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Abstract— In this paper, we improve the handling of 

'physical error', which is situation where an autonomous mobile 

CPS fails to accurately pinpoint a location within an acceptable 

level of accuracy. Analysis in the existing method has a 

pessimism that can lead to situations that are judged to be 

physical error even though it is not. Within this paper, we 

introduce the Interval-Occupancy Model, a novel scheduling 

and analysis approach designed to alleviate the inherent 

pessimism observed in the prior method. Our contribution seeks 

to enhance the discernment of genuine physical errors, ensuring 

more precise and accurate error identification within autono- 

mous mobile CPS frameworks. 

Keywords— self-looping node, physical error, ideal budget, 

scheduling model, Interval-Occupancy Model 

I. INTRODUCTION 

The latest autonomous driving systems employ a real-time 
system architecture where multiple tasks are interdependent in 
their execution[1]. This structure is typically represented as a 
Directed Acyclic Graph (DAG). Among these tasks, some 
exhibit the characteristic of improving performance with 
repeated execution. A prime example of this is the NDT 
matching in the localization phase of autonomous driving 
systems, where the current position is calculated from sensor 
data within a map[2][3]. In the paper [4], these time-
responsive performance node is defined as a self-looping node, 
and a situation where a self-looping node fails to reach the 
target accuracy within a given deadline in a real-time system 
environment is defined as a physical error. [4] introduced a 
method to manage physical error situations by imposing a 
maximum time budget for self-looping nodes: If this budget is 
exceeded, a safety backup module is activated instead of the 
self-looping module. The safety backup module is an 
algorithm with bounded execution time, albeit with lower 
performance compared to a self-looping node, thus resulting 
in a reduced quality of outcomes. Therefore, it is necessary to 
allocate the maximum budget to the self-looping node to avoid 
the situation where the safe backup module is executed as 
much as possible.  

However, the budget analysis method for self-looping 

node presented in the paper [4] contains significant 

pessimism[6]. For example, even given a sufficient number of 

processors, a budget calculated based on classic bound based 

analysis in [4] will not allocate the ideal size budget for self-

looping node. This pessimistic analysis can lead to under-

budgeting of self-looping nodes and misinterpretation of 

normal situations as physical failure situations. The crucial 

reason for this pessimism is that the analysis method used in 

[4] is a general one that does not take into account the situation 

where the self-looping node needs to be given the maximum 

budget. In this paper, we solve this problem with a completely 

novel scheduling model, Interval-Occupancy Model and 

analysis method 

The Interval-Occupancy Model demonstrates the ideal 

budget by assuming that all other nodes capable of parallel 

execution run simultaneously on separate cores to eliminate 

interference. This assumption hinges on the availability of a 

sufficient number of cores. In this model, we can readily 

calculate the ideal budget by considering the nodes dependent 

on the self-looping nodes and their respective deadlines. 

However, in real-world conditions, an infinite number of cores 

is not at our disposal, we analysis schedulability of this model 

by calculating minimum core count required to allocate the 

ideal budget. For this purpose, we introduce a metric called 

‘occupancy’, which represents the proportion of cores 

occupied by the execution of each node during a certain time 

interval. The number of cores required is determined based on 

the interval at which the sum of occupancies across all nodes 

peaks over the entire period. Each node is optimized to run at 

low occupancy for as long as possible to minimize the 

maximum sum of occupancy and thus the number of cores 

required.  

As a result, we showed that by adding this model and 

analysis method specialized for self-looping nodes to the 

existing method allows more budget to be provided under the 

same conditions as before.  

II. TASK AND RESOURCE MODEL 

In this paper, we consider a system of periodic single DAG 

task 𝜏 = {𝑇, 𝐷, 𝐺 = (𝑉,  𝐸)}. Let 𝑇 be the period of the task 

and 𝐷 be the deadline, which means that the DAG is executed 

every 𝑇  periods and must end its execution before 𝐷 . The 

structure of a DAG task is represented by a graph 𝐺 = (𝑉,  𝐸). 

𝐺 contains nodes represented by 𝑉 = {𝑣1, … , 𝑣𝑛}, and nodes 

have dependencies where one node's execution must follow 

another node's execution denoted by 𝐸 ⊆ (𝑉 × 𝑉) . This 

workload model is based on prior research [4]. Additionally, 

we define the set of nodes with no preceding nodes as 𝑉𝑠𝑟𝑐 and 

the set of nodes with no succeding nodes as 𝑉𝑠𝑖𝑛𝑘. We assume 

that the WCET(Worst Case Execution Time) is given for all 

nodes 𝑣𝑖 in 𝑉 except self-looping nodes, which is denoted by 

𝑒𝑖 . A self-looping node 𝑣𝑠 is a node that has a variable 

execution time and produces more accurate results with longer 

execution time. We consider a computing hardware platform 

with 𝑚  identical processors to execute a single DAG job 

containing only one self-looping node. To determine which 

node should execute on the 𝑚 processors when more than 𝑚 

nodes are ready while satisfying all the priority constraints, we 
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assume fixed-priority non-preemptive scheduling, i.e., each 

node is assigned a fixed priority as in [5] and when a processor 

becomes idle, the node with the highest priority among all the 

ready nodes starts executing on the processor. Once a node 

starts executing, it will continue to execute until the end 

without being preempted, even if a node with a higher priority 

becomes ready.  

III. INTERVAL-OCCUPANCY MODEL AND ANALYSIS METHOD 

A. Calculate Ideal Budget 

To compute the upper bound of the self-looping node 
budget, we need to consider the paths that contain the self-
looping node. Path 𝜆  is an ordered set of nodes 
{𝑣𝑠𝑟𝑐 , … , 𝑣𝑠𝑖𝑛𝑘}  representing a sequence of nodes. All 
neighboring nodes in path have a dependency, which is 
denoted by ∀𝑣𝑖 , 𝑣𝑖+1 ∈ 𝜆, (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 . The path with the 
longest length of all paths is called the critical path 𝜆∗ (there 
can be multiple critical paths), and the nodes it contains are 
called critical nodes, and the others are called non-critical 
nodes. First, we show that a self-looping node is always in 
critical path. 

Theorem 1. There is always a critical path that contains a 
self-looping node. 

Proof. Assuming that there is no critical path contains a self-
looping node, let 𝜆𝑠 be the path that contains a self-looping 
node. Intuitively, self-looping nodes have variable execution 
time, and longer execution time means better performance, so 
if they are not on a critical path, they can be given additional 
execution time to get on a critical path. However, there can be 
dependency between nodes, so let’s look at two cases. 

a) If there is no dependency issue between nodes in 𝜆𝑠 and 𝜆∗ 
as in Figure 1(a), we can simply increase the budget of the 
self-looping node by Δ1  so that the length of 𝜆𝑠 is the same as 
the length of 𝜆∗,. Thus, 𝜆𝑠 becomes the longest path (one of 
them) and becomes a critical path.  

b) If dependency issue exists between nodes in 𝜆𝑠  and 𝜆∗ ,  
simply increasing the budget by Δ1  will violate the 
dependency. This is the case when there is node executes after 
the self-looping node on path 𝜆𝑠 must precede the node on the 
critical path 𝜆∗ , (𝑣5, 𝑣6) ∈ 𝐸 for example in Figure 1(b). In 
this case, increase the budget as much as possible without 
violating the dependency. Through this change, the path 
before the node with a dependency problem on the path 𝜆𝑠 and 
the path after the node with a dependency problem on the path 
𝜆∗ are combined to create the new longest path path (one of 

them) and becomes a critical path.                                                     □ 

Thus, we can see that there must be a critical path that 
contains a self-looping node. With this theorem, the ideal 
budget of a self-looping node 𝑒𝑠  can be found simply by 
subtracting the WCET of all nodes except the self-looping 

node from the critical path containing the self-looping node at 
deadline. 

𝑒𝑠 = 𝐷 − ∑ 𝑒(𝑣𝑖)

𝑣𝑖∈(𝜆∗−𝑣𝑠)

 

To ensure the ideal budget is allocated, Conditions 
regarding the number of cores are required. Figure 2 shows a 
simple five-node DAG task to illustrate the consequences of 
insufficient number of core. The sum of the WCETs of the 
nodes in the critical path 𝜆∗ = {𝑣1, 𝑣4, 𝑣5}  amounts 7. 
However, as cores are limited to 𝑚 = 2, non-critical nodes 
can cause interference, resulting in a prolonged execution time 
to 8. Therefore, to ensure that the response time of the DAG 
task does not exceed the length of the critical path due to 
interference of non-critical nodes, it is necessary to assume a 
sufficiently large number of cores. In most situations, we have 
a limited number of cores for scheduling, so we need to check 
how many cores are actually used for scheduling after finding 
the ideal budget under the above assumptions.  

We present a novel model that uses the ideal budget 
obtained above to schedule the remaining nodes on the least 
number of cores. The goal of the model is to split the execution 
of a node over as long a period of time as possible to reduce 
the number of cores required. 

B. Occupancy 

Occupancy 𝑂(𝑣, 𝑖) is the core concept of the Interval-
Occupancy Model. After specifying an artificial release time 
and deadline for a node, it indicates how much of the core will 
be occupied by the node if it runs throughout the interval. The 
concept of "running throughout the interval" is illustrated in 

Figure 3. Let 𝑣𝑎 's release time be 𝑡𝑣𝑎
𝑟 , deadline be 𝑡𝑣𝑎

𝑑 . Rather 

than simply executing from 𝑡𝑣𝑎
𝑟  to (𝑡𝑣𝑎

𝑟 + 𝑒𝑎), it is considered 

to be executed by occupying only 𝑂(𝑣𝑎 , 𝑖𝑎) portion of cores 

from 𝑡𝑣𝑎
𝑟 to 𝑡𝑣𝑎

𝑑 (𝑖𝑎 refers to the target time interval of 𝑣𝑎, the 

specific concept will be explained later). The formula can be 
represented as follows: 

Figure 1. (a) no dependencies between any nodes in 𝝀𝒔 and 𝝀∗ 

(b) dependency exists between nodes in 𝝀𝒔 and 𝝀∗, (𝒗𝟓, 𝒗𝟔) ∈ 𝑬 in this case 

 

Figure 2. Interference by non-critical nodes when 

the number of cores is insufficient 
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𝑂(𝑣𝑎 , 𝑖𝑎) =
𝑒𝑎

𝑡𝑣𝑎
𝑑 − 𝑡𝑣𝑎

𝑟
 

So the amount of execution of this node on the core is 

(𝑡𝑣𝑎
𝑑 − 𝑡𝑣𝑎

𝑟 ) × 𝑂(𝑣𝑎 , 𝑖𝑎) = 𝑒𝑎, which is the same as before. To 

determine the minimum number of cores required for 
scheduling, sum Occupancy of all nodes that are executable 
within a specific interval and find the smallest integer greater 
than this sum. This process can be applied to the entire interval, 
and the highest value among these minimum core 
requirements indicates the necessary core count for 
scheduling this DAG task. 

C. Determine artificial release time, deadline 

To calculate the occupancy, we need to find the artificial 

release time, deadline of each node. Since our goal is to 

distribute the occupancy as much as possible to minimize the 

sum of occupancy in each interval, the release time should be 

as early as possible and the deadline as late as possible. We 

define 𝑙𝑠𝑡 (for latest start time of node) and 𝑒𝑓𝑡 (for earliest 

finish time of node) to calculate this considering the 

dependency of the node.  

a) 𝑙𝑠𝑡 ∶ 𝑉 → ℕ 

If 𝑣 ∈ 𝑉𝑠𝑟𝑐 , the release time is 0 because it can be started 

immediately when the task releases. If a predecessor node of 

𝑣  exists, 𝑣  can be executed after the execution of the 

preceding node has finished, so for all predecessor nodes, the 

largest value of the sum of the 𝑙𝑠𝑡 of each predecessor node 

and 𝑒 becomes the 𝑙𝑠𝑡 of 𝑣. This definition is expressed by the 

following formula: 

𝑙𝑠𝑡(𝑣) = {
0,                                                 𝑖𝑓 𝑣 ∈ 𝑉𝑠𝑟𝑐

max
{𝑢|(𝑢, 𝑣)∈𝐸}

{𝑙𝑠𝑡(𝑢) + 𝑒𝑢}  ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒   

b) 𝑒𝑓𝑡 ∶ 𝑉 → ℕ 

𝑒𝑓𝑡 is a concept that is symmetrical to 𝑙𝑠𝑡. If 𝑣 ∈ 𝑉𝑠𝑖𝑛𝑘, 

deadline is the same as D ( i. e. , 𝑒𝑓𝑡 = 0 ). If there is a 

successor node to 𝑣, 𝑣 must finish earlier than D by the sum 

of 𝑒 and 𝑒𝑓𝑡 of successor node. This definition is expressed 

by the following formula: 

𝑒𝑓𝑡(𝑣) = {
0,                                                𝑖𝑓 𝑣 ∈ 𝑉𝑠𝑖𝑛𝑘

max
{𝑢|(𝑣, 𝑢)∈𝐸}

{𝑒𝑓𝑡(𝑢) + 𝑒𝑢}  ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒  

 Intuitively, we can understand 𝑙𝑠𝑡  as the length of the 

critical path of a subgraph consisting of nodes that must be 

executed before node 𝑣, and 𝑒𝑓𝑡 as the length of the critical 

path of a subgraph consisting of nodes that can be executed 

only after node 𝑣  is executed. Since we have assumed a 

sufficient number of cores, there is no interference from non- 

critical node of that subgraph. Therefore, the maximum 

window of time that a node 𝑣 can run is between 𝑙𝑠𝑡(𝑣) and 

𝐷 − 𝑒𝑓𝑡(𝑣). Based on this analysis, 𝑡𝑣
𝑟  and 𝑡𝑣

𝑑 can be set to 

𝑙𝑠𝑡 and (𝐷 − 𝑒𝑓𝑡), respectively. 

However, the problem arises when we actually execute 

these nodes with occupancy from 𝑙𝑠𝑡(𝑣) to 𝑒𝑓𝑡(𝑣) , which is 

the case in Figure 4. In Figure 4, 𝑣𝑎 and 𝑣𝑏 have a dependency 

but 𝑡𝑣𝑎
𝑑  is later than 𝑡𝑣𝑏

𝑟 . Since 𝑣𝑏 must be executed after 𝑣𝑎 is 

ended, we need to set an appropriate border between 𝑡𝑣𝑎
𝑑  and 

𝑡𝑣𝑏
𝑟 , and set 𝑡𝑣𝑎

𝑑 ′ and 𝑡𝑣𝑏
𝑟 ′ (where 𝑡𝑣𝑎

𝑑 ′ and 𝑡𝑣𝑏
𝑟 ′  represent the 

new values of 𝑡𝑣𝑎
𝑑  and 𝑡𝑣𝑏

𝑟 ) to that border. The location of 

border is the point where the Occupancy of each node is the 

same after adjusting 𝑡𝑣𝑎
𝑑  and 𝑡𝑣𝑏

𝑟 . Since 𝑂(𝑣𝑎 , 𝑖𝑎) = 𝑒𝑎/

(𝑡𝑣𝑎
𝑑 − 𝑡𝑣𝑎

𝑟 )  and 𝑂(𝑣𝑏 , 𝑖𝑏) = 𝑒𝑏/(𝑡𝑣𝑏
𝑑 − 𝑡𝑣𝑏

𝑟 ) , border can be 

calculated by the following formula. 

∀(𝑣𝑎,  𝑣𝑏) ∈ 𝐸,  𝑡𝑣𝑎
𝑑 >  𝑡𝑣𝑏

𝑟 →  𝑡𝑣𝑎
𝑑 ′ = 𝑡𝑣𝑏

𝑟 ′ =  
𝑡𝑣𝑏

𝑑 𝑒𝑎 + 𝑡𝑣𝑎
𝑟 𝑒𝑏

𝑒𝑎 + 𝑒𝑏

 

Our objective is to minimize the total occupancy values 

across all sections. In this scenario, when the occupancy of 

one node increases, the occupancy of the other node decreases. 

Enforcing equal occupancy values for both nodes is a policy 

that minimizes the maximum value of the total occupancy sum. 

D. Analysis Method 

We have determined the artificial release time, deadline, 
and thus the occupancy of each node. Finally, we need to find 
the point in time where the sum of the occupancies of the 
nodes can execute that point is the highest, but since we can't 
check all of them for the entire T, we divide the period 𝑇 into 
intervals. The interval 𝐼 = {𝑖1, … , 𝑖𝑛}  is defined by dividing 

𝑇 with 𝑡𝑣𝑗
𝑟 , 𝑡𝑣𝑗

𝑑  ∀ 𝑣𝑗 ∈ 𝑉 . The occupancy of each node remains 

constant within the interval between the artificial release time 
and the deadline, so 𝑂(𝑣𝑗 , 𝑖𝑛) does not change within each 

interval. Therefore, we only need to calculate the occupancy 
sum once per interval, which is expressed by the following 
formula. 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 = ⌈max
𝑖𝑛∈𝐼

∑ 𝑂(𝑣𝑗 ,  𝑖𝑛)

𝑣𝑗∈𝑉

⌉ 

E. Scheduling Method 

In this section, we introduce a priority assignment scheme 

for scheduling on 𝑚 cores when the sum of the occupancy of 

nodes in interval 𝑖𝑛 is not greater than 𝑚, and show that it is 

feasible.  

First, Divide the workload of each node proportionally to 

the size of the interval and assign it to each interval, i.e., we 

distribute the workload so that it has the same occupancy in 

all intervals. In Figure 5, the interval with the largest 

Figure 3. Running node 𝒗𝒂 throughout the interval 

 

Figure 4. Resolving dependency issue 

 

Figure 5. Slicing each node's workload by interval 
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occupancy sum is 𝑖2. The workload assigned to interval  𝑖2 is 

{𝑣𝑑,𝑖2
, 𝑣𝑏,𝑖2

, 𝑣𝑎,𝑖2
}, and the number of cores required is 𝑚 =

⌈𝑂(𝑣𝑑,𝑖2
, 𝑖2) + 𝑂(𝑣𝑏,𝑖2

, 𝑖2) + 𝑂(𝑣𝑎,𝑖2
, 𝑖2)⌉. This allows each 

interval to be scheduled independently, and the each workload 

is modeled to run with the same release time and deadline on 

𝑚  cores. From this, we propose the first rule for priority 

assignment.  

Rule 1. ∀𝑖𝑛 ,  𝑖𝑚 ∈ 𝐼, 𝑛 < 𝑚,  ∀𝑣𝑎 ∈ 𝑉𝑛 , 𝑣𝑏 ∈ 𝑉𝑚 → 𝑝𝑎 > 𝑝𝑏  

The next step is how to run the nodes within the interval. 

Since there is no guarantee that the workloads of the nodes can 

be executed in parallel, the situation indicated by the upward 

arrow in Figure 6 can cause problems with parallel execution. 

To avoid this situation, we introduce the following method. 

First, concatenate the WCETs of all nodes in a sequence, and 

then divide them based on interval size. Afterward, execute 

each piece(size of each piece is equal to the interval except 

last piece) by assigning it to a core. Some nodes may be sliced 

(𝑣𝑏,𝑖2,1 and 𝑣𝑏,𝑖2,2 in Figure 6) and some may not(𝑣𝑎,𝑖2
, 𝑣𝑑,𝑖2

 

in Figure 6). To prevent parallel execution, the later part of 

the sliced node should release after WCET of the earlier part, 

i.e. 𝑣𝑏,𝑖2,1 should released at 𝑒𝑏,𝑖2,2 after 𝑖2 starts. Finally, we 

give them priority from the front. In Figure 6, 𝑣𝑏,𝑖2,2 and 𝑣𝑎,𝑖2
 

have the highest priority, followed by 𝑣𝑑,𝑖2
, and then 𝑣𝑏,𝑖2,1. 

This avoids running nodes in parallel because the size of the 

node's workload cannot exceed the size of interval 

(Occupancy will never be greater than 1). Scheduling like this 

allows us to schedule nodes without parallel executing them, 

even in situations where the sum of Occupancy equals the 

number of cores, i.e., a density of 1. Let 𝑉𝑛′ be the set of nodes 

after concatenating the nodes in 𝑉𝑛  and slicing them to the 

size of 𝑖𝑛, The rule that sums up this process follows. 

Rule 2. ∀𝑖𝑛 ∈ 𝐼, ∀𝑣𝑎 , 𝑣𝑏 ∈ 𝑉𝑛
′,  

[∑ 𝑒𝑘

𝑎−1

𝑘=1

] % 𝑠𝑖𝑧𝑒(𝑖𝑛) < [∑ 𝑒𝑘

𝑏−1

𝑘=1

] % 𝑠𝑖𝑧𝑒(𝑖𝑛) → 𝑝𝑎 > 𝑝𝑏  

F. Merge with previous method 

Interval-Occupancy Model is specialized for DAG 

structures including self-looping nodes and shows strong 

performance in most cases, but it can produce worse results 

than existing methods for certain malformed DAGs. For 

example, in the case of a DAG with a very large number of 

nodes with the same preceding and succeeding node 

conditions, the occupancy value of the corresponding interval 

increases and the number of required cores increases, resulting 

in a failure decision. A simple way to solve this is to try both 

the previous method and ours. First, the number of required 

cores obtained using the Interval-Occupancy model is 

compared with the number of available cores to determine 

whether an ideal budget can be provided, and then, if possible, 

provide an ideal budget to the self-looping node, and if not 

possible, use the previous method to see if it can provide a 

lower budget.  

IV. EVALUATION 

This section evaluates the proposed algorithm compare to 

the previous method by synthetic task.  

A. Compare to previous method in [4] 

We conducted a comparative evaluation of our method 

against the previous method in [4] on randomly generated 

identical DAG with 4 identical homogeneous cores (𝑚 = 4). 

The DAGs are generated under the following conditions: the 

number of nodes N is randomly chosen from uniform(15, 25), 

with self-looping nodes excluded; WCET of non-self-looping 

nodes are randomly chosen from uniform(30, 50); the length 

of the critical path is randomly chosen from uniform(6, 10). 

Edges between nodes were established by setting random 

pairs of nodes with varying numbers of edges. On average, 

each node has 3 dependent nodes. 

In these experiments, we varied the DAG's utilization 𝑈 

from 0 to 4 in increments of 0.2. The DAG's period (which is 

equivalent to the deadline) was determined based on the 

average execution time 𝑒𝑎𝑣𝑔 of the generated DAG (excluding 

self-looping nodes) and the utilization value, as follows: 

𝑇 = 𝐷 =  
𝑒𝑎𝑣𝑔 × 𝑁

𝑈
  

For each utilization value, we conducted experiments with 

100,000 DAGs. In the previous method in [4], a schedule was 

considered successful if the computed budget for self-looping 

nodes was greater than or equal to zero. In our method, a 

schedule was considered successful if the computed required 

number of cores was four or fewer. The results are shown in 

Figure 7. In terms of schedulability, our method exhibits a 

reasonable success rate even for high utilizations. This can be 

attributed to the fact that the previous method, which employs 

classic bound-based analysis with strong pessimism, often 

incorrectly concludes that self-looping nodes cannot be 

allocated a budget. 

Figure 6. Scheduling in interval:  

Concatenate all workload and slice by interval size 

 

Figure 7. (a) Comparing schedulability based on utilization 

(b) Comparing budget based on utilization 
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 In contrast, our method mitigates pessimism to a 

significant extent. This is particularly noticeable in the 

utilization range of 2.6 to 3.0, where our method achieves a 

success rate of 30% ~ 50%, while the previous method shows 

less than 10%. However, in scenarios with low utilization, our 

method occasionally fails (approximately 5%). This typically 

occurs when randomly generated DAGs exhibit extremely 

high parallelism. In such cases, a slight reduction in the budget 

could allow scheduling within given cores, but our method 

keeps the budget fixed at its maximum value, leading to this 

issue. To address this, we propose a system that employs both 

methods. If our method succeeds in scheduling, it provides the 

ideal budget. If it fails, previous method is used to calculate 

budget. Our method consistently provides larger budgets than 

the previous method, ensuring that giving self-looping nodes 

maximum execution time budget to reach the target accuracy 

and thereby enhancing the overall system stability.  

Figure 7(b) illustrates how much budget was allocated on 

average for successful budget calculations, based on 

utilization. In consideration of varying deadlines and 

workloads assigned to each DAG, the y-axis has been 

normalized as budget/deadline. In contrast to previous method, 

our method demonstrates a distinct advantage by providing an 

ideal budget allocation that remains stable even as utilization 

increases. This stands in contrast to the rapid reduction in 

budget size observed in previous methods. This substantial 

increase in budget allocation compared to the previous method 

ensures that self-looping nodes have sufficient execution time 

to reach the target accuracy, thereby stabilizing the entire 

system.  

B. Comparison based on DAG generation conditions 

The following experiment compares the budget 

calculation as the DAG's generation conditions change for two 

factors: Parallelism, Dependency. 

First, we conducted an experiment to control the 

parallelism by setting the average length of critical paths to 6, 

7, 8, 9, and 10 (the rest of the conditions are the same as the 

above experiment, and Utilization is set to 2). The result at 

Figure 8(a) shows that the budget calculated by our method 

decreases as the critical path becomes longer, i.e., the 

parallelism decreases. This is because the budget is calculated 

by subtracting the size of the critical path excluding self-

looping nodes from the deadline. Meanwhile, schedulablity 

has a maximum value at a certain length(8 at this condition) 

and decreases when it is less or more. First, if the critical path 

is too short, the schedulability decreases because the 

parallelism of the nodes increases and the occupancy value 

increases, causing more cases of scheduling failure. On the 

other hand, if the critical path is too long, the budget of the 

self-looping node decreases, which affects the artificial 

release time and deadline. When the budget of the self-looping 

node is much larger than other nodes, the occupancy value of 

the nodes that can run in parallel with the self-looping node is 

calculated very low. But when the budget is reduced to be 

similar to other nodes, the occupancy value of the section that 

runs in parallel with the self-looping node is increased, and the 

sum of occupancy increases. 

In the second set of experiments, we adjusted the 

dependencies by increasing the average number of other nodes 

each node depends on from 2 to 4 in increments of 0.5, while 

keeping the other conditions the same as the previous 

experiments. The results at Figure 8(b) indicate that as the 

dependencies increase, the schedulability calculated using our 

method decreases. This is because considering inter-node 

dependencies leads to narrower intervals between artificial 

release times and deadlines, which, in turn, increases 

occupancy in each interval and subsequently results in a 

higher required maximum number of cores, leading to 

scheduling failures. Meanwhile, dependency is totally 

independent of the budget, as the budget is solely determined 

by the critical path.  

V. CONCLUSION 

In this paper, our paper present a new scheduling and 

analysis method, the Interval-Occupancy Model, which 

mitigating the pessimism present in previous papers. The 

model allocates an ideal budget to self-looping nodes and 

optimally schedules other nodes, minimizing the number of 

misjudgments due to physical error situations and improving 

the schedulability. Looking ahead, we plan to extend our study 

to a wider range of DAGs, i.e., structures with two or more 

self-loop nodes, or general structures that do not contain self-

loop nodes. 
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Figure 8. (a) Variations in schedulability and budget with 

changing levels of parallelism 
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