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Abstract—The rise of chiplets in personal and high
performance computing is mirrored in System on Chip (SOC)
in mobile devices. Both paradigms allow vendors and designers
to integrate dedicated circuitry for accelerating computation.
Implementations like cryptographic or vector engines are well
known, and nowadays Machine Learning (ML) blocks are often
included to accelerate Deep Neural Network (DNN) inference.
The shift toward diverse device architectures, as exemplified
by RISC-V, is poised to gain momentum. The widespread
integration of accelerators in smartphones, tablets, SoCs, and
dedicated server systems, is opening up exciting new innovations.
In this short paper we present computation offloading for
specific workloads in the framework of Multi-Access Edge
Computing (MEC) and energy optimisation. We honour inter-
task dependency through use of a Directed Acyclic Graph
(DAG). Our system model with multiple mobile users, Device-
to-Device (D2D) links between User Equipments (UEs), and edge
servers enables computational and communication cooperation.
The system’s energy efficiency is significantly improved by
introducing accelerators to the UEs and the MEC. We study the
capabilities of the devices (accelerators) and propose an effective
solution.

Index Terms—Computation Offloading, Multi-Access Edge
Computing, Heterogeneous Computing

I. INTRODUCTION

Cloud computing has taken the world by storm, and is firmly
established in industry. The economies of scale and reduced
capital expenditures for renting instances imply that so called
hyperscalers drive central cloud development, deployment
styles, and adoption. Increasingly, use cases demand lower
access times than centralised cloud locations can serve [1].
This mainly concerns interactions between humans and
machines [2], but also intense workloads on mobile devices.
The Multi-Access Edge Computing (MEC) concept addresses
these requirements, and provisions computational and storage
resources spatially close to the User Equipments (UEs).
Essentially, the cloud is moved to the edge of the network [3],
commonly into the Base Stations (BSs) or WiFi access
points. The recent enhancements in the computing power
of mobile devices, particularly in their Central Processing
Units (CPUs), present an enticing opportunity to accelerate
the implementation of edge computing. Leveraging the
resources of nearby devices through Device-to-Device (D2D)
connections can meet application demands and enhance overall
system performance. This potential becomes particularly
noteworthy when applications can be broken down into tasks
that can be executed in a distributed manner.

With Augmented and Virtual Reality expected to rise,
Machine Learning (ML) workloads will play a major role [4]
for processing at the end user. The flexibility and widespread
use of Deep Neural Networks (DNNs) motivated industries to
invest in ways to ease the cost for inference [5]. The resulting
Domain-Specific Architecture (DSA) units are significantly
faster, more efficient, and consequently are becoming more
widespread [6]. An important use case is also Federated
Learning, a technique that immediately benefits from on-
device acceleration.

In the literature, [7] and [8] are closest to our works
of [9] and [10]. However, their analysis is limited to few
(three) nodes in total and only one node has tasks to
offload. [11] focus on game theoretical approaches. [12]
include D2D concepts from fog computing, and implement an
software-defined networking controller for decision making.
But synchronising between UEs is not included, the scenario
is static, and only one node offloads tasks. [13] and [14] strictly
include UEs mobility into the problem. In [15], heterogeneous
devices are considered in the scenario. Their optimisation
scheme is similar to [9], but the scenario is assumed static
while computation takes place.

To address the issues in state-of-the-art studies and
moving towards a more modern and complete computation
offloading scenario, we propose an energy- and accelerator-
aware framework. Its goal is to find optimal computation
and communication cooperation offloading strategies for
generalised task dependency graphs. Partially, tasks are
accelerable. To our knowledge, it is the first multi-user multi-
task dynamic computation offloading scenario in a D2D-
assisted MEC/accelerator network which minimises the energy
consumption of mobile devices, considering the low-latency
and dependancy requirements of recent applications.

We continue to specify the System Model in Section II.
Next is the problem formulation in Section III, followed
by the solver approach and the Genetic Algorithm (GA)
for offloading (Section IV), and finally summarise results in
Section V.

II. SYSTEM MODEL

We analyse a system as in Figure 1, with N UEs, N =
{1, 2, ..., N}. Every UE may have an application to execute,
which is subdivided into K finite-sized and inter-dependent
tasks (colored squares). Because we optimise globally, all
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tasks are appended into set K. The UEs are placed randomly
in the small-cell BS with its attached MEC server (without
any clustering assumptions). In our model, the BS as the
logically centralised point coordinates D2D and cellular link
management, as well as offloading decisions.

UEs may be able to communicate directly depending on
the distance d (·, ·) between them. D2D communication breaks
down at a certain range Ri > d, leading to available devices
as helpers or as relay nodes

H =
⋃
n∈N

{i ∈ N : d (n, i) ≤ Ri} .

We operate under the assumption that the wireless channel
remains largely stable throughout the transmission and
execution phases. Furthermore, we adopt the common
assumption that the output from each task is significantly
smaller than the input data. This allows us to focus solely
on the transmission of task input and execution times. In our

Fig. 1: The system model; Black arrows indicate cellular links,
red dashed arrows are D2D. Tasks are squares in sequence.

scenario, the devices are mobile. To predict their paths, we use
the learned model PECNet [16]. The MEC server is resposible
for obtaining the information about the users’ location and
their previous paths, which are input to PECNet. The predicted
movements for the future are returned. Furthermore, based on
the time that users are in the others (UEs and MEC) vicinity,
we have the sojourn time concept. For example, the sojourn
time of a UE in helper i’s coverage from time t is then given
as

Ts,i,t = max m, s.t. cov(x̂τ
i ) ∀τ ∈ [t, t+m] ⊂ Z.

A. Task model

Applications’ tasks are modelled using a Directed Acyclic
Graph (DAG), with tasks V , edges ei,j and the graph G =
(V,E). Nonzero edges ei,j signal a directed relationship:
task i is the predecessor of task j (cf. [17]). For each task
k of device n, parameters {bn,k, cn,k, dn,k} describe: bn,k, the
bitsize of task data, cn,k the cycles of computation needed per
bit of task description, and their product dn,k = bn,k · cn,k
as the total required computational resources. The deadline

Tmax
n indicates an upper bound for the execution of the whole

application of device n.

B. Communication and computation models
In the communication channel model, the uplink data rate

is obtained using Shannon’s theorem (the downlink is not
considered due to the small size of computed tasks [1]):

rn,k = B log2
(
1 + P tr

k Hk/σ
2
)
,

where P tr
k , is sender’s transmission power, B and Hk are the

channel bandwidth and channel gain respectively and σ2 is the
variance of the Gaussian channel noise.

Four cases of task execution emerge:
1) Local execution: The computation time model for a task

k in this mode is obtained by:

T l
n,k =

dn,k
f l
n,k

,∀k ∈ K,∀n ∈ N .

Where, f l
n,k is the dedicated computation resource of UE n for

task k. In addition, using the effective switched capacitance
(modelled as ε = λ(f l

n,k)
2) and depending on the chip

architecture [18], the energy is modelled as

El
n,k = λ(f l

n,k)
2 dn,k,∀k ∈ K,∀n ∈ N .

2) On Helper execution: The computation time model for
a task k of UE n in this mode is obtained by:

T i
n,k =

bn,k
rin,k

+
dn,k
f i
n,k

,∀k ∈ K,∀n ∈ N ,∀i ∈ H

Where,f i
n,k, is the dedicated computation resource of UE i. In

addition, the energy is modelled as

Ei
n,k = P tr

n,k

(
bn,k
rin,k

)
+λ(f i

n,k)
2 dn,k,∀k ∈ K,∀n ∈ N ,∀i ∈ H

(where, P tr
n,k is the transmission power of UE n ).

3) On Edge Cloud execution: The computation time model
for a task k in this mode is obtained by:

T s
n,k =

bn,k
rsn,k

+
dn,k
fs
n,k

,∀k ∈ K,∀n ∈ N ,∀i ∈ H.

Where,fs
n,k, is the dedicated computation resource of MEC

server s for task k’s. The energy consumption for for
computation is neglected due to the utility grid. Therefore,
the energy is obtained as

Es
n,k = P tra

n,k

(
bn,k
rsn,k

)
,∀k ∈ K,∀n ∈ N ,∀i ∈ H.

4) On Edge Cloud execution via Relay: The computation
time model for a task k in this mode is obtained by

T i,s
n,k =

bn,k
rin,k

+
bn,k

ri,sn,k

+
dn,k
fs
n,k

In addition, the energy is obtained by

Ei,s
n,k = P tra

n,k

(
bn,k
rsn,k

)
+ P tra,i

n,k

(
bn,k
rsn,k

)
,

both ∀k ∈ K,∀n ∈ N ,∀i ∈ H.
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C. Accelerator Model

Typically, not all parts of an application consist of ML
workloads. Consequently, tasks that can be accelerated receive
an indicator (binary) flag fn,k. These tasks can then be
mapped to accelerators on devices equiped with such, and
then be executed faster and more efficiently. We introduce
accelerator parameters ap > 1 for faster calculation, and
ae > 1 for efficiency gains. This results in directly scaling
the execution times on devices with accelerators, e.g. T l

n,k =
dn,k

f l
n,kap

in the case of local computing (ap > 1 ensures faster
execution). For the energy terms, an equivalent modification

takes place, i.e. El
n,k = λ

(
f l
n,k

)2
dn,k

ae
, for local computing

(ae > 1 ensures more efficiency).

III. PROBLEM FORMULATION

According to [19], there are two important definitions
for task dependencies: Ready time: The earliest time that
the execution of a task k can get started (all predecessors
completed). Finish time: The final time slot occupied by
execution of k. The ready time and finish time of task k of
UE n can be defined depending on the offloading modes. In
calculation of each the following factors should be considered:
The completion time of the execution of predecessors for task
k, the availability time of the user which tasks is executed on
as well as the time that the D2D links are free.

A. Optimization formulation

For any given task k of device n, the total energy effort is
precisely determined by the offloading strategy, i.e., En,k =
ℓln,k E

l
n,k + ℓin,k E

i
n,k + ℓi,sn,k E

i,s
n,k + ℓsn,k E

s
n,k. Consequently,

the goal is to find a global minimum of energy expenditure
over all tasks of all devices, and a minimum of execution time.
The optimization problem is formulated as follows:

min
d

N∑
n=1

K∑
k=1

En,k

s.t. ∀k ∈ K, i ∈ N ,m ∈ N
C1 : ℓln,k, ℓ

i
n,k, ℓ

i,s
n,k, ℓ

s
n,k ∈ {0, 1}

C2 : ℓln,k +

I∑
i=1

(
ℓin,k + ℓi,sn,k

)
+ ℓsn,k = 1

C3 : ℓln,k +
∑

n∈N−i

(
ℓni,k + ℓi,ni,k

)
≤ 1

C4 : max {FTn,p} ≤ STn,k

C5 : FTn,K ≤ Tmax
n

C6 : FTn,k ≤ Ti,s, if i ̸= m

wherein d is the offloading location,

d =
[
ℓl1,1, ℓ

1
1,1, ... . . . , ℓ

I
1,1, ℓ

1,s
1,1, . . . , ℓ

I,s
1,1, ℓ

s
1,1,

ℓl1,2, ℓ
1
1,2, . . . , ℓ

s
N,K

]T
.

Here, C1 present the fact that only one destination per task
is possible for offloading, C2 assures each task is executed
exactly once. C3 guarantees any device can only compute
locally, or serve as helper or relay for another device i.
C4 honors the order of tasks. C5 is related to the task
dependencies while C6 prohibits a decision that violates any
deadline constraint. C7 shows that task k execution must be
finished before it leaves the coverage area.

IV. ACCELERATOR-AWARE COMPUTATION OFFLOADING
PROBLEM

The optimisation problem in the previous section is a mixed
integer nonlinear programming type. In order to solve such
a problem, we employ a hybrid Genetic-PSO Algorithm.
Holland [20] was the first to introduce a new algorithm called
GA. This algorithm contains some candidate solutions, namely
chromosomes for a problem. Each chromosome contains some
smaller parts (genes), which are binary offloading decision
variables in our proposed method. Kennedy [21] introduced
the Particle Swarm Optimisation (PSO). The main process in
this algorithm is updating the velocity and location of some
particles to obtain the optimal value. In the Hybrid Genetic-
PSO algorithm, which is proposed in [22], a population of the
best chromosomes with the highest fitness values is chosen and
are further optimised by the PSO algorithm. This significantly
decreases the convergence time of our proposed offloading
algorithm. Following equations show the velocity and location
of a particle which reduces the complexity of the hybrid
algorithm:

vi(t+ 1) = d1f1[g(t)− xi(t)],

xi(t+ 1) = xi(t) + vi(t+ 1).

vi is the velocity of particle i, d1 is the learning factors
between 0 and 2, f1 is a random number between 0 and 1, xi

is the current position of particle i and g is the global best.
Since the goal of our computation offloading algorithm is

minimising the total energy usage of the system [17], [23],
[24], our fitness function (with the constraints as additive
penalties) is defined as follows:

fλ =

N−1∑
n=0

K−1∑
k=0

En,k + θ
[
max{0, FTn,K − Tmax

n }

+max{0,
(
FT i

n,k − Ti,s

)
}+max{0, (FT i,s

n,k − Ti,s)}
]
.

Here, θ is a very large number. The chromosome population
is sorted based on their fitness value and the top 40% are used
in PSO. This increases the convergence speed of the algorithm
significantly. The Tournament selection method is applied to
the other 40% of the sorted chromosomes and the rest of the
next generation chromosomes are prepared with mutation. The
worst chromosomes get replaced by random chromosomes.

The mutation is enacted with probability pm,where the
worst chromosome is completely replaced with random
parameters and the process is iterated N times.
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V. NUMERICAL RESULTS

We mainly mirror prior approaches for evaluation.
Essentially, we compare the scenarios for their total effort
based on the fitness-values:

• All local: All tasks are executed on their UEs;
• All server: All tasks are completely offloaded to the edge;
• Computation cooperation: UEs can act as helper nodes,

executing incoming tasks;
• Communication cooperation: UEs can act as relays,

transmitting tasks to the edge for execution on the MEC;
• Accelerated cooperation: Full flexibility with

acceleration consideration on Nacc out of N of
the UEs;

• Accelerated MEC: Full flexibility, but only the BS is
equipped with an accelerator.

We specify all used1 parameters in Table I. To exclude

TABLE I: Simulation parameters

Parameters Value
Number of tasks of each user (K) 10
Number of users in the network (N ) 6
Number of users with accelerators (Nacc) 3
Task deadline (Td) 4.5 s
Data size of task k (bk) 200− 500 kb
Required CPU cycles per bit of task k (ck) 110 cycles/bit
Channel bandwidth (B) 5MHz
Channel gain (UE n to UE i ) (Hk,h) 1− 1.5× 10−2

Channel gain (UE n to MEC) (Hk,s) 1− 1.5× 10−5

Variance of the Gaussian channel noise (σ2) 10−9

Transmission power of UEs (PUE
tra ) 0.1− 0.15mW

CPU cycles frequency of UEs (fUE) 4− 7× 108 cycles/s
Maximum CPU frequency of MEC (fmax

S ) 10× 109 cycles/s
Effective switched capacitance (λ) 10−27 F
Area considered for UE mobility 500× 500 m2

D2D range 100 m
Accelerator performance ap 5
Accelerator efficiency ae 5
Accelerable workload percentage fn,k 60
Number of GA iterations 150
Population size of GA 30
Population size of PSO 12
Crossover probability pc 0.5
Mutation probability pm 0.05

statistical flukes and random noise, we average the scores for
all experiments over 50 runs. In Figure 2, higher computational
load of tasks leads to increased margin of our approach. The
accelerated scheme beats all baselines.

Next, we change the data size from 0 to 375 kB (six
times larger than [14]), to stress the communication aspect.
Consequently, more energy needs to be utilised for eventual
offloading. This additionally increases the scores of all
methods, as expected. Our framework even increases its lead,
which is shown in Figure 3.

We finally analyse a situation where telecommunications
providers are looking to differentiate their offerings. We
inspect the impact of added dedicated accelerators to the
servers. We model the MEC server as before, but now equip

1Our code will be made public on the authors’ GitHub

Fig. 2: Average objective function values versus computational
demands.

Fig. 3: Average energy and time expended versus data size.

it with an accelerator. As a comparison, we also inspect the
impact of doubling its CPU, i.e. general purpose, capabilities.
When we sweep the computational complexity (ck), we see a
clear ranking, cf. Table II. Deploying accelerators should be
preferred, as it clearly has larger impact. Larger accelerator
deployments are also clearly a path that should be explored in
this situation. This mirrors findings from [6].

TABLE II: Objective function values for sweeped complexity
for different deployment strategies for the edge server.

Complexity 8 18 26 37 62 71 80
MEC 0.13 0.25 0.33 0.4 0.57 0.65 0.78
MEC double CPU 0.12 0.21 0.26 0.31 0.48 0.52 0.59
MEC accelerator 0.13 0.18 0.23 0.26 0.35 0.39 0.42

Finally, we present Figure 4 in a bid to strengthen our
confidence in the robustness of the results. Our method
converges fairly quickly for three exemplary scenarios, and
for accelerated cases, converges slightly faster. It shows the
effectiveness of the chosen GA and its applicability for
obtaining results.

VI. CONCLUSION & FUTURE WORKS DONE
We studied the optimisation of a computation offloading

decision algorithm in a scenario with multiple devices,
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Fig. 4: Fitness function versus number of iterations show the
convergence of select experiments.

multiple tasks, a MEC system, time deadlines, task
interdependency, and device heterogeneity. For the first time,
dedicated accelerator chips for ML workloads were modelled
in this context. We turned to a genetic algorithm to realise the
target of optimised UE battery expenditure under constraints of
latency, mobility and cooperation. Simulation results indicate
the usefulness of taking accelerators into consideration.
The accelerator-aware solver achieves best performance. We
differentiate the results along multiple axes, highlighting a
pareto-optimal solution by our algorithm, i.e., no performance
degradation in any case. For accelerable workloads, edge
deployments benefit greatly from DSA enhancements.

Future steps could tackle the scenario to directly learn a
heuristic as replacement for the solver. From a modelling
perspective, frequency reuse and more efficient bandwidth
usage may be explored.
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