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Abstract—This paper studies an optimal workload allocation
problem for a network of renewable energy-powered edge clouds
serving users across various geographical areas. Each edge cloud
has on-site renewable energy generating units and a battery
storage unit. Due to the discrepancy in electricity pricing and
the diverse temporal-spatial characteristics of renewable energy
generation, how to optimally allocate workload to different edge
clouds to minimize the total operating cost while maximizing
renewable energy utilization is a crucial and challenging problem.
To this end, we introduce an optimization framework designed for
Edge Service Providers (ESPs), aiming to reduce energy costs and
environmental impacts, while ensuring essential quality-of-service
standards. Numerical results demonstrate the effectiveness of the
proposed model and solution in maintaining service quality as
well as reducing operational costs and emissions. Furthermore,
the impacts of renewable energy generation and battery storage
on optimal system operations are rigorously analyzed.

Index Terms—Cloud/edge computing, data centers, edge clouds,
renewable energy, battery storage, carbon footprint.

I. INTRODUCTION

Over the past decade, Cloud/Edge Service Providers (ESPs)
have emerged as indispensable drivers of digital transformation.
They enable the delivery of a wide spectrum of digital services,
encompassing tasks such as data storage, processing, software
applications, and beyond [1]. Each ESP oversees a portfolio of
edge clouds (EC), also known as edge data centers. The ESPs
typically manage extensive networks comprising varying sized
and configured ECs, each housing a diverse array of computing
resources. The ECs are distributed across different geographical
locations to ensure proximity to end-users, reduce latency, and
optimize service delivery. These ECs serve as the fundamental
building blocks of their cloud infrastructure, facilitating the
provisioning of a wide range of services to customers, ranging
from virtual machines and storage to machine learning and
content delivery.

Energy efficiency is a critical problem in cloud/edge com-
puting. ECs consume a considerable amount of energy to
operate servers, networking equipment, cooling systems, and
other infrastructure components. Most ECs are connected to the
electrical grid, relying on utility power as their principal source
of electricity. Given their enormous energy consumption, ECs
contribute to a large amount of greenhouse gas (GHG) emis-
sions. While the cost of electricity receives growing attention,
the environmental impacts of power-intensive operations are
often overlooked. Indeed, inexpensive electricity can sometimes
come at the expense of environmental harm. According to the
2021 data from the U.S. Energy Information Administration
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[2], states like Wyoming, Utah, and North Dakota have some
of the lowest electricity prices but significantly higher carbon
footprints in their power sectors compared to the national
average.

The exponential surge in data generation and computing
demands has ushered in a relentless increase in the energy
consumption of ECs. This heightened energy demand poses
both environmental and economic challenges. The commit-
ment to utilizing more renewable energy sources, including
solar, wind, and hydropower, has become one of the foremost
strategic and operational goals for ECs, offering a solution
to mitigate their carbon footprint, align with sustainability
objectives, and decrease dependence on fossil fuels. A primary
challenge associated with renewable energy sources is their
intermittent nature. To address this, energy storage solutions
like batteries are widely recognized as attractive options for
promoting the sustainability and efficiency of EC operations.
By storing surplus energy from renewable sources and/or low-
cost grid electricity during off-peak hours to power ECs during
peak periods or outages, they effectively tackle the variability
and intermittency of renewable energy sources, facilitate their
efficient utilization, and contribute to a resilient edge system.

In regards to green EC design, [3] introduces an archi-
tecture for real-time monitoring, live virtual machine (VM)
migration, and VM placement optimization to minimize power
consumption. This approach aims to enhance server utilization
and optimize power management in ECs, ultimately reducing
their carbon footprint. Another line of research focuses on
energy-cost-aware request routing among ECs by considering
geographically dependent electricity costs [4]. Recently, renew-
able energy resources have been integrated into ECs, thereby
advancing sustainability [5]. Reference [6] explores energy-
information transmission trade-offs across various optimization
problems, encompassing electricity costs, request routing, data
center locations, proximity to renewable energy sources, server
quantities, and the implications of carbon taxes.

Reference [7] introduces the concepts of “green workload”
and “green service rate” in contrast to “brown workload” and
“brown service rate” to distinctly address the separation of max-
imizing green energy utilization and minimizing brown energy
costs. Reference [8] proposes a game theory-based resource
management framework that incorporates renewable energy to
minimize cloud operating costs and queuing delays. In [9], a
cooperative framework is considered where multiple electricity
retailers work together to implement incentive-based demand
response in distributed data centers, aiming to maximize profits.
In [10], authors consider a workload allocation model for data
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center in electricity market.
Contributions: Motivated by the compelling considerations

outlined above, this paper proposes a holistic model for optimal
EC operations. Given the diverse edge environments, charac-
terized by varying electricity costs and carbon footprints, it
becomes imperative for ESPs to implement efficient workload
allocation strategies to ensure high quality-of-service (QoS),
minimize costs, and enhance sustainability. Furthermore, the
potential co-location of renewable energy generation and bat-
tery storage at EC facilities drives our investigation into tailored
optimization models for co-optimizing EC provisioning and
power procurement with these technologies. Specifically, we in-
troduce an optimization framework for ESPs to simultaneously
minimize energy costs and environmental impact by integrating
renewable energy sources and battery storage systems while
maintaining essential QoS standards.

Unlike previous work that delves into decisions regarding
EC placement, our primary objective centers on enhancing
operational efficiency, guaranteeing the delivery of high-quality
services while simultaneously curbing power consumption and
reducing our environmental footprint. We employ a systematic
and analytical framework, with an emphasis on environmental
sustainability, wherein we meticulously account for emissions
and carbon taxes. Our approach features the integration of re-
newable energy sources and battery storage as key components.
Our model also facilitates agile energy trading with the grid.
We aim to analyze the impacts of integrating battery storage
units, onsite renewable energy, and two-way energy trading
with the grid on the optimal operation of networked ECs. Our
numerical results illuminate the profound interdependencies
among these factors and provide pragmatic insights for ESPs
to reduce renewable energy curtailment. Previous work has
often overlooked these aspects, focusing primarily on technical
solutions to address intricate optimization models.

II. SYSTEM MODEL

We consider an ESP that owns and operates multiple ECs
in different geographical locations. Each EC is equipped with
servers, computing resources, and networking functions to
provide low-latency, high-performance cloud services to users
situated in various areas. The ESP aims to deliver high-quality
cloud services to its diverse user base while simultaneously
optimizing several critical aspects of its operations, which
encompass minimizing unmet demand, reducing energy con-
sumption, and mitigating emissions.

The ESP aggregates user requests, which are then directed
to ECs for further processing. The ESP strives to ensure that
users’ demand is consistently met, resulting in a seamless and
reliable user experience. ECs typically consume a substantial
amount of energy to power servers, networking equipment, and
other infrastructure components. Also, due to their enormous
energy consumption, ECs exert a considerable influence on the
electric grid, contributing significantly to GHG emissions and
carbon footprints. Thus, energy efficiency is crucial to reduce
operational costs and minimize the environmental impact of
ECs’ operations. This involves deploying energy-efficient in-
frastructure components and strategically integrating renewable
sources, such as solar panels and wind turbines, along with bat-
tery storage systems. Consequently, surplus energy generated

Fig. 1: System model

during off-peak hours can be stored and later utilized during
peak demand periods. The ESP also has the opportunity to sell
excess power generated from its renewable sources back to the
grid, generating extra revenue to offset energy costs and reduce
both GHG emissions and reliance on fossil fuels.

The ESP adheres to operational constraints while upholding
stringent QoS standards. These constraints encompass various
factors, such as optimizing server activation based on varying
resource demand, effectively distributing workloads to align
with user needs, and maintaining certain delay and server uti-
lization requirements. The ESP also faces additional constraints
related to grid capacity limits and renewable energy availability.
These constraints necessitate efficient energy management. By
balancing these operational and environmental constraints, the
ESP can provide robust, sustainable, and environmentally re-
sponsible cloud services that meet the evolving demands. The
system model is depicted in Fig. 1. The main notations are
presented in Table I.

Notation Definition
Sets and indices

EN, AP, ESP Edge cloud, Access point, Edge Service Provider
i,M,M Index, set and number of areas (APs)
j,N , N Index, set and number of edge clouds (ECs)
t, T Index for time period and time interval

Parameters
etj , a

t
j Buy-more and sell-back electricity price at EC j at time t

Cmax
j Available servers at EC j

α Average computing resource to serve 1 request
λt
i Expected resource demand of users in AP i at time t

ϕi Unmet demand penalty
di,j , D

max Propagation delay between AP i and EC j, and threshold
PR,t
j Renewable energy generation at EC j at time t

P idle
j , P peak

j Idle/Peak server power consumption
Eusage

j Power Usage Effectiveness (PUE)
θj , δj Emission factor and carbon tax at EC j

Variables
xt
i,j Requests from AP i to EC j at time t

qti Unmet demand in area i at time t
ctj Number of active computer servers at EC j at time t

γt
j Average server utilization at EC j at time t

PG,t
j Power to be purchased from the grid at EC j at time t

PC,t
j , PD,t

j Charged/Discharged battery energy at EC j

PU,t
j Power demand at EC j at time t

PS,t
j Sell-back power from EC j at time t

Et
j Battery energy level at EC j at time t

TABLE I: Notations
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III. PROBLEM FORMULATION

Consider an ESP with a total of N ECs, denoted as N ,
serving users situated in various areas. These geographical
user areas are represented by Access Points (APs), collectively
defined as the set M, with M individual APs identified using
index i, while each EC is denoted by index j. In our model, we
consider the time interval denoted as T , where ∆T represents
the duration of a single period within this interval.

A. Computing Capacity

To enhance efficiency, optimize costs, and manage resources
effectively, the ESP determines the number of servers to stay
active based on demand. Let ctj represent the number of active
servers at EC j ∈ N at time t ∈ T . The number of active
servers should not surpass the total available servers at EC j,
denoted as Cmax

j . Thus, we have:

0 ≤ ctj ≤ Cmax
j , ∀j. (1)

B. Workload Allocation

For each area i ∈ M and every time period t ∈ T , we use
λt
i to represent the total expected resource demand of users

in area i at time t. Demand volumes can vary significantly
throughout the day. We denote the number of requests from
area i allocated to EC j during period t as xt

i,j , and α represents
the average computing resource required to serve one request.
Service requests from each area must either be served by ECs
or considered unmet, denoted as qti . Thus, we impose the
following constraint:

α

∑
j

xt
i,j + qti

 = λt
i, ∀i. (2)

Let ϕi denote the penalty cost of for unmet demand in area
i. Therefore, the total unmet demand penalty for the ESP is:

Cu =
∑
i,t

ϕiq
t
i . (3)

To illustrate the impact of delay requirements on the system’s
performance, we denote di,j as the propagation delay between
each AP i ∈ M and EC j ∈ N . To ensure QoS, we introduce
the binary indicator parameter bi,j , which depends solely on
the propagation delay di,j and the maximum delay threshold
Dmax [11]. Specifically, the round-trip propagation delay must
always be kept below Dmax. In other words,

bi,j =

{
1, 2di,j ≤ Dmax

0, 2di,j > Dmax
, ∀i, j. (4)

C. Energy Consumption Model

1) Average Server Utilization: Let ρ represent the service
rate signifying the maximum number of service requests that a
single server can effectively handle within a time period. The
average server utilization at EC j during time t, denoted as
γt
j and discussed in [6], quantifies the proportion of the EC’s

capacity for that specific period and is determined as follows:

γt
j =

∑
i∈M xt

i,j

ρctj
, ∀j. (5)

To control queuing delay, we set a limit γmax ∈ (0, 1] on the
average server utilization at each EC as follows:

γt
j ≤ γmax, ∀j. (6)

The choice of the γmax parameter depends on the service
request traffic pattern and the QoS requirements [6]. If γmax

is sufficiently small, the waiting time for a service request at
an EC before server handling becomes negligible, with most of
the overall latency in responding to service requests determined
by the bounded propagation delay, Dmax.

2) Power Consumption: Let P idle
j denote the average power

consumption of an individual server in the idle state, and let
P peak
j denote the peak power consumption when the server is

actively processing service requests. Additionally, we introduce
the term Power Usage Effectiveness (PUE)1, represented as
Eusage

j . The total power consumption (or power demand) PU,t
j

at each EC location j and for each period t can be computed
as follows [12], [13]:

PU,t
j = ctj

(
P idle
j +

(
Eusage

j − 1
)
P peak
j

)
+ ctj

(
P idle
j − P peak

j

)
γt
j , ∀j, t. (7)

The ratio P peak
j /P idle

j serves as a metric for assessing the
power elasticity of servers. A higher value of this ratio indi-
cates greater elasticity, resulting in reduced power consumption
during periods of server inactivity. When P peak

j = P idle
j , the

power consumption is PU,t
j = ctjE

usage
j P peak

j . In this scenario,
power consumption becomes solely dependent on the quantity
of servers, without consideration for the number of routed
requests or the operational period.

D. Energy Model

1) Cost of Electricity: ECs usually rely on the electrical grid
as their primary power source. In North America, the electric
grid operates on a regional basis. Most regions have regulated
electricity markets where prices remain fixed throughout the
day. In areas with deregulated markets, energy prices from the
grid can fluctuate significantly throughout the day and across
seasons, reflecting the dynamics of the wholesale electricity
market. Let etj represent the electricity price at each EC j and
time t. Also, the amount of energy imported from the grid by
EC j at time t is denoted by PG,t

j . Thus, the electricity cost is
etjP

G,t
j .

2) Grid Capacity Limit: The amount of electricity imported
from the grid cannot exceed the power limit PG,max

j of the
point of coupling between an EC and the grid, i.e., we have:

0 ≤ PG,t
j ≤ PG,max

j , ∀j. (8)

3) Renewable Energy: To manage power costs effectively,
reduce carbon emissions, and ensure uninterrupted operations,
ESPs often employ a diverse range of energy sources and tech-
nologies. Let PR,t

j indicate the renewable energy generation at
EC j at time t. If the renewable energy is sufficient to meet
the current power demand, i.e., PR,t

j ≥ PU,t
j , then no further

procurement is necessary, meaning PG,t
j = 0. Otherwise, the

1PUE is a metric used to assess the energy efficiency of data centers. As
reported in the 2016 U.S. EC Energy Report, the average annualized PUE
across various data centers typically falls within the range of 1.8 to 1.9.
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ESP must determine how much additional power (PG,t
j ) to

purchase from the main grid.
4) Battery Storage System: Batteries with finite capacity can

be incorporated to store excess energy during periods of low
demand or when renewable sources produce surplus electricity,
ensuring stable supply and lower costs. When no procurement
is required, the surplus energy can be used for charging the
battery. Conversely, if procurement is necessary, the ESP can
decide whether to opportunistically discharge energy from the
battery, in addition to the procured power, to meet the current
demand.

5) Energy Sell-back: We assume that the ESP is allowed
to sell back the electricity to the grid at a sell-back price of
atj . For example, the ESP may want to sell back the surplus
energy when the onsite generation exceeds the demand. Let
PS,t
j represent the amount of electricity to be sold to the grid

from EC j at time t. Then, we can calculate the electricity
adjustment cost as follows:

Ce =
∑
j,t

(
etjP

G,t
j − atjP

S,t
j

)
. (9)

6) Power Balance Equation: Let PC,t
j and PD,t

j denote the
charging and discharging power of the battery at EC j at time
t. Constraints on maximum charging and discharging rates for
batteries are expressed as:

0 ≤ PC,t
j ≤ PC,max

j and 0 ≤ PD,t
j ≤ PD,max

j , ∀j. (10)

For simplicity, we do not consider power transmission losses.
The energy balance equation is expressed as follows:

PR,t
j +PG,t

j +PD,t
j =PU,t

j +PC,t
j +PS,t

j , ∀j. (11)

7) Battery Energy Dynamics: For simplicity, we assume
uniform efficiency for battery charging and discharging, rep-
resented by the parameter η ∈ [0, 1]. The energy level of the
battery at location j and time t is denoted by Et

j . The battery
energy dynamics can be expressed as follows:

Et+1
j = Et

j +∆T

(
ηPC,t

j −
PD,t
j

η

)
, ∀j, t. (12)

8) Battery Capacity Constraint: Let Emax
j denote the battery

capacity at EC j. The battery also needs to maintain a minimum
energy level of Emin

j to ensure its longevity, i.e.,

Emin
j ≤ Et

j ≤ Emax
j , ∀j. (13)

E. Environmental Impact

1) Carbon Emission Factor: The carbon emission factor for
electricity varies significantly based on its source. In the case
of electricity from the grid, the emission factor is location-
dependent and closely tied to the energy composition of the
region. Regions heavily reliant on fossil fuels, such as coal and
natural gas, tend to exhibit higher carbon emission factors. Con-
versely, on-site renewable energy sources, such as solar panels
and wind turbines, are renowned for their eco-friendliness. They
typically boast significantly lower carbon emission factors or
even approach zero emissions.

In our model, we denote θj as the emission factor associated
with each unit of electricity purchased from the grid to power

EC j. Consequently, the total carbon emissions linked to
powering EC j at time t are calculated as follows:

EM t
j = θjP

G,t
j . (14)

2) Carbon Tax: To address environmental concerns, sev-
eral states in the United States and Canadian provinces have
implemented carbon taxes [14]. Typically, these carbon taxes
are imposed on power plants, which then transfer the cost of
the carbon pricing to consumers through increased electricity
prices. Thus, environmental considerations are factored into our
system model through the electricity cost. However, given that
carbon taxes are not yet widely adopted, we introduce them as
distinct parameters in our research to better understand their
impacts. To this end, we designate the carbon tax for each EC
location j as δj , resulting in an additional cost of

Cc =
∑
j,t

δjEM t
j =

∑
j,t

δjθjP
G,t
j . (15)

F. ESP Optimization Model

The model for the ESP can be formulated as a Mixed-Integer
Linear Programming (MILP) problem as follows:

minimize
P,E,γ,x,q,c

Cu + Ce + Cc (16)

subject to (1), (2), (6), (8), (11) − (13) (17)

PG,t
j , PU,t

j , PC,t
j , PD,t

j , PS,t
j , Et

j , γ
t
j ≥ 0, ∀j, t

0 ≤ xt
i,j ≤ bi,jλ

t
i, ∀i, j, t; qti ≥ 0, ctj ∈ Z+,∀j, t.

IV. NUMERICAL RESULTS

We consider an edge system comprising 8 ECs (N = 8) and
10 APs (M = 10). The edge network topology is based on
the cities and locations of randomly selected Equinix ECs 2. In
the default setting, we assume that all ECs are eligible to serve
demand from every area, i.e., bi,j is set to 1 for all i and j. We
will also perform sensitivity analysis on larger networks with
more than 10 areas. In our setup, we assume that all ECs are
eligible to serve demand from every area. We consider P idle to
be randomly generated from U[0.45, 0.55] kWh, while P peak is
randomly generated from U[1.2, 1.5] kWh. As reported in the
2016 U.S. EC energy report, we adopt Eusage to fall within the
interval of U[1.8, 1.9]. The electricity price is taken from the
range of [0.1, 0.35] $/kWh [2]. Due to the absence of carbon
tax data in certain U.S. states, we generate δj randomly from
the range [0.6, 0.7] [14].

The “sell-back” price is expected to be less than the pro-
curement cost, as denoted by aj = ζej ,∀j, with ζ equal
to 0.8. By utilizing the trace data from GWA-DAS 3, we
randomly generate the expected demand λt

i, ranging from 10
to 30 per hour. In our problem, we assume that each EC
is directly connected to the grid. Thus, the grid capacity at
location j is randomly generated from U[1, 1.5] megawatts
(MW). Regarding the emission factor for each EC j, we will
focus solely on CO2 emissions. According to [14], we assume
that the carbon tax for the selected location j follows U[20, 50]

2https://www.equinix.com/data-centers/americas-colocation, Access 2022.
3http://gwa.ewi.tudelft.nl/datasets/gwa-t-1-das2/report
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$/ton. The carbon emission factor θj is randomly generated
from U[0.1, 0.8], based on data from [15].

In the default setting, we consider that PR
j,t is randomly

generated from U[80, 100] kW. The maximum battery capacity
Emax

j is generated from U[90, 100] kW, while Emin
j follows

U[30, 50] kW. The charging capacity (PC,max
j ) and discharg-

ing capacity (PD,max
j ) are generated from U[70, 80] kW and

U[70, 80] kW, respectively. Additionally, we consider the values
γmax = 0.9, α = 0.5, ρ = 0.8, ∆T = 1, and T = 12. We
will also vary these parameters during sensitivity analysis. All
the experiments are conducted in MATLAB using CVX4 and
Gurobi5 on a desktop with an Intel Core i7-11700KF CPU and
32GB of RAM. The source code and models pertinent to this
study are accessible online6.

A. Sensitivity analysis

This section presents sensitivity analyses to assess the in-
fluence of key system parameters on the optimal solution.
These parameters include renewable energy (PR

j ), electricity
price (etj), and the “sell-back” ratio (ζ). To evaluate the impact
of renewable energy on system performance, we introduce a
scaling factor Ψ for PR

j , where Ψ = 1 indicates the default
value. Specifically, the value of PR

j generated in the default
setting is multiplied by Ψ to either scale up or down the
renewable energy. Similarly, we use ξEmax, ξe, and ξDmax as
scaling factors for the maximum battery size at EC (Emax

j ),
electricity price ej , and average utilization Dmax.
1) Benefits of battery storage: As depicted in Figure 2(a),
the total cost decreases as Ψ increases, signifying an increase
in the available renewable energy at each EC. This allows
the operator to have greater flexibility in supplying power
from renewable sources, resulting in a reduced reliance on
grid energy. Furthermore, it is evident that a higher electricity
price (e) can motivate the operator to maximize the utilization
of renewable energy resources, reducing the need for energy
procurement from the grid. Similarly, we also examine the
impact of battery capacity size on EC operations. Recall that
ξEmax is a scaling factor for battery size. When ξEmax is set to
a higher value, each EC can potentially have a greater capacity
to absorb surplus energy. This advantage becomes particularly
significant when electricity prices (e) are elevated.
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Fig. 2: The benefits of renewable energy

2) Benefits of “sell-back” option: Fig.3(a) - 3(d) shows how
“sell-back ratio” influences the system performance. Recall that
ζ is defined as “sell-back” ratio between the electricity price and
“sell-back” price (i.e., ej = ζaj ,∀j). Once the power demand

4http://cvxr.com/cvx/
5https://www.gurobi.com/
6https://github.com/JJmingcc/Renewable EC

of each EC has been met, any surplus renewable energy tends to
be given higher priority for selling back to the grid, especially
when ζ is set to higher values. As illustrated in Fig.3(c) and
3(d), larger values of E signify a greater battery capacity at
each EC, allowing for more energy storage. In such cases, the
operator may opt to store excess energy and subsequently sell
it back to the grid, particularly when the “sell-back” price is
favorable.
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Fig. 3: The benefits of “sell-back” option

3) The impact of other system parameters: Notice that γmax

and Dmax directly influence QoS. Specifically, γmax imposes
a constraint on the average server utilization at each EC, while
Dmax sets a limit on the propagation delay between APs and
ECs. As shown in Figures 4(a), when ωγ is decreased, it
signifies a stricter restriction on the average utilization at each
EC, which can result in a higher chance of unmet demand
due to these more stringent requirements. As described in (4),
an EC j can only serve user requests from area i when the
propagation delay between them is within the threshold Dmax.
In other words, a decrease in Dmax, indicating a more stringent
delay requirement, leads to an increase in the number of bi,j
values that become zero, indicating a reduction in the number
of eligible ECs to serve user demand. Consequently, the total
cost of the system increases as Dmax decreases. Furthermore,
Figure 4(b) shows the impact of network size on the optimal
solution. As expected, with a fixed number of ECs, the total
cost rises as the number of APs increases.
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Fig. 4: The impact of other system parameters

B. Performance Comparisons

In this section, we aim to compare the performance of the
proposed model with the following benchmarks:

• M1: This model lacks the capability for the “sell-back-to-
grid” option, and ECs do not have batteries.
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• M2: This model exclusively focuses on using batteries to
store energy and does not allow the operator to sell surplus
energy back to the grid.

• M3: This model is designed to enable the selling of excess
energy back to the grid, while ECs do not feature battery
installations.

For the mathematical formulations of the benchmark models
M1 - M3, please refer to the Appendix. A in the technical
report7. The evaluation and comparison of the four schemes are
based on their total cost in four different settings. To simplify,
we refer to our proposed model as “M0”. These four models
can be straightforwardly categorized into those that incorporate
or omit considerations for sell-back and battery storage options.
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Fig. 5: Model comparisons

As illustrated in Fig. 5(a)–5(d), our proposed model sig-
nificantly outperforms the other schemes. M1 achieves the
worst performance since it lacks both the “sell-back-to-grid”
option and battery storage. Fig. 5(a) shows that M0 and M3
do not vary regardless of changes in ζ because these two
models lack considerations for “sell-back-to-grid”. Thus, when
ζ = 0, indicating a sell-back price of 0, there is no distinction
in performance between M0 and M2 or M1 and M3. The
difference between these two pairs demonstrates the advantages
of battery storage, as energy can be discharged. When ζ
increases, the advantages of models that consider “sell-back-
to-grid” options (such as M0 and M3) become increasingly
pronounced due to the elevated sell-back prices, which can be
verified in Fig. 5(b).

Furthermore, as depicted in Fig. 5(c), all four models exhibit
an increase as electricity prices (e) rise. Notably, the advantages
of the sell-back option can be emphasized, especially when
electricity prices (e) are low. In such scenarios, selecting energy
supply from the grid is not that expensive, offering greater
operational flexibility. However, as the electricity price (e)
escalates, a model with solely a sell-back option becomes in-
sufficient, as these resources would be wasteful without storing
surplus energy in a battery. Therefore, the cost of M2 gradually
surpasses that of M3. The reduction in the maximum battery
size (Emax) signifies decreased capacity for storing renewable
energy, potentially resulting in limited availability of renewable
energy and, consequently, the possibility of renewable energy

7Technical report: https://arxiv.org/abs/2310.00742

curtailment. Figure 5(d) illustrates that costs decrease across
models that take battery storage into account, as the operator
can prioritize the utilization of renewable energy sources by
discharging energy from the batteries to meet power demand.
These advantages become more prominent as the maximum
battery size (Emax) increases. In summary, the risk of renew-
able energy curtailment is heightened when EC systems lack
both battery storage and the sell-back option.

V. CONCLUSION

This paper has unveiled valuable insights and potential
benefits of integrating renewable energy sources, battery sys-
tems and energy trading in edge service operations. Notably,
when renewable energy sources are considered, our approach
underscores the allocation of workload not only to ECs with
low electricity prices but also to those with high renewable
energy generation. Moreover, the introduction of batteries adds
another dimension to the workload allocation problem as the
battery capacity can efficiently absorb surplus energy, acting as
an essential tool for energy arbitrage.
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