. 5. The delay and throughput in peer-to-peer experiment.

keys. It is achieved by the PFS property of QKD keys. The
QKD keys are confidentially shared between nodes, and they
use one QKD key only once. It guarantees that the adversary
cannot recover the session keys since they have no information
about QKD keys used in that handshake even if the tpsk are
leaked. Besides, both two parties will generate a random esk,
which can also provide PFS.

Identity Hidding. It requires the third party not to obtain
the identity of the communication parties. In WireGuard-QKD,
the tunnel’s identity tpsk is reviewed as a secret (not public
information) and is also transmitted in encryption. Meanwhile,
unless the peer acknowledges both tpsk and the current QKD
keys, it cannot decrypt the ciphertext either.

Authenticated Key Exchange. AKE is required to
authenticate the two parties. Here, we also use tpsk as the
secret anchor to authenticate each other. We complement it
by integrating tpsk into three QKEM procedures. If any party
does not have access to tpsk, the AEAD ciphertext cannot be
decrypted, and the mac1 field verification also fails.

Key Compromise Impersonation resistance. KCI resis-
tance requires that the adversary cannot impersonate the
parties when the tpsk is leaked, which is protected by the
confidentiality of QKD keys. The adversary cannot obtain
the QKD keys without being detected due to the quantum
no-cloning theorem, and therefore still cannot complete a
successful handshake without the correct QKD keys.

V. PERFORMANCE EVALUATION

We implement a demonstration WireGuard-QKD platform
based on the cross-platform WireGuard-go [10] and conduct
a peer-to-peer experiment to illustrate the performance. The
environment involves two Linux machines connected via a
1Gbps switch. Then, we use WireGuard-QKD and WireGuard-
go to establish a secure VPN tunnel and evaluate the
performance. We also evaluate the direct transmission without
a VPN tunnel. The results are shown in Fig. 5.

We observe that our WireGuard-QKD achieves a similar
performance compared to the original WireGuard-go. The

2024 International Conference on Computing, Networking and Communications (ICNC)

722

delay is about 1.024 ± 0.071 milliseconds in WireGuard-
QKD while it is 1.047±0.049 milliseconds in WireGuard-go.
No drop packet is observed during a 10-minute transmission.
Meanwhile, we use iPerf3 to evaluate the throughput, and
the result is 904 Mbps in WireGuard-QKD and 901 Mbps
in WireGuard-go. It indicates that the integration of QKD
keys has little influence on the transmission. Our scheme
required that at least 128 bytes be generated for 90 seconds
to achieve the same PFS, which is achievable for the current
QKD networks. With more available QKD keys, the dynamic
rekey period effectively updates the session keys in a timely
manner to ensure security.

We also evaluate the performance of the direct transmission.
The results show that both WireGuard-QKD and WireGuard-
go have little performance downgrading. For example, the
delay decreases slightly from about 0.3 millisecond to
about 1 millisecond mainly due to the encryption/decryption
procedure. Overall, the WireGuard-QKD can still make full
use of the 1Gbps network.

VI. CONCLUSION

With the development of quantum information technology,
QKD is viewed as an innovative technology for establishing
secret keys between remote parties and providing a new
approach to address the vulnerabilities of the classic security
protocols posed by quantum computing attacks. Its advantage
includes not only a larger amount of usable keys compared
to the classic key agreement methods but also providing
benefitial security properties. This paper leverages QKD
to design a post-quantum WireGuard-QKD protocol. Our
approach incorporates a tunnel-based Pre-Shared Key scheme
as a secure anchor for authentication, a QKD-based KEM to
replace all insecure ECDH operations, and a QKD-integrated
key derivation procedure with a dynamic rekey period to
fully utilize QKD keys. We provide a comprehensive security
analysis to demonstrate that the proposed WireGuard-QKD
protocol satisfies both the fundamental security properties such
as PFS, KCI resistance, and Identity Hiding. Furthermore,
we implement a cross-platform WireGuard-QKD to show its
feasibility and efficiency.

ACKNOWLEDGEMENT

This work is supported in part by the Innovation Program
for Quantum Science and Technology under Grant No.
2021ZD0301301, Anhui Initiative in Quantum Information
Technologies under Grant No. AHY150300, National Natural
Science Foundation of China under Grant No. 62201540,
and Youth Innovation Promotion Association of the Chinese
Academy of Sciences (CAS) under Grant No. Y202093.

REFERENCES

[1] J. A. Donenfeld, “Wireguard: next generation kernel network tunnel,”
in Proceedings of the 2017 Network and Distributed System Security
Symposium (NDSS), 2017, pp. 1–12.

[2] T. Perrin, “The Noise protocol framework,” http://noiseprotocol.org/
noise.pdf, 2016.

[3] M. Prince, “Introducing WARP: fixing mobile internet performance and
security,” https://blog.cloudflare.com/1111-warp-better-vpn/, 2019.

[4] Mozilla, “Features that protect your life online,” https://www.mozilla.
org/en-US/products/vpn/features/, 2020.

[5] F. V. Massoli, L. Vadicamo, G. Amato, and F. Falchi, “A leap among
quantum computing and quantum neural networks: A survey,” ACM
Computing Surveys, vol. 55, no. 5, pp. 1–37, 2022.

[6] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, and P. R. Zimmermann,
“Post-quantum wireguard,” in Proceedings of the 2021 IEEE Symposium
on Security and Privacy (S&P), 2021, pp. 304–321.

[7] J. Bos, L. Ducas, E. Kiltz et al., “CRYSTALS-Kyber: a CCA-secure
module-lattice-based KEM,” in Proceedings of the 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), 2018, pp. 353–367.

[8] Y. Cao, Y. Zhao, Q. Wang et al., “The evolution of quantum
key distribution networks: On the road to the qinternet,” IEEE
Communications Surveys & Tutorials, vol. 24, no. 2, pp. 839–894, 2022.

[9] J. Viksna, S. Kozlovics, and E. Rencis, “POSTER: Integrating
Quantum Key Distribution into Hybrid Quantum-Classical Networks,”
in Proceedings of the 2023 International Conference on Applied
Cryptography and Network Security (ACNS), 2023, pp. 695–699.

[10] WireGuard, “WireGuard-Go,” https://git.zx2c4.com/wireguard-go/,
2018.

[11] M. Wang, J. Li, K. Xue, R. Li, N. Yu, Y. Li, Y. Liu, Q. Sun, and J. Lu, “A
segment-based multipath distribution method in partially-trusted relay
quantum networks,” IEEE Communications Magazine, 2023.

[12] Z. Tang, Z. Liao, F. Xu et al., “Experimental demonstration of
polarization encoding measurement-device-independent quantum key
distribution,” Physical Review Letters, vol. 112, no. 19, p. 190503, 2014.

[13] Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L.
Hu, H. Li, C. Jiang, J. Lin et al., “Experimental twin-field quantum key
distribution through sending or not sending,” Physical Review Letters,
vol. 123, no. 10, p. 100505, 2019.

[14] M. Sasaki, M. Fujiwara, H. Ishizuka et al., “Field test of quantum key
distribution in the Tokyo QKD Network,” Optics Express, vol. 19, no. 11,
pp. 10 387–10 409, 2011.

[15] Y.-A. Chen, Q. Zhang, T.-Y. Chen et al., “An integrated space-to-ground
quantum communication network over 4,600 kilometres,” Nature, vol.
589, no. 7841, pp. 214–219, 2021.

[16] W. Li, L. Zhang, H. Tan, Y. Lu, S.-K. Liao, J. Huang, H. Li, Z. Wang,
H.-K. Mao, B. Yan et al., “High-rate quantum key distribution exceeding
110 Mb s−1,” Nature Photonics, vol. 17, no. 5, pp. 416–421, 2023.

[17] M. Mehic, M. Niemiec, S. Rass et al., “Quantum key distribution: a
networking perspective,” ACM Computing Surveys (CSUR), vol. 53,
no. 5, pp. 1–41, 2020.

[18] M. Mosca, D. Stebila, and B. Ustaoğlu, “Quantum key distribution in
the classical authenticated key exchange framework,” in Proceedings
of the 2013 Post-Quantum Cryptography: 5th International Workshop
(PQCrypto), 2013, pp. 136–154.

[19] D. J. Bernstein, “Curve25519: new Diffie-Hellman speed records,” in
Proceedings of the 9th International Conference on Theory and Practice
in Public-Key Cryptography (PKC), 2006, pp. 207–228.

[20] J.-P. Aumasson, S. Neves et al., “BLAKE2: simpler, smaller, fast as
MD5,” in Proceedings of the 11th Applied Cryptography and Network
Security (ACNS), 2013, pp. 119–135.

[21] H. Krawczyk and P. Eronen, “RFC5869: HMAC-based extract-and-
expand key derivation function (HKDF),” 2010.

[22] N. H. Walfield and W. Koch, “TOFU for OpenPGP,” in Proceedings of
the 9th European Workshop on System Security, 2016, pp. 1–6.

[23] H. Jiang, Z. Zhang et al., “IND-CCA-secure key encapsulation
mechanism in the quantum random oracle model, revisited,” in
Proceedings of the 38th Advances in Cryptology (CRYPTO), 2018, pp.
96–125.

[24] H. Krawczyk and P. Eronen, “RFC2104: HMAC: Keyed-hashing for
message authentication,” 1997.

[25] M. Bellare, “New proofs for NMAC and HMAC: Security without
collision-resistance,” in Proceedings of the 26th Advances in Cryptology
(CRYPTO), 2006, pp. 602–619.

[26] D. Basin, C. Cremers, J. Dreier, and R. Sasse, “Tamarin: verification
of large-scale, real-world, cryptographic protocols,” IEEE Security &
Privacy, vol. 20, no. 3, pp. 24–32, 2022.

[27] C. Cremers, M. Horvat, J. Hoyland et al., “A comprehensive symbolic
analysis of TLS 1.3,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2017,
pp. 1773–1788.

2024 International Conference on Computing, Networking and Communications (ICNC)

723

