2024 International Conference on Computing, Networking and Communications (ICNC): Communications and
Information Security Symposium

An SDN-enabled Elliptic-curve Diffie-Hellman Key
Exchange towards Secure P2P Networking

Wenjun Fan, Siyuan Wu and Hao Chen
School of Advanced Technology, Xi’an Jiaotong-Liverpool University
Suzhou, Jiangsu, 215123, P.R.China
Wenjun.Fan@xjtlu.edu.cn; {Siyuan.Wul6, Hao.Chen22} @student.xjtlu.edu.cn

Abstract—The network connections based on the Transmission
Control Protocol (TCP) are reliable but lack security protection.
The conventional Transport Layer Security (TLS) protocol adds
an extra layer over the transport layer which enables payload
encryption of the TCP segment. However, TLS relies on certificate
authority (CA) to distribute the public key (for preventing Man-
in-the-Middle attack), which involves nonnegligible overhead and
constrains its use, e.g., TLS is not appropriate to peer-to-peer
(P2P) networks due to the huge communication overhead. There-
fore, this paper proposes a novel key distribution mechanism
towards securing the TCP connection on P2P network. The
mechanism applies an SDN-enabled approach to facilitate the
Elliptic-curve Diffie-Hellman key exchange. With this mechanism,
the key exchange can prevent Man-in-the-Middle attack with
minimal communication overhead. The experimental results built
on the prototype show that this approach is efficient.

Index Terms—Software-defined Networking, Elliptic-curve
Diffie-Hellman, TCP Connection, P2P Network

I. INTRODUCTION

The Transmission Control Protocol (TCP) [1] was proposed
in 1974. During the past decades (almost half a century),
the protocol itself as well as its various implementations by
different platforms and operating systems (OS) have evolved
many times for patching the security vulnerabilities [2]-
[4] and enhancing the performance. Owing to the security
issues of the plain-text TCP connection, Transport Layer
Security (TLS) [S] was proposed in 1999, which was built
on the now-deprecated Secure Sockets Layer (SSL). TLS
is a cryptographic protocol designed over TCP to provide
communications security. Although TLS provides protection
for the TCP segment’s payload, the root of trust relies on
the security of the certificate authority (CA) adopted. The CA
is applied to distribute and verify the public keys, otherwise,
TLS still suffers Man-in-the-Middle (MITM) attack. However,
CA is not always secure [6]. In July 2011, e.g., the DigiNotar
security breach resulted in an attacker using the company’s CA
infrastructure to issue hundreds of rogue digital certificates for
high-profile domains, including one for google.com that was
later used in a mass surveillance attack against Internet users
[7]. In fact, taking CAs for granted when we blindly trust and
use them is the opposite of Zero Trust [8], [9], which instructs
us never to trust and always to verify the authenticity.

Moreover, the public key distribution via CA incurs non-
negligible communication overhead, which deters TLS from

979-8-3503-7099-7/24/$31.00 ©2024 IEEE

being adopted by peer-to-peer (P2P) networks. For instance,
the permissionless cryptocurrency P2P networks (e.g., the
Bitcoin P2P network) don’t use CA-based TLS because of
the huge communication overhead, whereas the Bitcoin P2P
network encounters critical security issues due to the plain-text
TCP connection [10].

In order to solve the single point of failure stemmed
from centralized CA and apply a less costly cryptographic
protection to the TCP connection on P2P network, in this
paper, we are motivated to propose a novel SDN-enabled
approach for facilitating the Elliptic-curve Diffie-Hellman key
exchange (ECDH). As we know, ECDH is often used to
provide forward secrecy, while itself is a non-authenticated key
agreement protocol, and thus, it is still vulnerable to MITM.
In other words, the public key exchange in the ECDH protocol
needs protection. In theory, our approach is appropriate to any
cryptographic technique, however, we focus on ECDH since
it offers better security with a smaller key size.

Therefore, the objective of this proposal is to provide a
secure way to distribute public keys of ECDH for the two end-
points in the context of Software-defined Networking (SDN),
which has been regarded as the next generation of network
architecture. The most recently emerged software-defined wide
area network (SD-WAN) technology [11] has attracted even
more extensive attention since it aims at long-distance data
transmission across multiple domains. It is estimated that the
SD-WAN market size will grow at a CAGR of 35.94% from
2023 to 2030 [12]. Thus, the SDN-enabled approach has a
promising prospect for the future network development.

The contributions of this paper are summarized as follows:

o This paper proposes a novel SDN-enabled public key
distribution mechanism for the ECDH protocol.

¢ A proof-of-concept of the approach is implemented for
facilitating the secure and efficient TCP connection for
the P2P networking.

o This paper conducts a number of experiments built on
the prototype in order to evaluate the efficiency of this
proposed approach.

The rest of this paper is organised as follows: Section II
outlines the threat model; Section III proposes the design
of the approach and performs a security analysis; Section
IV demonstrates the implementation; Section V presents the
experimental results built on the prototype; Section VI reviews

677

2024 International Conference on Computing, Networking and Communications (ICNC): Communications and
Information Security Symposium

§-%

Client

Server
Fig. 1. Threat model including both on-path and off-path attacks.

the related work; Section VII concludes the paper and proposes
avenues for future research.

II. THREAT MODEL

This section presents the threat model that this approach
builds on. The threat model is in compliance with normal
Internet scenario, in which a client connects a server through
a number of router hops. It is worth indicating that this
threat model is not limited to the client-server (C/S) network
architecture, while it is also applicable to the P2P network
architecture, since with the latter, every peer acts as both server
and client simultaneously.

Figure 1 graphically shows a general scenario of the threat
model used in this paper. An adversary (with evil appearance
in the figure) on the Internet can launch either off-path attacks
or on-path attacks (such as MITM). In regard to executing
off-path attack, the adversary is assumed to be able to blindly
guess the TCP connection state or use some side-channel
approaches [13]-[18] to obtain the expected TCP sequence
number in order to hijack the connection. By contrast, should
the adversary be powerful enough, a privilege position between
the client and server is obtained, i.e., at least one router/switch
on the route path is compromised or controlled by the ad-
versary, then the MITM state is built. With this, the MITM
attacker can intercept the TCP connection while the client and
server are even not aware of its existence. In particular, the
MITM attacker can observe, discard, and modify all the traffic
between the client and server. However, the packets discarding
is out of the scope of the threat model, since such denial-of-
service (DoS) attack is always free as if the attacker already
gets the privilege position. Besides, the client and the server
over here are secure and they can prevent themselves from
being compromised.

III. APPROACH

The section mainly proposes the design of the SDN-enabled
ECDH mechanism and the security analysis elucidating how
the mechanism would resist the corresponding attacks.

A. A Brief of ECDH

Foremost, an elliptic curve, E, is a plane curve over a
finite field which consists of the points satisfying the following
Equation (1):

E:y’=24ax+b (D
Thus, given an F, the point multiplication is defined as the

repeated addition of a point along that curve, which denotes
as nG = Y. | G for some scalar (integer) n and a point

TABLE I
THE DEFINITION OF NOTATION
Notation | Definition
D The prime used to set the size of the finite field
F, The finite field given by the integers modulo p
a,b The two constants less than p for defining the

elliptic curve

G The base point or generator
n The order of G

h The cofactor

(@] The identity element

E(Fp) The elliptic curve satisfying 4> = z° +ax + b

mod p, where (z,y) are pairs of non-negative
integers less than p

do The client’s private key

Qc The client’s public key

ds The server’s private key

Qs The server’s public key

Tr The shared secret key

G = (z,y) that lies on the curve. This type of curve is
known as a Weierstrass curve. The security of modern Elliptic
Curve Cryptography (ECC) depends on the intractability of
determining n from @@ = nG given known values of) and
G if n is large (known as the elliptic curve discrete logarithm
problem by analogy to other cryptographic systems).

To use ECC, two parties must agree on all the elements
defining the elliptic curve, that is, the domain parameters of
the scheme. The size of the field used is typically a prime!
denoted as p. The elliptic curve F is defined by the constants a
and b used in the defining Equation (1). The cyclic subgroup
is defined by its generator (a.k.a. base point) G. The order
of G, which is the smallest positive number n such that
nG = O (the point at infinity of the curve, and the identity
element), is normally prime. Since n is the size of a subgroup
of E(F,), it follows from Lagrange’s theorem that the number
h = %|E(Fp)| is an integer. In cryptographic applications,
h is called the cofactor and must be small (i.e., h < 4)
and, preferably, h = 1. To summarize, in the prime case,
the domain parameters are (p, a, b, G, n,h), which should be
generated by a 3rd trusted party like a CA server for the C/S
networking or a bootstrap server for the P2P networking. All
the above notations are defined in Table I.

Given the domain parameters, the ECDH protocol works
as follows. First, each party must have a key pair suitable
for elliptic curve cryptography, consisting of a private key d
(a randomly selected integer in the interval [1,n — 1]) and
a public key represented by a point @) (where Q =d- G,
that is, the result of adding G to itself d times). Let client’s
key pair be (dc,Qc) and server’s key pair be (ds,Qs).
Each party must know the other party’s public key prior
to execution of the protocol. Thereafter, the client computes
point (xg,yr) = dc - Qs, while the server computes point
(zk,yr) = ds - Qc. The shared secret is xj (the z coordinate
of the point). The shared secret calculated by both parties is
equal, because dC . Qs = dc . ds -G = ds -dC -G = ds . Qc.

10r, it is a power of two (2™), which is called the binary case. In this
brief, we only describe the prime case.

678

2024 International Conference on Computing, Networking and Communications (ICNC): Communications and
Information Security Symposium

SYN (IPo R1, IPy) Endpoint
SYN_ACK (IPg, R2, IP SDN (Edge) Router

= (1P R2, 1P) @ Man-in-the-middle
PSH RESC) [Trust Domain
PSH_ACK | Hash(Qy) ~==Control Communication

(SDN/SD-WAN)
Controller
, S
, Trust domain IR
Trust domain ~ ~ Trust domain
rd ~
Fig. 2. General model of the proposed SDN-enabled ECDH mechanism

towards secure exchange of the public keys.

As we can see, with ECDH, the only information about
the shared secret key is the public keys of both sides and
the domain parameters. No party except the client and server
can determine their private keys, and therefore, no party other
than them can computer the shared secret, unless that party
can solve the elliptic curve discrete logarithm problem.

Nevertheless, ECDH is still not enough to resist the MITM
attack, since in the above process, Both parties must be able
to confirm that the public key received is indeed the other
party’s. We prove this below.

Theorem 1. In the context of the ECDH protocol, if two
parties want to communicate, if one party can verify that the
received public key Q' is equal to the public key Q) transmitted
by the other party, then the ECDH protocol can resist MITM.

Proof. 1If both parties can verify the transmitted public keys
Q¢ and Qg, even if an MITM attacker can obtain these public
keys, it cannot calculate the shared key because it does not
know the corresponding private key. As a result, the MITM
attacker can no longer break the encrypted channel. O

B. Mechanism Design

The proposed SDN-enabled ECDH mechanism is mainly
designed for resisting the MITM attack in compliance with
the aforementioned threat model. Figure 2 presents the design
of the proposed mechanism. As we can see, this mechanism
is based on the SDN network, which includes control plane
and data plane. The control plane includes SDN/SD-WAN
controller depending on the network type, i.e., local area
network (LAN) or wide area network (WAN). Our approach
should be no limitation to either of them. Also, the data
plane includes the SDN switch or SDN edge router (a.k.a.
middlebox) depending on the network type. In the figure,
the router R1 directly links to the client E¢-, and on the
other side, the router R2 directly links to the server Eg.
Moreover, the trust domain in our case is comprised of the
controller, the client and server as well as their conjunct SDN
routers/switches. That means all these entities as well as the
control communication between controller and SDN routers
won’t be compromised by the attacker.

First of all, it is assumed that the public keys have been
generated by the endpoints respectively. On the controller,

an information table will be created, which will record the
public key information (i.e., the hash value of @) and the
link information consisting of the source IP address I P and
destination IP address I Pgs (or the other way around according
to the traffic direction) and the conjunct SDN switch.

With such setup, the SDN-enabled ECDH mechanism will
go through the following steps.

1) First, the client E¢ initiates the TCP connection by
sending out the SYN packet. Once R1 receives this
packet, since it doesn’t have any flow entry to process
this SYN packet, R1 will hand it in to the controller via
sending a Packet_In packet through the OpenFlow
protocol. When the controller gets the Packet_In
packet, it can obtain and save the link information as
a 3-tuple (IPc, R1, IPg). Afterwards, the controller
sends a Packet_Out back to R1 and makes the SYN
packet forward. Note that at this moment, still no flow
entry is installed on R1. When the SYN packet reaches
R2, another round of Packet_In and Packet_Out
will proceed, whereas the controller will neither save
any information nor install flow entry to R2. Later, R2
forwards the SYN packet to Eg.

2) Once Eg receives the SYN packet, it will respond a
SYN_ACK packet to Ec. So, the SYN_ACK packet
will first arrive at R2. Since having no flow entry (of
course), R2 will hand it in to the controller. At this
time being, the controller will check the saved I P~ and
I Ps to make sure it is the required SYN_ACK packet
and then store this link information to the information
table as another 3-tuple (I Ps, R2, I Pc). Thereafter, the
SYN_ACK packet will go through the same route back to
E¢. Later, E¢ will send out an ACK packet to complete
the 3-way handshake and establish the TCP connection
between the two endpoints.

3) Soon after the TCP connection builds, F- will send
out a PSH packet that includes ()¢ it generated. The
PSH packet will first go to the controller as the first
step due to empty flow table of R1. Thus, the controller
can calculate and save the hash value of Qc, i.e.,
Hash(Qc¢). Later, the PSH packet containing Q¢ will
arrive at R2. Since R2 has no flow entry either, it will
hand the packet to the controller. Now that the controller
has Hash(Q¢), it can compare the hash value of the
one given by R2 with the saved hash value. If they are
the same, forward the PSH packet to Eg. Therefore, E'g
receives the desirable Q¢.

4) Eventually, E's responds a PSH_ACK packet containing
its QJg back to E¢. The Qg contained packet will go
through the same process as the above step. Thereby,
both the two endpoints finish the exchange of (), and a
secret key can be agreed upon.

5) After a configurable time interval, the middlebox can
notify the controller to remove the public key and link
information from the information table for preventing
data leakage.

679

2024 International Conference on Computing, Networking and Communications (ICNC): Communications and
Information Security Symposium

Client (A) MITM (M) Server (B)
SYN SYN
TCP 3-way SYN-ACK SYN-ACK
Handshake 2
ACK ACK RTT

Key

Handshake Enc,(k)| |Hash(k+X)

Ency(k) | | Hash(k+X)

Fig. 3. The ephemeral key distribution for every new TCP connection.

Further, the firstly shared secret key can act as a master
secret key (X) to distribute ephemeral secret key (k) for
each new TCP connection. Since the client and server already
have X, when a new TCP connection needs to be built
between them, the client will generate a new k, and then send
Encx (k)||Hash(k+X) to the server, where Encx (k) stands
for encrypting k with X, and Hash(k + X) is the message
authentication code (MAC) which concatenates £ with X to
create k + X and calculates the hash value. As the server
knows X, it can decrypt the ciphertext by Equation (2).

k = Decx (Encx (k)) 2)

Also, the server can verify the authentication and message
integrity of k£ via comparing the received MAC code and the
calculated MAC code using Equation (3).

Hash(k + X) = Hash(Decx (Encx (k) + X) (3)

Once k£ is agreed, an application can use the shared secret
key for encrypting the messages and transmit the ciphertext
on the public network. Figure 3 shows the ephemeral key &
distribution approach for every new TCP connection. We can
see that it (plus TCP 3-way handshake) takes 2 round-trip
times (RTT), which is less than the 3 RTT spent by TLSv1.3.

C. Security Analysis

With our approach, the MITM attacker can exist in the
untrusted domain. However, the MITM attacker cannot modify
the data, in particular, it cannot modify the exchanged public
keys. The security properties provided by our approach can be
discussed as follows:

o Unlike a 3rd party CA, an SDN controller® is often
managed by domain network administrator, and the com-
munication between controller and packet switch often
rides on proprietary channel, which makes such a trust
domain more controllable than domains that rely on 3rd
party CAs. Thus, the MITM attacker cannot modify the
link information stored in the controller, since any middle
link information sent to the controller will be regarded as
created by an attacker and thus discarded immediately.

o The link information is used to ensure the identity.
Assuming the MITM attacker would like to take part in
the transmission, it has to add/modify the link information
in the controller’s information table. The MITM attacker
is not able to add a link information before the conjunct

2To avoid single point of failure, the SDN controller can adopt a decen-
tralized solution using the emerging technology like Blockchain [19].

SDN switch/router, because the controller only accepts
the first SYN or SYN_ACK packets sent by the conjunct
R1 or R2.

o The public key information is stored and matched by the
controller. Since the controller has the global view of the
whole SDN network, and especially, it has the control
communication channel with the middlebox which is
inside the trust domain, it plays a vitally trusted party
for verifying the public key.

o The information table only stores the link and public
key information provisionally, which means once the
key exchange is done, the corresponding information
should be removed. Although the controller is in the trust
domain, we still consider preventing the potential threats
like internal attackers, external infiltration, or attempts to
exhaust the size of the information table.

Overall, our approach is counterfeit-sensitive since it uses
the controller to store not only the public key information but
also the link information. The link information can ensure the
identity of the client and server, while the hash value of the
public key can achieve the tamper-resistance.

IV. IMPLEMENTATION

This section presents the implementation for evaluating the
proposed mechanism including the software specification and
the testbed setting up.

A. Software Specification

Regarding the SDN controller, the Ryu SDN framework
(supporting OpenFlow 1.5) [20] is employed, which is open
source, python programming based, and well-documented.
In our case, the endpoint link information and public key
information recording application is developed upon the north-
bound API of the Ryu SDN framework.

For SDN switch, we use Open vSwitch (OVS) [21], a widely
adopted open-source software switch in SDN. It consists of
several modules working in both kernel space and user space.
In its architecture, ovsdb—-server is the database server
that uses the Open vSwitch Database Management Protocol
(OVSDB) to manage OVS. The kernel datapath performs
packet forwarding, which caches flow rules that are used to
match and execute actions on packets received directly in the
kernel space, enabling high performance of packet forwarding.
In case of a cache miss, the kernel datapath delivers the
packet to the userspace daemon termed ovs-vswitchd,
where the packet is handled, and flow rules are given back to
the kernel datapath for handling subsequent packets that they
match against. This process is known as an upcall. The com-
munication between ovs-vswitchd and the kernel module
is done via a netlink socket. For performance consideration,
most actions in OVS are implemented in the kernel datapath
to avoid making copies and context switches between kernel
and userspace.

We use the recommended elliptic curve domain parameters
secp256r1 provided by the Standards for Efficient Cryptog-
raphy Group (SECG) in [22], where the domain parameters are

680

2024 International Conference on Computing, Networking and Communications (ICNC): Communications and
Information Security Symposium

/ Wi-Fi Router \
1P:192.168.123.1

: VM Server

| 1P:192.168.123.227

1 Running: OVS switch

i Server program

: 1P:192.168.123.127
! Running: OVS switch
\ Client program

]
I Host

: 1P:192.168.123.238

I Running: Ryu Controller

Fig. 4. Testbed setting up for evaluating the prototype.

chosen verifiably at random as specified in ANSI X9.62 [23].
The secp256r1 curve, also known as the NIST P-256 curve,
is widely adopted due to its strong security properties and
efficiency. In addition, for implementing a proof of concept
with the ECDH protocol in our case, we use SHA256 as the
hash function, and AES-256 with mode ECB as the symmetric
encryption algorithm.

B. Testbed Setting Up

The specification of the testbed is detailed as follows.
The host is an x64-based PC with CPU 12th Gen Intel(R)
Core(TM) i9-12900H 2.50 GHz and RAM 32 GB. The host
installs two virtual machines (VM) using VMware workstation
as the VM hypervisor. The two VMs both have the same
specification: 4-core@5.1GHz Intel Core 17, 16GB memory,
and Ubuntu 20.04. Further, both VMs bridge to the host
so as to get real IP addresses from the router. Our router’s
architecture specification is MediaTek MT7621 ver:1 eco:3,
and it has the wireless communication speed 866/866 Mbps.
One VM working as the client deploys an OVS switch and the
client side program, while the other VM working as the server
deploys an OVS as well as the server side program. The host
machine runs the Ryu (SDN) controller.

With the above mentioned specification, the testbed can
be set up as Figure 4 shows. The router manages a private
network with IP prefix 192.168.123.1/24. The two VMs (i.e.,
VM Client and VM Server) use bridge network linking to the
host. Thus, the router assigns IP addresses of 192.168.123.238,
192.168.123.127, and 192.168.123.227 to the host, server, and
client, respectively. Since all the nodes (the VMs and host)
locate on the same network, the SDN controller can connect
to the OVS switches.

V. EXPERIMENTAL RESULTS

This section shows the experimental results built on the
prototype implementation.

A. Processing Time with Different Public Key Lengths

We first test the processing time in terms of various public
key lengths using our approach. The processing time indicates
the period that the client sends SYN to the server till it receives
Qs from the server. Hence, this time calculation includes
the TCP 3-way handshake, the ECDH public key exchange,

‘ %
:%%% |

Y1024 2048 3072 409
Public key length in bits

Key distribution time in seconds

Fig. 5. Processing latency with different lengths of public key.
1072

s 12
=}
i=}
S 1t
2
g
5 0.8}
£ .
= 0.6 1
2
2 04t |
E .
=
3 027 é % % 7
by %
g : :
32 64

128 256 512
Secret key length in bits

Fig. 6. Processing latency with different lengths of secrete key.

the process for Packet_In and Packet_Out as well as
the flow entries installation as the entire overhead. Figure 5
(Box & Whisker plot) shows the processing time in terms of
different public key lengths.

As the figure presents, with the increasing length of the
public key when the private key length is set to 256 bits, the
processing time for distributing the public key grows slightly.
In our case, it is worth noting that the payload generation
time for the elliptic curve private key is 0.000039 seconds.
According to our astute analysis, the most time-consuming
stems from the controller processing the public keys using
Packet_In, which takes 0.016 seconds in mean for two
rounds because the controller does not install flow entries
after processing the TCP 3-way handshake. Whereas even
using a key length value of 4,096 bits, the average processing
latency is around 0.03 seconds and the outlier value is 0.036
seconds, which only brings negligible overhead for the entire
data transmission.

B. Processing Time with Different Secret Key Lengths

Also, we test the processing time with various ephemeral
secret key lengths when we fix the master secret key length to
256 bits. It is worthy of denoting that the AES key generation
time is very short, around 0.0000012 seconds on average in
our case. Figure 6 shows the testing result, whereby we can see
that the different ephemeral secret key lengths do not impact
the processing time significantly. The average processing time
only increases a little.

In particular, the ephemeral key distribution time is signif-
icantly shorter than the public key distribution time, because
the controller does not need to process the key contained PSH
packet and compare the Packet_In packet with the value in
the information table. The SDN controller can install the flow

681

2024 International Conference on Computing, Networking and Communications (ICNC): Communications and
Information Security Symposium

21072

o
o

I
= e > 0

HENERENE-

0.8
0.6

0.2 o — ==

TCP segment transmission time in seconds

§FIIIIIIIIH

sec-key TLSv1.3
Cryptography methods

0 pub-key

Fig. 7. Comparison with TLS1.3 and RLPx about the TCP segment trans-
mission latency (the former two are our approach for public key exchange
and ephemeral secret key distribution).

entries instantly when dealing with the TCP 3-way handshake
segments. Only the server side’s verification against the newly
created secret key takes a little time latency. When we set the
secret key length as 512 bits, though some outliers go beyond
0.01 seconds, the average processing time is 0.00208 seconds,
which is still in the order of a thousandth of a second. With
this result, in real practice, we could choose a relatively large
secret key length to enhance the security degree.

C. Comparison with TLSv1.3 and RLPx

In addition, we conduct a contrast test amongst TLSv1.3 us-
ing TLS_AES_256_GCM_SHA384 as the cipher, RLPx [24]
using elliptic curve integrated encryption scheme (ECIES), and
our approach for public key exchange and ephemeral secret
key distribution (with the key length at 512 bits).

Figure 7 shows the contrast results. We can see that our
approach uses an average time latency of 0.0176 seconds and
0.0019 seconds for public key exchange and ephemeral se-
cret key distribution, separately. By contrast, TLSv1.3 spends
0.0021 seconds in mean for public key exchange, and RLPx
takes 0.0188 seconds in mean which is even longer. That is
because RLPx never uses CA and needs to exchange the public
key in order to derive and create the shared secret key for
every connection. It is worth signifying that in our approach
the public key exchange will only take place in one time?,
and once the master secret key is shared, the main latency is
originated from the ephemeral secret key distribution.

Thus, we can conclude that our approach is slightly more
efficient than TLSv1.3, while significantly more efficient than
RLPx for P2P networking. That is because our approach
mainly uses symmetric encryption for ephemeral secret key
distribution. Nevertheless, TLSv1.3 still relies on a 3rd party
CA which is out of the control under the domain network
administrator, while our approach never suffers that. Though
RLPx also does not rely on CA since every node’s ID
indicates the node’s public key (which makes the spoofing
attack difficult), it brings nonnegligible networking overhead.

3TLS also needs the parties to download the certificate and CA’s public
key in the first place, which we don’t compare in this paper.

VI. RELATED WORK

This section reviews the related work with respect to secure
networking approaches and key distribution methods.

A. Secure Networking Approaches

Cryptography is widely used for protecting the network
communications between endpoints. TLS [5] adds an addi-
tional layer between the application layer and the transport
layer for protecting the segment payload, while it has nothing
to do with the segment header fields. Thus, it is unable to
resist the TCP reset attacks [25] and off-path hijacking attacks
[13]-[18]. Further, IPsec [26] is a secure network protocol
suite that authenticates and encrypts packets of data to provide
secure encrypted communication between two computers over
an Internet Protocol network. It is used in virtual private
networks (VPNs). However, IPSec is far too complex, and the
complexity has led to a large number of ambiguities, contradic-
tions, inefficiencies, and weaknesses [27]. In addition, Quick
UDP Internet Connection (QUIC) [28] was proposed to be
nearly equivalent to a TCP connection but with much-reduced
latency for even using cryptographic protection. QUIC makes
the exchange of setup keys and supported protocols part of the
initial handshake process. Thereby, QUIC-Crypto just needs 0-
RTT* for encrypting application data. However, QUIC-Crypto
still relies on public key certificate like TLS, which has its
inherent security problem.

B. Key Distribution Methods

Symmetric cryptography is often used to encrypt the data
transmission on the Internet as it is efficient. However, the
symmetric cryptography suffers from the issue of secret key
distribution between trusted endpoints. In other words, the
endpoints must first have a secure and authenticated way
for exchanging the secret key, which however is hard to
achieve in the first place. Public key cryptography stems
from the secret key distribution problem, however, it still
needs to prevent the public key exchange from MITM attack.
A widely used approach for distributing the public key to
resist against the MITM attack is using certificate authority
(CA) [29], [30]. However, CA itself as a centralized public
key infrastructure (PKI) has security problems [31]. Though
several decentralized PKI solutions were proposed to solve
the single point of failure issue, such as the blockchain based
methods [32], the overhead is still a nonnegligible problem.
In order to reduce the complexity of public key management
and distribution, identity-based cryptography (IBC) [33] was
proposed, in which a user’s identity and a trusted third party
issued master public key are incorporated for generating the
user’s public key. Whereas, with IBC, a new issue namely
key escrow arises, whereby the user’s private key is created
by the trusted third party, which needs the user to have
an unconditional trust on the third party. Even worse, it is
impossible to revoke the user’s credentials and issue new

4Conceptually, in terms of the QUIC-Crypto document, all handshakes in
QUIC are 0-RTT (round-trip time), it’s just that some of them fail and need
to be retried.

682

2024 International Conference on Computing, Networking and Communications (ICNC): Communications and
Information Security Symposium

credentials without either changing the user’s identity or
changing the master public key and re-issuing private keys.
To address the problem of key escrow, certificateless public
key cryptography (CL-PKC) [34] was proposed, which is a
joint approach taking advantage of both certificate-based and
identity-based public key cryptographies. In CL-PKC, there
also exists a trusted third party termed key generation center
(KGC), which only provides the partial public and private
keys of all users. Nevertheless, KGC also faces the single
point of failure issue. If KGC is compromised, though it is
less devastating than that in IBC, the adversary can issue new
“fake” keys on behalf of legitimate users and pretend that they
are authentic keys.

VII. CONCLUSION

This paper proposed a novel SDN-enabled Elliptic-curve
Diffie-Hellman mechanism to protect the TCP connections
in the context of permissionless P2P networking. Taking
advantage of the SDN technology, this mechanism never relies
on any third party CAs, however, it can still resist against
MITM attacks when it distributes the public keys. Further, the
experimental results presented that this approach can yield a
higher performance with negligible overhead than other cryp-
tographic techniques due to an appropriate implementation.
For future work, we plan to apply this mechanism to real-
world permissionless cryptocurrency P2P networks to achieve
literal utility. In particular, we will stress on evaluating the
communication performance in terms of scalability.

ACKNOWLEDGMENT

This work was supported in part by XJTLU Research
Development Funding RDF-21-02-012 and XJTLU Teaching
Development Funding TDF21/22-R24-177. This work was
also partially supported by the XJTLU AI University Research
Centre, Jiangsu Province Engineering Research Centre of Data
Science and Cognitive Computation at XJTLU and SIP Al
innovation platform (YZCXPT2022103).

REFERENCES

[1] V. Cerf and R. Kahn, “A protocol for packet network intercommunica-
tion,” IEEE Transactions on communications, vol. 22, no. 5, pp. 637-
648, 1974.

[2] G. C. Kessler, “An overview of tcp/ip protocols and the internet,”
InterNIC Document, Dec, vol. 29, p. 42, 2004.

[3] M. De Vivo, G. O. de Vivo, R. Koencke, and G. Isern, “Internet
vulnerabilities related to tcp/ip and t/tcp,” ACM SIGCOMM Computer
Communication Review, vol. 29, no. 1, pp. 81-85, 1999.

[4] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of
transport protocols in the internet,” ACM SIGCOMM Computer Com-
munication Review, vol. 35, no. 2, pp. 37-52, 2005.

[5] T. Dierks and C. Allen, “The tls protocol version 1.0,” Tech. Rep., 1999.

[6] S. B. Roosa and S. Schultze, “Trust darknet: Control and compromise
in the internet’s certificate authority model,” IEEE Internet Computing,
vol. 17, no. 3, pp. 18-25, 2013.

[7]1 J. R. Prins and B. U. Cybercrime, “Diginotar certificate authority breach
“operation black tulip”,” Fox-IT, November, vol. 18, 2011.

[8] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust archi-
tecture,” National Institute of Standards and Technology, Tech. Rep.,
2020.

[9] C. Buck, C. Olenberger, A. Schweizer, F. Volter, and T. Eymann, “Never
trust, always verify: A multivocal literature review on current knowledge
and research gaps of zero-trust,” Computers & Security, vol. 110, p.
102436, 2021.

[10] W. Fan, S.-Y. Chang, X. Zhou, and S. Xu, “Conman: A connection
manipulation-based attack against bitcoin networking,” in 2021 IEEE
Conference on Communications and Network Security (CNS), 2021, pp.
101-109.

[11] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-defined wide
area network (sd-wan): Architecture, advances and opportunities,” in
2019 28th International Conference on Computer Communication and
Networks (ICCCN), 2019, pp. 1-9.

[12] vMR Team, “Sd wan market size and forecast,” Verified Market Re-
search, April 2023.

[13] Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative tcp sequence number
inference attack: how to crack sequence number under a second,” pp.
593-604, 2012.

[14] Z. Qian and Z. M. Mao, “Off-path tcp sequence number inference attack-
how firewall middleboxes reduce security,” in 2012 IEEE Symposium on
Security and Privacy. 1EEE, 2012, pp. 347-361.

[15] Y. Gilad and A. Herzberg, “Off-path tcp injection attacks,” ACM
Transactions on Information and System Security (TISSEC), vol. 16,
no. 4, pp. 1-32, 2014.

[16] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M.
Marvel, “Off-path tcp exploits: Global rate limit considered dangerous.”
in USENIX Security Symposium, 2016, pp. 209-225.

[17] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M.
Marvel, “Off-path tcp exploits of the challenge ack global rate limit,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 765-778,
2018.

[18] X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path tcp exploits of
the mixed ipid assignment,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
1323-1335.

[19] W. Fan, S.-Y. Chang, S. Kumar, X. Zhou, and Y. Park, “Blockchain-
based secure coordination for distributed sdn control plane,” in 2021
IEEE 7th International Conference on Network Softwarization (NetSoft).
IEEE, 2021, pp. 253-257.

[20] “Ryu sdn framework,” https://ryu-sdn.org/.

[21] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proceedings
of the 12th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI'15, USA, 2015, p. 117-130.

[22] Certicom Research, “Sec 2: Recommended elliptic curve domain pa-
rameters,” https://www.secg.org/sec2-v2.pdf, 2010.

[23] American National Standards Institute (ANSI), “Public key cryptogra-
phy for the financial services industry: The elliptic curve digital signature
algorithm (ecdsa),” American National Standard X9.62-2005, 2005.

[24] “The rlpx transport protocol,” accessed on 19th May 2023
https://github.com/ethereum/devp2p/blob/master/rlpx.md.

[25] P. Watson, “Slipping in the window: Tcp reset attacks,” Presentation at,
2004.

[26] N. Doraswamy and D. Harkins, IPSec: the new security standard for
the Internet, intranets, and virtual private networks. Prentice Hall
Professional, 2003.

[27] N. Ferguson and B. Schneier, “A cryptographic evaluation of ipsec,”
1999.

[28] J. Roskind, “Quic: Multiplexed stream transport over udp,” Google
working design document, 2013.

[29] E. Gerck et al., “Overview of certification systems: x. 509, ca, pgp and
skip,” The Black Hat Briefings, vol. 99, 1997.

[30] J. Weise, “Public key infrastructure overview,” Sun BluePrints OnLine,
August, pp. 1-27, 2001.

[31] J. A. Berkowsky and T. Hayajneh, “Security issues with certificate au-
thorities,” in 2017 IEEE 8th Annual Ubiquitous Computing, Electronics
and Mobile Communication Conference, 2017, pp. 449-455.

[32] H. Bhanushali, A. Arthena, S. Bhadra, and J. Talukdar, “Digital certifi-
cates using blockchain: an overview,” in 2nd International Conference
on Advances in Science & Technology, 2019.

[33] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Advances in Cryptology: Proceedings of CRYPTO, 1985, pp. 47-53.

[34] S. S. Al-Riyami, K. G. Paterson et al., “Certificateless public key
cryptography,” in Asiacrypt, vol. 2894. Springer, 2003, pp. 452-473.

683

