

Mitigating Pessimism for Guaranteeing Safety

Despite Physical Errors in CPS’s

1st Jihwan Kim

Dept. of Computer Science

Seoul National University

Seoul, Korea

jhkim@rubis.snu.ac.kr

2nd Dongmin Shin

Dept. of Computer Science

Seoul National University

Seoul, Korea

dmshin@rubis.snu.ac.kr

3rd Chang-Gun Lee

 Dept. of Computer Science

Seoul National University

Seoul, Korea

cglee@rubis.snu.ac.kr

Abstract— In this paper, we improve the handling of

'physical error', which is situation where an autonomous mobile

CPS fails to accurately pinpoint a location within an acceptable

level of accuracy. Analysis in the existing method has a

pessimism that can lead to situations that are judged to be

physical error even though it is not. Within this paper, we

introduce the Interval-Occupancy Model, a novel scheduling

and analysis approach designed to alleviate the inherent

pessimism observed in the prior method. Our contribution seeks

to enhance the discernment of genuine physical errors, ensuring

more precise and accurate error identification within autono-

mous mobile CPS frameworks.

Keywords— self-looping node, physical error, ideal budget,

scheduling model, Interval-Occupancy Model

I. INTRODUCTION

The latest autonomous driving systems employ a real-time
system architecture where multiple tasks are interdependent in
their execution[1]. This structure is typically represented as a
Directed Acyclic Graph (DAG). Among these tasks, some
exhibit the characteristic of improving performance with
repeated execution. A prime example of this is the NDT
matching in the localization phase of autonomous driving
systems, where the current position is calculated from sensor
data within a map[2][3]. In the paper [4], these time-
responsive performance node is defined as a self-looping node,
and a situation where a self-looping node fails to reach the
target accuracy within a given deadline in a real-time system
environment is defined as a physical error. [4] introduced a
method to manage physical error situations by imposing a
maximum time budget for self-looping nodes: If this budget is
exceeded, a safety backup module is activated instead of the
self-looping module. The safety backup module is an
algorithm with bounded execution time, albeit with lower
performance compared to a self-looping node, thus resulting
in a reduced quality of outcomes. Therefore, it is necessary to
allocate the maximum budget to the self-looping node to avoid
the situation where the safe backup module is executed as
much as possible.

However, the budget analysis method for self-looping

node presented in the paper [4] contains significant

pessimism[6]. For example, even given a sufficient number of

processors, a budget calculated based on classic bound based

analysis in [4] will not allocate the ideal size budget for self-

looping node. This pessimistic analysis can lead to under-

budgeting of self-looping nodes and misinterpretation of

normal situations as physical failure situations. The crucial

reason for this pessimism is that the analysis method used in

[4] is a general one that does not take into account the situation

where the self-looping node needs to be given the maximum

budget. In this paper, we solve this problem with a completely

novel scheduling model, Interval-Occupancy Model and

analysis method

The Interval-Occupancy Model demonstrates the ideal

budget by assuming that all other nodes capable of parallel

execution run simultaneously on separate cores to eliminate

interference. This assumption hinges on the availability of a

sufficient number of cores. In this model, we can readily

calculate the ideal budget by considering the nodes dependent

on the self-looping nodes and their respective deadlines.

However, in real-world conditions, an infinite number of cores

is not at our disposal, we analysis schedulability of this model

by calculating minimum core count required to allocate the

ideal budget. For this purpose, we introduce a metric called

‘occupancy’, which represents the proportion of cores

occupied by the execution of each node during a certain time

interval. The number of cores required is determined based on

the interval at which the sum of occupancies across all nodes

peaks over the entire period. Each node is optimized to run at

low occupancy for as long as possible to minimize the

maximum sum of occupancy and thus the number of cores

required.

As a result, we showed that by adding this model and

analysis method specialized for self-looping nodes to the

existing method allows more budget to be provided under the

same conditions as before.

II. TASK AND RESOURCE MODEL

In this paper, we consider a system of periodic single DAG

task 𝜏 = {𝑇, 𝐷, 𝐺 = (𝑉, 𝐸)}. Let 𝑇 be the period of the task

and 𝐷 be the deadline, which means that the DAG is executed

every 𝑇 periods and must end its execution before 𝐷 . The

structure of a DAG task is represented by a graph 𝐺 = (𝑉, 𝐸).

𝐺 contains nodes represented by 𝑉 = {𝑣1, … , 𝑣𝑛}, and nodes

have dependencies where one node's execution must follow

another node's execution denoted by 𝐸 ⊆ (𝑉 × 𝑉) . This

workload model is based on prior research [4]. Additionally,

we define the set of nodes with no preceding nodes as 𝑉𝑠𝑟𝑐 and

the set of nodes with no succeding nodes as 𝑉𝑠𝑖𝑛𝑘. We assume

that the WCET(Worst Case Execution Time) is given for all

nodes 𝑣𝑖 in 𝑉 except self-looping nodes, which is denoted by

𝑒𝑖 . A self-looping node 𝑣𝑠 is a node that has a variable

execution time and produces more accurate results with longer

execution time. We consider a computing hardware platform

with 𝑚 identical processors to execute a single DAG job

containing only one self-looping node. To determine which

node should execute on the 𝑚 processors when more than 𝑚

nodes are ready while satisfying all the priority constraints, we

This work was supported by the National Research Foundation of

Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-

00220985, No. 2023R1A2C3003007).

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud Computing and Big
Data

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 695

assume fixed-priority non-preemptive scheduling, i.e., each

node is assigned a fixed priority as in [5] and when a processor

becomes idle, the node with the highest priority among all the

ready nodes starts executing on the processor. Once a node

starts executing, it will continue to execute until the end

without being preempted, even if a node with a higher priority

becomes ready.

III. INTERVAL-OCCUPANCY MODEL AND ANALYSIS METHOD

A. Calculate Ideal Budget

To compute the upper bound of the self-looping node
budget, we need to consider the paths that contain the self-
looping node. Path 𝜆 is an ordered set of nodes
{𝑣𝑠𝑟𝑐 , … , 𝑣𝑠𝑖𝑛𝑘} representing a sequence of nodes. All
neighboring nodes in path have a dependency, which is
denoted by ∀𝑣𝑖 , 𝑣𝑖+1 ∈ 𝜆, (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 . The path with the
longest length of all paths is called the critical path 𝜆∗ (there
can be multiple critical paths), and the nodes it contains are
called critical nodes, and the others are called non-critical
nodes. First, we show that a self-looping node is always in
critical path.

Theorem 1. There is always a critical path that contains a
self-looping node.

Proof. Assuming that there is no critical path contains a self-
looping node, let 𝜆𝑠 be the path that contains a self-looping
node. Intuitively, self-looping nodes have variable execution
time, and longer execution time means better performance, so
if they are not on a critical path, they can be given additional
execution time to get on a critical path. However, there can be
dependency between nodes, so let’s look at two cases.

a) If there is no dependency issue between nodes in 𝜆𝑠 and 𝜆∗
as in Figure 1(a), we can simply increase the budget of the
self-looping node by Δ1 so that the length of 𝜆𝑠 is the same as
the length of 𝜆∗,. Thus, 𝜆𝑠 becomes the longest path (one of
them) and becomes a critical path.

b) If dependency issue exists between nodes in 𝜆𝑠 and 𝜆∗ ,
simply increasing the budget by Δ1 will violate the
dependency. This is the case when there is node executes after
the self-looping node on path 𝜆𝑠 must precede the node on the
critical path 𝜆∗ , (𝑣5, 𝑣6) ∈ 𝐸 for example in Figure 1(b). In
this case, increase the budget as much as possible without
violating the dependency. Through this change, the path
before the node with a dependency problem on the path 𝜆𝑠 and
the path after the node with a dependency problem on the path
𝜆∗ are combined to create the new longest path path (one of

them) and becomes a critical path. □

Thus, we can see that there must be a critical path that
contains a self-looping node. With this theorem, the ideal
budget of a self-looping node 𝑒𝑠 can be found simply by
subtracting the WCET of all nodes except the self-looping

node from the critical path containing the self-looping node at
deadline.

𝑒𝑠 = 𝐷 − ∑ 𝑒(𝑣𝑖)

𝑣𝑖∈(𝜆∗−𝑣𝑠)

To ensure the ideal budget is allocated, Conditions
regarding the number of cores are required. Figure 2 shows a
simple five-node DAG task to illustrate the consequences of
insufficient number of core. The sum of the WCETs of the
nodes in the critical path 𝜆∗ = {𝑣1, 𝑣4, 𝑣5} amounts 7.
However, as cores are limited to 𝑚 = 2, non-critical nodes
can cause interference, resulting in a prolonged execution time
to 8. Therefore, to ensure that the response time of the DAG
task does not exceed the length of the critical path due to
interference of non-critical nodes, it is necessary to assume a
sufficiently large number of cores. In most situations, we have
a limited number of cores for scheduling, so we need to check
how many cores are actually used for scheduling after finding
the ideal budget under the above assumptions.

We present a novel model that uses the ideal budget
obtained above to schedule the remaining nodes on the least
number of cores. The goal of the model is to split the execution
of a node over as long a period of time as possible to reduce
the number of cores required.

B. Occupancy

Occupancy 𝑂(𝑣, 𝑖) is the core concept of the Interval-
Occupancy Model. After specifying an artificial release time
and deadline for a node, it indicates how much of the core will
be occupied by the node if it runs throughout the interval. The
concept of "running throughout the interval" is illustrated in

Figure 3. Let 𝑣𝑎 's release time be 𝑡𝑣𝑎
𝑟 , deadline be 𝑡𝑣𝑎

𝑑 . Rather

than simply executing from 𝑡𝑣𝑎
𝑟 to (𝑡𝑣𝑎

𝑟 + 𝑒𝑎), it is considered

to be executed by occupying only 𝑂(𝑣𝑎 , 𝑖𝑎) portion of cores

from 𝑡𝑣𝑎
𝑟 to 𝑡𝑣𝑎

𝑑 (𝑖𝑎 refers to the target time interval of 𝑣𝑎, the

specific concept will be explained later). The formula can be
represented as follows:

Figure 1. (a) no dependencies between any nodes in 𝝀𝒔 and 𝝀∗

(b) dependency exists between nodes in 𝝀𝒔 and 𝝀∗, (𝒗𝟓, 𝒗𝟔) ∈ 𝑬 in this case

Figure 2. Interference by non-critical nodes when

the number of cores is insufficient

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud Computing and Big
Data

696

𝑂(𝑣𝑎 , 𝑖𝑎) =
𝑒𝑎

𝑡𝑣𝑎
𝑑 − 𝑡𝑣𝑎

𝑟

So the amount of execution of this node on the core is

(𝑡𝑣𝑎
𝑑 − 𝑡𝑣𝑎

𝑟) × 𝑂(𝑣𝑎 , 𝑖𝑎) = 𝑒𝑎, which is the same as before. To

determine the minimum number of cores required for
scheduling, sum Occupancy of all nodes that are executable
within a specific interval and find the smallest integer greater
than this sum. This process can be applied to the entire interval,
and the highest value among these minimum core
requirements indicates the necessary core count for
scheduling this DAG task.

C. Determine artificial release time, deadline

To calculate the occupancy, we need to find the artificial

release time, deadline of each node. Since our goal is to

distribute the occupancy as much as possible to minimize the

sum of occupancy in each interval, the release time should be

as early as possible and the deadline as late as possible. We

define 𝑙𝑠𝑡 (for latest start time of node) and 𝑒𝑓𝑡 (for earliest

finish time of node) to calculate this considering the

dependency of the node.

a) 𝑙𝑠𝑡 ∶ 𝑉 → ℕ

If 𝑣 ∈ 𝑉𝑠𝑟𝑐 , the release time is 0 because it can be started

immediately when the task releases. If a predecessor node of

𝑣 exists, 𝑣 can be executed after the execution of the

preceding node has finished, so for all predecessor nodes, the

largest value of the sum of the 𝑙𝑠𝑡 of each predecessor node

and 𝑒 becomes the 𝑙𝑠𝑡 of 𝑣. This definition is expressed by the

following formula:

𝑙𝑠𝑡(𝑣) = {
0, 𝑖𝑓 𝑣 ∈ 𝑉𝑠𝑟𝑐

max
{𝑢|(𝑢, 𝑣)∈𝐸}

{𝑙𝑠𝑡(𝑢) + 𝑒𝑢} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒

b) 𝑒𝑓𝑡 ∶ 𝑉 → ℕ

𝑒𝑓𝑡 is a concept that is symmetrical to 𝑙𝑠𝑡. If 𝑣 ∈ 𝑉𝑠𝑖𝑛𝑘,

deadline is the same as D (i. e. , 𝑒𝑓𝑡 = 0). If there is a

successor node to 𝑣, 𝑣 must finish earlier than D by the sum

of 𝑒 and 𝑒𝑓𝑡 of successor node. This definition is expressed

by the following formula:

𝑒𝑓𝑡(𝑣) = {
0, 𝑖𝑓 𝑣 ∈ 𝑉𝑠𝑖𝑛𝑘

max
{𝑢|(𝑣, 𝑢)∈𝐸}

{𝑒𝑓𝑡(𝑢) + 𝑒𝑢} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒

 Intuitively, we can understand 𝑙𝑠𝑡 as the length of the

critical path of a subgraph consisting of nodes that must be

executed before node 𝑣, and 𝑒𝑓𝑡 as the length of the critical

path of a subgraph consisting of nodes that can be executed

only after node 𝑣 is executed. Since we have assumed a

sufficient number of cores, there is no interference from non-

critical node of that subgraph. Therefore, the maximum

window of time that a node 𝑣 can run is between 𝑙𝑠𝑡(𝑣) and

𝐷 − 𝑒𝑓𝑡(𝑣). Based on this analysis, 𝑡𝑣
𝑟 and 𝑡𝑣

𝑑 can be set to

𝑙𝑠𝑡 and (𝐷 − 𝑒𝑓𝑡), respectively.

However, the problem arises when we actually execute

these nodes with occupancy from 𝑙𝑠𝑡(𝑣) to 𝑒𝑓𝑡(𝑣) , which is

the case in Figure 4. In Figure 4, 𝑣𝑎 and 𝑣𝑏 have a dependency

but 𝑡𝑣𝑎
𝑑 is later than 𝑡𝑣𝑏

𝑟 . Since 𝑣𝑏 must be executed after 𝑣𝑎 is

ended, we need to set an appropriate border between 𝑡𝑣𝑎
𝑑 and

𝑡𝑣𝑏
𝑟 , and set 𝑡𝑣𝑎

𝑑 ′ and 𝑡𝑣𝑏
𝑟 ′ (where 𝑡𝑣𝑎

𝑑 ′ and 𝑡𝑣𝑏
𝑟 ′ represent the

new values of 𝑡𝑣𝑎
𝑑 and 𝑡𝑣𝑏

𝑟) to that border. The location of

border is the point where the Occupancy of each node is the

same after adjusting 𝑡𝑣𝑎
𝑑 and 𝑡𝑣𝑏

𝑟 . Since 𝑂(𝑣𝑎 , 𝑖𝑎) = 𝑒𝑎/

(𝑡𝑣𝑎
𝑑 − 𝑡𝑣𝑎

𝑟) and 𝑂(𝑣𝑏 , 𝑖𝑏) = 𝑒𝑏/(𝑡𝑣𝑏
𝑑 − 𝑡𝑣𝑏

𝑟) , border can be

calculated by the following formula.

∀(𝑣𝑎, 𝑣𝑏) ∈ 𝐸, 𝑡𝑣𝑎
𝑑 > 𝑡𝑣𝑏

𝑟 → 𝑡𝑣𝑎
𝑑 ′ = 𝑡𝑣𝑏

𝑟 ′ =
𝑡𝑣𝑏

𝑑 𝑒𝑎 + 𝑡𝑣𝑎
𝑟 𝑒𝑏

𝑒𝑎 + 𝑒𝑏

Our objective is to minimize the total occupancy values

across all sections. In this scenario, when the occupancy of

one node increases, the occupancy of the other node decreases.

Enforcing equal occupancy values for both nodes is a policy

that minimizes the maximum value of the total occupancy sum.

D. Analysis Method

We have determined the artificial release time, deadline,
and thus the occupancy of each node. Finally, we need to find
the point in time where the sum of the occupancies of the
nodes can execute that point is the highest, but since we can't
check all of them for the entire T, we divide the period 𝑇 into
intervals. The interval 𝐼 = {𝑖1, … , 𝑖𝑛} is defined by dividing

𝑇 with 𝑡𝑣𝑗
𝑟 , 𝑡𝑣𝑗

𝑑 ∀ 𝑣𝑗 ∈ 𝑉 . The occupancy of each node remains

constant within the interval between the artificial release time
and the deadline, so 𝑂(𝑣𝑗 , 𝑖𝑛) does not change within each

interval. Therefore, we only need to calculate the occupancy
sum once per interval, which is expressed by the following
formula.

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 = ⌈max
𝑖𝑛∈𝐼

∑ 𝑂(𝑣𝑗 , 𝑖𝑛)

𝑣𝑗∈𝑉

⌉

E. Scheduling Method

In this section, we introduce a priority assignment scheme

for scheduling on 𝑚 cores when the sum of the occupancy of

nodes in interval 𝑖𝑛 is not greater than 𝑚, and show that it is

feasible.

First, Divide the workload of each node proportionally to

the size of the interval and assign it to each interval, i.e., we

distribute the workload so that it has the same occupancy in

all intervals. In Figure 5, the interval with the largest

Figure 3. Running node 𝒗𝒂 throughout the interval

Figure 4. Resolving dependency issue

Figure 5. Slicing each node's workload by interval

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud Computing and Big
Data

697

occupancy sum is 𝑖2. The workload assigned to interval 𝑖2 is

{𝑣𝑑,𝑖2
, 𝑣𝑏,𝑖2

, 𝑣𝑎,𝑖2
}, and the number of cores required is 𝑚 =

⌈𝑂(𝑣𝑑,𝑖2
, 𝑖2) + 𝑂(𝑣𝑏,𝑖2

, 𝑖2) + 𝑂(𝑣𝑎,𝑖2
, 𝑖2)⌉. This allows each

interval to be scheduled independently, and the each workload

is modeled to run with the same release time and deadline on

𝑚 cores. From this, we propose the first rule for priority

assignment.

Rule 1. ∀𝑖𝑛 , 𝑖𝑚 ∈ 𝐼, 𝑛 < 𝑚, ∀𝑣𝑎 ∈ 𝑉𝑛 , 𝑣𝑏 ∈ 𝑉𝑚 → 𝑝𝑎 > 𝑝𝑏

The next step is how to run the nodes within the interval.

Since there is no guarantee that the workloads of the nodes can

be executed in parallel, the situation indicated by the upward

arrow in Figure 6 can cause problems with parallel execution.

To avoid this situation, we introduce the following method.

First, concatenate the WCETs of all nodes in a sequence, and

then divide them based on interval size. Afterward, execute

each piece(size of each piece is equal to the interval except

last piece) by assigning it to a core. Some nodes may be sliced

(𝑣𝑏,𝑖2,1 and 𝑣𝑏,𝑖2,2 in Figure 6) and some may not(𝑣𝑎,𝑖2
, 𝑣𝑑,𝑖2

in Figure 6). To prevent parallel execution, the later part of

the sliced node should release after WCET of the earlier part,

i.e. 𝑣𝑏,𝑖2,1 should released at 𝑒𝑏,𝑖2,2 after 𝑖2 starts. Finally, we

give them priority from the front. In Figure 6, 𝑣𝑏,𝑖2,2 and 𝑣𝑎,𝑖2

have the highest priority, followed by 𝑣𝑑,𝑖2
, and then 𝑣𝑏,𝑖2,1.

This avoids running nodes in parallel because the size of the

node's workload cannot exceed the size of interval

(Occupancy will never be greater than 1). Scheduling like this

allows us to schedule nodes without parallel executing them,

even in situations where the sum of Occupancy equals the

number of cores, i.e., a density of 1. Let 𝑉𝑛′ be the set of nodes

after concatenating the nodes in 𝑉𝑛 and slicing them to the

size of 𝑖𝑛, The rule that sums up this process follows.

Rule 2. ∀𝑖𝑛 ∈ 𝐼, ∀𝑣𝑎 , 𝑣𝑏 ∈ 𝑉𝑛
′,

[∑ 𝑒𝑘

𝑎−1

𝑘=1

] % 𝑠𝑖𝑧𝑒(𝑖𝑛) < [∑ 𝑒𝑘

𝑏−1

𝑘=1

] % 𝑠𝑖𝑧𝑒(𝑖𝑛) → 𝑝𝑎 > 𝑝𝑏

F. Merge with previous method

Interval-Occupancy Model is specialized for DAG

structures including self-looping nodes and shows strong

performance in most cases, but it can produce worse results

than existing methods for certain malformed DAGs. For

example, in the case of a DAG with a very large number of

nodes with the same preceding and succeeding node

conditions, the occupancy value of the corresponding interval

increases and the number of required cores increases, resulting

in a failure decision. A simple way to solve this is to try both

the previous method and ours. First, the number of required

cores obtained using the Interval-Occupancy model is

compared with the number of available cores to determine

whether an ideal budget can be provided, and then, if possible,

provide an ideal budget to the self-looping node, and if not

possible, use the previous method to see if it can provide a

lower budget.

IV. EVALUATION

This section evaluates the proposed algorithm compare to

the previous method by synthetic task.

A. Compare to previous method in [4]

We conducted a comparative evaluation of our method

against the previous method in [4] on randomly generated

identical DAG with 4 identical homogeneous cores (𝑚 = 4).

The DAGs are generated under the following conditions: the

number of nodes N is randomly chosen from uniform(15, 25),

with self-looping nodes excluded; WCET of non-self-looping

nodes are randomly chosen from uniform(30, 50); the length

of the critical path is randomly chosen from uniform(6, 10).

Edges between nodes were established by setting random

pairs of nodes with varying numbers of edges. On average,

each node has 3 dependent nodes.

In these experiments, we varied the DAG's utilization 𝑈

from 0 to 4 in increments of 0.2. The DAG's period (which is

equivalent to the deadline) was determined based on the

average execution time 𝑒𝑎𝑣𝑔 of the generated DAG (excluding

self-looping nodes) and the utilization value, as follows:

𝑇 = 𝐷 =
𝑒𝑎𝑣𝑔 × 𝑁

𝑈

For each utilization value, we conducted experiments with

100,000 DAGs. In the previous method in [4], a schedule was

considered successful if the computed budget for self-looping

nodes was greater than or equal to zero. In our method, a

schedule was considered successful if the computed required

number of cores was four or fewer. The results are shown in

Figure 7. In terms of schedulability, our method exhibits a

reasonable success rate even for high utilizations. This can be

attributed to the fact that the previous method, which employs

classic bound-based analysis with strong pessimism, often

incorrectly concludes that self-looping nodes cannot be

allocated a budget.

Figure 6. Scheduling in interval:

Concatenate all workload and slice by interval size

Figure 7. (a) Comparing schedulability based on utilization

(b) Comparing budget based on utilization

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud Computing and Big
Data

698

 In contrast, our method mitigates pessimism to a

significant extent. This is particularly noticeable in the

utilization range of 2.6 to 3.0, where our method achieves a

success rate of 30% ~ 50%, while the previous method shows

less than 10%. However, in scenarios with low utilization, our

method occasionally fails (approximately 5%). This typically

occurs when randomly generated DAGs exhibit extremely

high parallelism. In such cases, a slight reduction in the budget

could allow scheduling within given cores, but our method

keeps the budget fixed at its maximum value, leading to this

issue. To address this, we propose a system that employs both

methods. If our method succeeds in scheduling, it provides the

ideal budget. If it fails, previous method is used to calculate

budget. Our method consistently provides larger budgets than

the previous method, ensuring that giving self-looping nodes

maximum execution time budget to reach the target accuracy

and thereby enhancing the overall system stability.

Figure 7(b) illustrates how much budget was allocated on

average for successful budget calculations, based on

utilization. In consideration of varying deadlines and

workloads assigned to each DAG, the y-axis has been

normalized as budget/deadline. In contrast to previous method,

our method demonstrates a distinct advantage by providing an

ideal budget allocation that remains stable even as utilization

increases. This stands in contrast to the rapid reduction in

budget size observed in previous methods. This substantial

increase in budget allocation compared to the previous method

ensures that self-looping nodes have sufficient execution time

to reach the target accuracy, thereby stabilizing the entire

system.

B. Comparison based on DAG generation conditions

The following experiment compares the budget

calculation as the DAG's generation conditions change for two

factors: Parallelism, Dependency.

First, we conducted an experiment to control the

parallelism by setting the average length of critical paths to 6,

7, 8, 9, and 10 (the rest of the conditions are the same as the

above experiment, and Utilization is set to 2). The result at

Figure 8(a) shows that the budget calculated by our method

decreases as the critical path becomes longer, i.e., the

parallelism decreases. This is because the budget is calculated

by subtracting the size of the critical path excluding self-

looping nodes from the deadline. Meanwhile, schedulablity

has a maximum value at a certain length(8 at this condition)

and decreases when it is less or more. First, if the critical path

is too short, the schedulability decreases because the

parallelism of the nodes increases and the occupancy value

increases, causing more cases of scheduling failure. On the

other hand, if the critical path is too long, the budget of the

self-looping node decreases, which affects the artificial

release time and deadline. When the budget of the self-looping

node is much larger than other nodes, the occupancy value of

the nodes that can run in parallel with the self-looping node is

calculated very low. But when the budget is reduced to be

similar to other nodes, the occupancy value of the section that

runs in parallel with the self-looping node is increased, and the

sum of occupancy increases.

In the second set of experiments, we adjusted the

dependencies by increasing the average number of other nodes

each node depends on from 2 to 4 in increments of 0.5, while

keeping the other conditions the same as the previous

experiments. The results at Figure 8(b) indicate that as the

dependencies increase, the schedulability calculated using our

method decreases. This is because considering inter-node

dependencies leads to narrower intervals between artificial

release times and deadlines, which, in turn, increases

occupancy in each interval and subsequently results in a

higher required maximum number of cores, leading to

scheduling failures. Meanwhile, dependency is totally

independent of the budget, as the budget is solely determined

by the critical path.

V. CONCLUSION

In this paper, our paper present a new scheduling and

analysis method, the Interval-Occupancy Model, which

mitigating the pessimism present in previous papers. The

model allocates an ideal budget to self-looping nodes and

optimally schedules other nodes, minimizing the number of

misjudgments due to physical error situations and improving

the schedulability. Looking ahead, we plan to extend our study

to a wider range of DAGs, i.e., structures with two or more

self-loop nodes, or general structures that do not contain self-

loop nodes.

REFERENCES

[1] M. Quigley et al., “Ros: an open-source robot operating system,” in
ICRA workshop on open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5..

[2] P. Biber and W. Straßer, “The normal distributions transform: A new
approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003)(Cat. No. 03CH37453), vol. 3. IEEE, 2003, pp. 2743–2748.I. S.
Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[3] S. Kato et al., “Autoware on board: Enabling autonomous vehicles with
embedded systems,” in 2018 ACM/IEEE 9th International Conference
on Cyber-Physical Systems (ICCPS). IEEE, 2018, pp. 287–296.R.
Nicole, “Title of paper with only first word capitalized,” J. Name Stand.
Abbrev., in press.

[4] J. Han, S. Park, H. Jeon and C. -G. Lee, "Guaranteeing Safety Despite
Physical Errors in Cyber-Physical Systems," 2022 IEEE 28th Real-
Time and Embedded Technology and Applications Symposium
(RTAS), Milano, Italy, 2022, pp. 1-12, doi:
10.1109/RTAS54340.2022.00009.

[5] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang, “Dag scheduling and
analysis on multiprocessor systems: Exploitation of parallelism and
dependency,” in 2020 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2020, pp. 128–140.

[6] J. Han, C. -G. Lee and S. Baruah, "Improved Results for Guaranteeing
Safety Despite Physical Errors in CPS's," 2022 IEEE Real-Time
Systems Symposium (RTSS), Houston, TX, USA, 2022, pp. 266-276,
doi: 10.1109/RTSS55097.2022.0003

Figure 8. (a) Variations in schedulability and budget with

changing levels of parallelism

(b) Variations in schedulability and budget with changing

levels of dependencies

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud Computing and Big
Data

699

