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Abstract—Realistic appliance power consumption data plays a
pivotal role in the development of smart home energy management
systems and the foundational algorithms for appliance data
analysis. However, publicly available datasets are often limited
in availability and time-consuming to collect. Consequently, the
creation of simulation models for generating synthetic appliance
data becomes needed. In this research, a novel approach is designed
to simulate power consumption data that is tailored towards
appliance operation modes. This model leverages existing public
datasets and employs stochastic methods to enhance data variability
and consistency. Usage profile characteristics are extracted and
used to generate base usage profiles. To synthesize usage profiles
while ensuring realism, a probabilistic model is employed and
tuning parameters, encompassing components such as white noise,
switch-on surges are added to refine the synthetic profiles. The
DTW algorithm is then utilized to assess the proximity of the
synthetic profiles to the existing ones. Remarkably, our results
reveal that the average differences among these profiles can be
as low as ten samples, even with a 1Hz sampling frequency.

Index Terms—Appliance Operation Modes; Demand Response
(DR); Dynamic Time Warping (DTW); Smart Home Energy
Management Systems; SHEMSs; HEMSs; Load Profile Simulation;

I. INTRODUCTION

RECENT research indicates that buildings are responsible
for over 40% of the global demand for power consumption

and the emissions of greenhouse gases [1]. In Canada, the
residential sector’s share of total energy usage was 28% in
2006, increasing to 32% in 2020 and continue to rise with
the same pattern until 2050 [2]. Particularly, home appliances
in a Canadian household account for 14% of total household
consumption [3].

The utilization of Smart Home Energy Management Systems
(SHEMSs) [4] is a common strategy to reduce residential
electric usage. These multi-component systems focus on energy
monitoring, analysis, scheduling, and feedback using inputs
like electricity tariffs, sensor-collected appliance data, and user
preferences. SHEMSs employ Machine Learning and Digital
Signal Processing methods to provide user feedback, appliance
scheduling, and user information systems [5]. The goal is to
enhance user understanding of household usage and promote
energy sustainability through approaches such as Demand
Response [6].

Within SHEMSs, to develop and validate the aforementioned
analytical algorithms and methods, representative datasets are
needed. Power Consumption Datasets (PCDs) [1] play a
crucial rule in this context. PCDs are datasets containing
time-series data corresponding to samples of the instantaneous
power consumption for electric loads. Despite the recent

efforts in collecting residential PCDs [7], public PCDs
availability is still limited [8]. In many cases, researchers use
Synthetic PCDs (SyPCDs) [9] to save the installation cost and
measurement time [10]. SyPCDs are generated load profiles for
household appliances based on either publicly available PCDs
(deterministic) or based on mathematical (probabilistic) models
[11]. In this work, a novel approach is designed to simulate
power consumption data that is tailored towards appliance
operation modes. This model is built to extend existing PCDs
and aims to simulate household appliances’ usage profiles when
activated with different Appliance Operation Modes (AOMs)
which represent specific settings set by the manufacturer. The
main objective of the proposed model is to generate realistic
appliance power consumption time series data based on a hybrid
model. This model incorporates both deterministic methods that
are built on top of a data analysis of publicly available PCDs, and
probabilistic methods which adds stochasticity to the model to
maximize the realistic aspect of the generated data. The ultimate
goal of this model is to generate synthetic usage profile in
different AOMs for household appliances.

The rest of the paper is organized as the following: In
section II previous related work is presented. In section III
the problem formulation is elaborated. Section IV presents the
architecture of proposed model. In section V SUPs extraction
is discussed. Section VI presents the formal characterization of
SUPs. In section VII the process of generating synthetic SUPs
is presented. Section VIII evaluates the model. Finally, section
IX concludes the paper.

II. RELATED WORK

A probabilistic-empirical residential electricity load model
[12] generates 1-minute power usage data for household
appliances. This model takes into account both measured data
and statistical information, as well as occupant activities. A
popular simulator, CREST [13], [14] is also based on active
occupancy patterns and occupants’ daily activity profiles.

A stochastic approach [15] is used in the generation of high-
resolution multi-energy load profiles for residential loads in
remote areas. A mathematical framework [16] is developed for
simulating household appliances by re-synthesizing the current
waveforms, harmonic currents and the phase shifting of the
appliances. Similar work [9] uses GUI in Matlab Simulink to
simulate household loads.

Generative Adversarial Networks (GANs) have undergone
rapid advancements across various domains, including the
generation of synthetic PCDs (Power Consumption Datasets).
Recent literature, such as TraceGAN [17], ProfileSR-GAN [18],
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and mREAL-GAN [19], exemplify the exploration of GAN-
based methods for creating realistic appliance data.

There are various synthetic datasets available for the
residential sector, each serving different purposes. These datasets
play a crucial role in the field of residential energy research,
enabling researchers to model and analyze various aspects
of household energy consumption. One such dataset is the
Automated Model Builder for Appliance Loads (AMBAL),
which was introduced in the work by Buneeva et al. [20].
AMBAL is designed to simulate appliance loads and create
appliance models based on real datasets. Another tool that
employs a similar methodology is the SynD dataset [21], which
is capable of handling a larger number of appliances. In addition
to AMBAL and SynD, there is SmartSim, as described in the
research conducted by Chen et al. [22]. SmartSim is a device-
accurate home energy load generator that utilizes device energy
and device usage models. It simulates household loads through
a series of components, including Distribution learning, Event
marking, and Trace Generation.

Contribution: While the existing body of literature provides
an extensive overview of various methodologies for simulating
residential load profiles [23], there exists a research gap in prior
research that is specifically dedicated to simulating household
appliances within the context of their distinct operation modes.
In response, this study contributes by introducing a novel open-
source [24] hybrid approach. This approach blends deterministic
and probabilistic components, harnessing the combined power
of empirical data and statistical models. The result is a robust
framework capable of generating appliance usage profiles that
encompass the multitude of operation modes encountered in
real-world scenarios.

III. PROBLEM FORMULATION

The purpose of the proposed model is to generate a synthetic
dataset of household appliance usage profiles. This section
describes the definitions and formulation for the generation
process. A Single Use Profile (SUP) is used to formally model
power consumption of a preprogrammed appliance between the
time it is turned on and the time it is switched off. A SUP
represents the sequence (time-series) of power consumption
values (measured in kW) consumed by an appliance from
the moment of turning it on to the moment of turning it
off. Typically, home appliances may run in one of several
operation modes. An Appliance Operation Mode (AOM) or a
program represents a pre-configured setting by the appliance
manufacturer that suits the user preferences upon different
situations and characterized by its running time and different
cycles and states that the appliance passes through. For example,
a dishwasher may have three operation modes, a lighter mode
for barely used dishes, a medium mode for greasy dishes,
and a heavy mode for very greasy dishes. Activating a certain
appliance with a certain operation mode consumes electricity
differently than other operation modes. According to Makonin
et al. [25], the potential saving percentages achieved in load
reduction by switching the use of appliances from heavier
to lighter AOMs ranges between 25% and 78% for different
appliances. For example, if a household switches from using
heavy to medium modes in a dryer, 34% of the cost is cut,

while if the shifting occurs from heavy towards a light mode,
78% of the consumption is reduced annually.

A daily power consumption sequence, Ωd
a, represents the

power consumption samples taken in a single day, d, for the
appliance, a, such that:

Ωd
a =

{
ωn

}n∗

n=1
= {ω1, ω2, . . . , ωn, . . . , ωn∗}

1 ≤ n ≤ n∗
(1)

where ωn is the nth instantaneous power sample value measured
in (KW), and n∗ represents the last sample index in d.

A SUP, ψp, with length, θψp , is defined by the sequence of
samples that represent a subsequence of the daily consumption,
Ωd
a, from the moment of turning the appliance on, ns, to the

moment that it is turned off ne. This is defined as:

ψp = {ωn}n
e

n=ns = {ωns , ωns+1, . . . , ωn, . . . , ωne−1, ωne}
ψp ⊆ Ωd

a , ns ≤ n ≤ ne ≤ n∗
(2)

where:
θψp = ne − ns + 1 (3)

and for all SUPs, ψp ⊆ Ωd
a, there is no overlapping among

any two SUPs such that the intersection between these SUPs is
defined as follows: ⋂

i,j

ψ
pj
i = ϕ

∀i, j s.t, 1 ≤ i ≤ Zda , 1 ≤ j ≤ P a
(4)

The set of SUPs, Ψd,pa , of size, Zd,pa , that corresponds to
appliance, a , and labeled by the AOM, p, is define as:

Ψd,pa = {ψp1 , . . . , ψ
p
j , . . . , ψ

p

Zd,pa
}

p ∈ Pa , 1 ≤ j ≤ Zd,pa
(5)

where Ψd,pa contains all the SUPs that run using the same AOM,
p. The set of all SUPs, Ψda, in d is defined as all disjoint subsets
Ψd,pa corresponding to every AOM p ∈ Pa. This is defined as:

Ψda = {ψpj1 , . . . , ψ
pk
i , . . . , ψ

pl
Zda

}
{pj , pk, pl, . . . } ∈ Pa

s.t,
⋂
p∈Pa

Ψd,pa = ϕ

(6)

where Ψda is a set of size, Zda , that represents the total size of
all AOM subsets such that:∑

p∈Pa
Zd,pa = Zda (7)

The main objective of this model is to generate a set of
Synthetic SUPs (SySUPs) that can be used to validate the
analytical methods to support Demand Response (DR) [6]. The
set of SySUPs, Ψ̈a, generated by the proposed model is defined
as:

Ψ̈pa = H(Ψpa, p,Z) (8)

where H is the generator function, p is the selected AOM, and
Z is the set of tuning parameters used in the generation process.
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Fig. 1. The architecture used in the proposed approach.

IV. THE ARCHITECTURE

The architecture of this model comprises several integral
components. This is depicted in Figure 1. Firstly, the SUPs
Extraction module undertakes the processing of a publicly
available PCD [26], from which it extracts a comprehensive
set of Single Use Profiles (SUPs) corresponding to all
appliances represented within the PCD. Subsequently, the SUPs
Characteristics Extraction module engages in a series of
processes, aimed at discerning and formalizing the distinctive
characteristics inherent in these SUPs. Moving forward, the
SUPs Generation component takes responsibility for the
synthesis of Synthetic SUPs (SySUPs) leveraging the extracted
SUPs, their associated characteristics, and the AOMs. This
module is thoughtfully crafted, comprising multiple submodules,
each contributing to a specific facet of SySUP creation. Lastly,
the ”Validation” module assumes the task of evaluating the
degree of similarity between the resulting SySUPs and the
originally extracted SUPs, thus providing a comprehensive
assessment of the model’s effectiveness.

V. SUPS EXTRACTION

The first step is to isolate the SUPs samples from the rest
of the day samples. All SUPs are extracted from the PCDSs
[26] on a daily basis per appliance. For a single appliance, the
daily consumption sequence Ωd

a contains zero or more SUPs,
ψp, such that:

ψpαi =
{
ωn

}nei
n=nsi

, ψ
pβ
j =

{
ωn

}nej
n=nsj

i < j ∀ {i, j} ∈ {1, 2, . . . , Zda}
1 ≤ nsi < nei < nsj < nej ≤ n∗

(9)

where, ψpαi , runs with the operation mode, pα, and starts at
n = nsi and ends at n = nei . The other SUP, ψpβi , runs with the
operation mode, pβ , and starts at n = nsj and ends at n = nej .
The activation time of each SUP is before the switch off time as
nsi < nei , nsj < nej and both SUPs do not overlap throughout
the day such that nei < nsj . XCorrelation [6] is used to extract
the SUPs by sliding a reference SUP over the sequence Ωd

a .

A signal can be broken down into multiple individual
components. Each component can exhibit a high or low
frequency. In this context, a high frequency component with
relatively low amplitude is considered noise and needs to be
reduced. The moving median smoother is used to reduce the high
frequency component. To reduce the high frequency component
within SUPs, a transformation function is applied on the SUP
sequence, ψ, of length, θψ , to generate the smoothed SUP, ψ̂, of
length, θψ̂ . The moving median smoother, M, is selected. This
transformation is performed as follows:

ψ̂(n) = M(ψ(k))

∀k ∈
{
n− W

2
, n− W

2
+ 1, . . . , n, . . . , n+

W

2
− 1, n+

W

2

}
n ≤ θψ

(10)
where, W , is sliding window size that is used by, M.

VI. EXTRACTION OF SUP CHARACTERISTICS

In the context of major appliances, the operational cycle
is defined by a series of activations and deactivations of the
appliance’s internal components. For instance, in the case of a
clothes dryer, both the heating element and the spinning motor
undergo repetitive on-off cycles throughout its operation. This
cyclic operation pattern leads to the emergence of a distinct,
recognizable waveform in the corresponding SUPs. These SUPs
are often represented as sequences of square-like waves with
abrupt transitions (edges) between states, reflecting the switching
behavior of internal components. The characteristics of these
SUPs, which include the number of states, their distribution,
duration, and power levels, play a crucial role in distinguishing
the features of SUPs specific to one AOM from those of other
AOMs. This distinction is a fundamental aspect of the process of
generating SySUPs. The subsequent subsections will elaborate
on the steps involved in determining the features of SUPs, with
a specific focus on the states that constitute these SUPs.

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud 
Computing and Big Data

691



4

A. Estimation of state edges

An indicator vector, I , is used to determine the bounds of
each state in the SUP, ψ̂. The Median Difference Test (MDT)
[27] is used to calculate the values of the indicator vector, I .
MDT utilizes a moving window with length, W I , that slides over
the subsequences of ψ̂. The MDT estimates the presence of an
edge within ψ̂ by dividing the moving window into two equal
length partitions. The median, M, is evaluated for each partition
along with the standard deviation, σ, of the entire window. The
indicator vector is defined as the following:

Iψ̂(n) =

√
σ
(
ψ̂(ωi)

) ∣∣∣∣M(
ψ̂(ωj)

)2

−M
(
ψ̂(ωq)

)2
∣∣∣∣

∀ ωi ∈ k , ∀ ωj ∈ kl , ∀ ωq ∈ kr

(11)

where Iψ̂ is the indicator vector corresponding to the SUP, ψ̂.
M(ψ̂(ωj)) is the median of the SUP samples correspond to the
left partition of the window as of ωj ∈ kl, where kl is the list of
samples of the left window. M(ψ̂(ωq)) is the median of the SUP
samples that correspond to the right partition of the window as
of ωq ∈ kr, where ωq is the list of samples of the right window.
σ(ψ̂(ωi)) is the standard deviation of the SUP samples of the
entire window as of ωi ∈ k. The evaluated value of Iψ̂(n) is
proportional to the likelihood of having an edge in ψ̂ at sample
index n.

The sequence of thick edges, Πψ̂ , of size, ηψ̂ , that is identified
by Iψ̂ in ψ̂, is defined as follows:

Πψ̂ = {πi}η
ψ̂

i=1 , ηψ̂ ≤
θψ̂
2

(12)

where πi is the ith thick edge that is defined as the pair:

πi = (noi , n
ι
i) , 1 ≤ noi ≤ nιi ≤ θψ̂ (13)

where πi defines a pair of boundaries, noi as the upper bound,
while the lower bound is nιi. The sequence of thick edges, Πψ̂ is
obtained by applying a threshold, τ I , so that the samples below
τ I correspond to the periods outside two thick edges, πj , πk.
This is defined as the following:

Iψ̂(n) ≤ τ I , ∀ n ∈
{
nιj + 1, nιj + 2, . . . , nok

}
πj = (noj , n

ι
j) , πk = (nok, n

ι
k)

1 ≤ noj ≤ nιj < nok ≤ nιk ≤ θψ̂

πj , πk ∈ Πψ̂

(14)

where πj is the jth thick edge with the lower bound sample
index, noj , and the upper bound sample index, nιj .

B. Determining SUP States

A SUP consists of a sequence of states where a state
represents the sequence of power values when an internal
electrical component within an appliance is activated for a
specific period. This sequence follows a relatively constant
pattern with slight variation since the internal components
consume a steady amount of power.

The sequence of states, Λ, with a size, R, that is associated
with ψ̂ is defined as follows:

Λψ̂ = {λ1, . . . , λi, . . . , λR}
λi = (eo, eι, ωλ) , eo < eι

λ0 = (1, 1, ωλ1 ) , λR = (θψ̂, θψ̂, ω
λ
θ
ψ̂
)

(15)

where the state, λi, is represented by a tuple with three elements.
The left exact edge, eo, the right exact edge, eι, and the power
value, ωλ. An Exact Edge is represented by the sample where
it is the highest likelihood the abrupt step occurs between two
adjacent states. The values of the exact edges are determined
through the process of edge thinning. In this process, the exact
edge, e, is evaluated from the corresponding thick edge, π. One
option for edge thinning is argmax method where the value of
e equals the sample index that produces the maximum indicator
vector value, Iψ̂ . This is defined as:

eoi = argmax
(
Iψ̂(n)

)
, ∀n ∈ πi

eιi = argmax
(
Iψ̂(n)

)
, ∀n ∈ πi+1

i < ηψ̂

(16)

As both of the left and right exact edges of the state, λi are
determined, the power value of the state, ωλi , is evaluated as the
median, M, of the power values in ψ̂ corresponding to each
sample index in the state, λi. This is defined as the following:

ωλi = M
({
ωeoi+k

})
∀ k , 0 ≤ k ≤ eιi − eoi

(17)

where, ωeoi+k, is the power values of ψ̂ at the sample index,
eoi + k.

VII. GENERATING SYNTHETIC SUPS

For a particular day, d, a list of state sequences, Λp
a, for the

set of SUPS, Ψpa, is defined as:

Λp
a =

{
Λ
ψ̂pi,a
i

}Zpa
i=1

, ∀ ψ̂pi,a ∈ Ψ̂pa (18)

A set of Synthetic SUPs (SySUPs), Ψ̈pa, with size, J , is
defined as:

Ψ̈pa =

{
ψ̈i

}J
i=1

(19)

where ψ̈i is a SySUP for the appliance, a, with operation mode,
p. The value of J represents the synthetic dataset size.

A base SySUP represents a SySUP without adding the effect
of any additional tuning parameters. The base SySUP, ψ̈, is
defined as follows:

ψ̈ =

R⋃
i=1

F⋃
j=1

{
ωλij

}
∀ ψ̈ ∈ Ψ̈pa , ∀ λi ∈ Λ , ∀ Λ ∈ Λp

a

(20)

F = eιi − eoi (21)

where ωλi is the power value of the state, λi ∈ Λ. R, is the size
of the states sequence, Λ. And, F , is the length of the state, λi.
The following subsections discuss two probabilistic components
that is added to the base SySUP.
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A. The white noise component

Since the states of a SUP are not completely flat, an added
noise to the SySUP is required to simulate more realistic SUP
states. The noise coefficient, ξ, is defined as follows:

ξj = N
(
µξ, σξ

)
(22)

where ξj is the added noise to the jth sample in the base SySUP,
ψ̈. This noise is selected based on a normal distribution function,
N , with a mean of µξ and standard deviation σξ. The set of
SySUPs with the added noise, ξΨ̈pa, is defined as:

ξΨ̈pa =

{
ξψ̈i

}J
i=1

(23)

where the resulting SySUP with the added noise, ξψ̈, is defined
as:

ξψ̈ =

R⋃
i=1

F⋃
j=1

{
ωλij + ξj

}
∀ λi ∈ Λ

(24)

B. The switch-on surge component

Inrush current, or the switch-on surge (SOS) is the maximum
instantaneous input current consumed by electrical transformers
within an electrical device when first switched on [28]. This
current appears within the first few samples of high-power states
when a major component within the appliance is triggered. The
SOS component appears at the beginning of a state as a sharp
spike that eventually starts decaying in its amplitude. The set of
SySUPs with the added SOS, ϑΨ̈pa, is defined as:

ϑΨ̈pa =

{
ϑψ̈i

}J
i=1

(25)

where the resulting SySUP with the added SOS, ϑψ̈, is defined
as:

ϑψ̈ =

R⋃
i=1

F⋃
j=1

{
ωλi + ξj +

ϑj
j

}
, ϑψ̈ ∈ ϑΨ̈pa

∀ λi ∈ Λ

(26)

where ϑj is the SOS coefficient that follows a normal direction
function as:

ϑ = N
(
µϑ, σϑ

)
(27)

The term ϑj
j represents the positive side of a hyperbola in which

this modeling of the SOS component simulates the behavior of
SOS current at each state.

VIII. EVALUATION

To evaluate the impact of the tunning parameters explained
in the previous section on the SySUP with respect to the SUP,
an evaluation metric, δ̄, is defined as the following:

δ̄
(
ξψ̈pa,Ψ

p
a

)
=

1

J

J∑
j=1

 1

Zd,pa

Zd,pa∑
i=1

DTW
(
ξψ̈pj , ψ

p
i

)
θψpi + θ

ψ̈pj

 (28)

where δ̄ represents the average DTW distance [29] between a
SySUP, ξψ̈pa ∈ ξΨ̈pa, and every SUP, ψpa ∈ Ψpa, for the appliance,

A
vg

 D
T

W
 D

is
ta

n
ce

  (
S

am
p

le
)

Noise coefficient stdv,        (Sample)

AOM-1 AOM-2 AOM-3 κ δ

σ
ξ

Fig. 2. The impact of changing the noise coefficient, ξ, on the valued of the
distance mean, δ̄, for a dryer.

a, using the operation mode, p. The other evaluation metric, κ̄,
is defined as:

κ̄
(
ξψ̈pa,Ψ

p
a

)
=

1

J

J∑
j=1

σ


 1

Zd,pa

Zd,pa∑
i=1

DTW
(
ξψ̈pj , ψ

p
i

)
θψpi + θ

ψ̈pj


J

j=1


(29)

where κ̄ represents the pooled standard deviations of DTW
distance between each SySUP, ξψ̈pa ∈ ξΨ̈pa, and every SUP,
ψpa ∈ Ψpa, for the appliance, a, using the operation mode, p.

A. Evaluating the white noise component

In Figure 2, the impact of changing the noise coefficient, ξ,
on the value of the distance mean, δ̄, is demonstrated for a
dryer. Figure 2 shows the values of σξ in Eq 22 in the range
σξ ∈ [1, 300] samples while distribution mean is µξ = 0. The
plot shows 3 operation modes for the dryer each of which has
δ̄, κ̄ plots.

The metric,δ̄, reflects the similarity between SUPs and
SySUPs. Generally, δ̄ plots starts flat or decaying and then it
shows a continuous increase. For example, in Figure 2, the
AOM-2 plot is decreasing when 1 ≤ σξ ≤ 50 which means that
the added noise contributes in increasing the similarity among
SUPs and SySUPs. It then starts increasing for the rest of δ̄
values which means higher noise values result in a decrease in
similarity.

On the other hand, the metric, κ̄, reflects the consistency of
the other metric values, δ̄. Lower values of κ̄ reflect consistent
distances among SUPs and SySUPs. However, higher values of κ̄
correspond to high variation in δ̄ which means the distances have
large differences within the same experiment. As an example,
in Figure 2, the κ̄ plot for AOM-3 has less fluctuation which
means high consistency in δ̄.

B. Evaluating the switch-on surge component

To evaluate the impact of the SOS coefficient, ϑ, Eq 28 and
Eq 29 are used. The distance metric, δ̄

(
ϑψ̈pa,Ψ

p
a

)
, evaluates

the impact of the SOS coefficient, ϑ, on the SySUP, ϑψ̈pa,
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Fig. 3. The impact of changing the SOS coefficient, ϑ, on the valued of the
distance mean, δ̄, for a dryer.

with respect to the SUPs, Ψpa, while κ̄
(
ϑψ̈pa,Ψ

p
a

)
reflects the

consistency of distances, δ̄. This is illustrated in Figure 3 which
shows the values of µϑ in Eq 27 in the range µϑ ∈ [1, 5000]
samples while distribution mean is σϑ = 100. The plot shows
3 operation modes for the dryer each of which has δ̄, κ̄ plots.
Both metrics, δ̄, κ̄ follow the same rhythm in Figure 2 where
δ̄ starts with a relatively higher value, then starts to decay and
then begin rising again. The κ̄ metric shows a steady response
for the majority of µϑ values.

IX. CONCLUSION

The expanding landscape of analytical methods for processing
power consumption data has encouraged researchers to explore
the use of simulation techniques, in order to extend the
availability of public datasets. These datasets serve as a
valuable testing ground for validating the efficacy of analytical
algorithms. In this study, a tailored approach to simulating power
consumption data, specifically focusing on appliance operation
modes is proposed. This model leverages a combination
of deterministic and probabilistic formal models to mimic
household appliance usage patterns across various operation
modes. By employing the Dynamic Time Warping (DTW)
algorithm to assess the model’s performance, we demonstrated
a remarkable similarity between the original and the synthetic
usage profiles with an average difference of just 10 samples
at a 1Hz sampling rate. Next steps may involve expanding the
number of tunning parameters used in the simulation.
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