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Abstract—In this paper, we study the problem of path com-
putation in multi-layer multi-switching networks. Compared to
the standard shortest path problem, path computation in this
context needs to take into account the heterogeneous switching
capabilities of nodes. We develop a routing algorithm by adapting
the Floyd-Warshall algorithm to take into account the switching
technology conversion. Our algorithm solves the all-pair min-
cost continuous path problem by building routing tables for
each node to allows hop-to-hop routing. We then extend our
efforts by developing a distributed routing algorithm to construct
the routing tables based on local information and interactions
with direct neighbors. We complete our algorithmic analysis
with extensive simulations to demonstrate the effectiveness of
the developed routing algorithms.

Index Terms—Path computation, multi-switching multi-layer
networks, distributed algorithms.

I. INTRODUCTION

Pushed by the ever-increasing traffic demand, today’s car-
rier networks are constantly integrating emerging network
components running over heterogeneous switching technolo-
gies. For example, Generalized Multiprotocol Label Switching
(GMPLS) [1] has specified 5 switching capabilities ranging
from Packet Switching Capable (PSC), Layer 2 Switching
Capable (L2SC), TDM Capable (TDM), to Lambda Switching
Capable (LSC) and Fiber Switching Capable (FSC). These het-
erogeneous switching technologies span over multiple layers,
forming a multi-layer network, where the term layer is defined
in GMPLS as a bandwidth granularity level within a switching
technology [2].

The multi-switching multi-layer architecture brings non-
trivial challenges to path computation, as we need to en-
sure smooth transition among different switching technologies
along paths. Figure 1 illustrates an example of multi-layer
multi-switching network. Node s and t can only support only
one switching technology each, TDM and L2SC, respectively.
Node u can support both TDM and L2SC, but cannot adapt
between them. Node v is a hybrid node that not only support
both TDM and L2SC but also adapt between them. In this ex-
ample, the only feasible path between s and t is s−u−v−u−t
that relies on v to converse TDM to L2SC.

The above example demonstrates two fundamental technical
challenges hinging behind the path computation in multi-
layer networks. First, a topologically connected path may not
be feasible, e.g., the path s − u − t is not feasible in the
above example, because u cannot transform TDM into L2SC.
Second, a shortest feasible path in multi-layer networks may

Fig. 1: A multi-layer multi-switching network.

contain cycles, e.g., the path s− u− v − u− t is an optimal
feasible path but contains a cycle. These challenges make
classical routing algorithms fail to find the optimal feasible
path in the multi-layer context.

Motivated by the above technical challenges, in this paper
we embark to solve the path computation problem in multi-
layer networks. Specifically, we design both centralized and
distributed routing algorithms that can compute the min-cost
paths between each pair of nodes by taking into account the
nodes’ switching capability constraints. Technically, we for-
mulate the path computation problem in mutli-layer networks
as the min-cost continuous path problem, where we formally
define a continuous path as a feasible path along which a
packet can successfully travel from the source to the destina-
tion with the nodes in the path taking appropriate switching
actions subject to their switching capacity constraints. We then
develop a routing algorithm by adapting the Floyd-Warshall
algorithm to take into account the switching technology con-
version. Our algorithm solves the all-pair min-cost continuous
path problem by building routing tables for each node to
allows hop-to-hop routing. We further extend our efforts by
developing a distributed routing algorithm to construct the
routing tables based on local information and interactions with
direct neighbors. We complete our algorithmic analysis with
extensive simulations to demonstrate the effectiveness of the
developed routing algorithms.

Roadmap. The remainder of the paper is organized as
follows. Section II presents the network model and problem
formulation. In Section III we develop a centralized routing
algorithm. In section IV we further develop a distributed
routing algorithm. Section V presents our simulation results.
In Section VI we provide an overview of related work on this
topic. Section VII concludes the paper.
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II. NETWORK MODEL AND PROBLEM FORMULATION

We consider a multi-layer network whose topology is mod-
elled by a directed graph G ≜ (V,E), with V and E denoting
the sets of vertices and edges, representing the sets of switches
and communication links, respectively. Each node v has a set
of interfaces, each connected to an edge. Each interface can
support a set of switching technologies. For our modelling
convenience, if a pair of nodes (u, v) are connected by several
links each supporting a specific switching technology, we
model them as a single logical link supporting the union of
the technologies. Therefore, G can be modelled logically as a
simple graph.

In the above multi-switching multi-layer networks, to for-
ward a packet, the corresponding node needs to decide either
to forward the packet with the original switching technology or
switch to another switching technology subject to its switching
capability constraint. We refer the former operation as simple
forward or more concisely forward and the latter operation
as switching technology conversion or more concisely conver-
sion. The switching capacity of each node v is characterized
by a matrix Mv such that if Mv(a, b) = 1 then v can convert
technology a to technology b. For technical convenience, we
define a void technology denoted by ϵ and set Mv(ϵ, λ) = 1
for each technology λ under which v can send packets.
This operation can model the action that v sends packets as
the source node. Symmetrically, we set Mv(λ, ϵ) = 1 for
each technology λ under which v can receive packets. This
operation can model the action that v receives packets as the
destination node.

In multi-layer networks, the standard topological connectiv-
ity is no longer sufficient as it does not take into account the
heterogeneous switching capabilities among nodes. Therefore,
we define continuous paths to capture the particularity in our
problem.

Definition 1 (Continuous Path). A continuous path is
a sequence of nodes and switching technologies U ≜
{u1λ1u2λ2 · · ·u|U |−1λ|U |−1u|U |} satisfying the following
properties

• U is a walk in G;
• λi is supported by the communication link −−−−→uiui+1 in

the sense that ui can send packets over the link using
technology λi and ui+1 can receive over the same link
using λi;

• Mui+1
(λi, λi+1) = 1.

A non-continuous path is called a broken path.

In Definition 1, λi denotes the technology used by the
packet to traverse the edge −−−−−→ui, ui+1. The last condition states
that the mapping from each pair of successive switching
technologies λi to λi+1 should follow the switching capacity
of the corresponding node ui+1.

Let we denote the cost of edge e. We seek to find a min-cost
continuous path between each pair of nodes, which maps to
the canonical all-pair shortest path problem, but we need to
take into account the switching technology conversion in our

context. We term our problem as the min-cost continuous
path problem. In the following sections, we develop routing
algorithms to find the min-cost continuous paths by building
routing tables for each node to allow hop-to-hop routing.

III. CENTRALIZED ROUTING ALGORITHM DESIGN

In this section, we develop a centralized routing algorithm.
Technically, our design rationale is based on the structural
property that two continuous paths, one from s to v, the other
from v to t, can be concatenated to form a continuous path
from s to t if they satisfy certain condition. We can then adapt
the Floyd-Warshall algorithm to iteratively compute the min-
cost continuous path between each pair of nodes.

Given a pair of continuous paths, P1 from s to v, P2 from
v to t. Let λ1 denote the terminating technology of P1, i.e.,
the switching technology of the edge incident to v in P1 is
λ1. Similarly, let λ2 denote the starting switching technology
of P2. We can concatenate P1 and P2 to form a continuous
path P if and only if Mv(λ1, λ2) = 1. Specifically, we can
further distinguish two cases.

• Case 1: λ1 = λ2. In this case, in order to form P , it
suffices for v to perform forward operation;

• Case 2: λ1 ̸= λ2. In this case, in order to form P , v
needs to perform conversion from λ1 to λ2.

In both cases, we denote the concatenation by P = P1 + P2.
We next describe our path computation algorithm. Each

entry of the routing table constructed by our algorithm is
a quintuple, denoted by (λ, t, w, λ′, r), where λ denotes the
switching technology of the inbound edge, t denotes the
destination node, w denotes the cost to reach t, λ′ denotes the
switching technology of the outbound edge, r denotes the next
hop. In other words, if the node receives a packet operating
on the switching technology λ destinated to t, it should send
to r using the switching technology λ′. The local operation to
perform is forward, if λ = λ′, or conversion, if λ ̸= λ′. The
routing table is indexed by the couple (λ, t).

Algorithm 1 gives the pseudo-code of constructing the
routing table. Our algorithm starts with the initialization phase
where the entries corresponding to the neighbors are added
to the routing table of each node. Our algorithm then enters
the construction phase to gradually build the routing tables
by adapting the Floyd-Warshall algorithm. More specifically,
the two entries in the algorithm, i.e., (λ1, t1, w1, λ

′
1, r1) and

(λ2, t2, w2, λ
′
2, r2) in the routing tables of v and t1, respec-

tively, maps to a pair of continuous paths from v to t1 and t1
to t2. We concatenate them to form another continuous path
from v to t2 if there is no entry corresponding to the path
in the routing table of v or there is an entry but with higher
cost. In both cases, we update the routing table of v. The
whole construction process terminates once there is no further
modification of the routing tables.

Algorithm 1 Centralized routing algorithm

1: Input: G, {Mv}v∈V

2: Output: routing tables for each node u, denoted by Ru
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3: Initialization
4: Rv ← ∅ for each v ∈ V
5: for each e ≜ −→uv ∈ E do
6: for each λ1, λ2 such that Mu(λ1, λ2) = 1 and λ2 ∈

Γe do
7: add (λ1, v, we, λ2, v) to Ru

8: end for
9: end for

10: Construction
11: repeat
12: for each v ∈ V do
13: for each entry (λ1, t1, w1, λ

′
1, r1) ∈ Rv do

14: for each entry (λ2, t2, w2, λ
′
2, r2) ∈ Rt1 do

15: if Mt1(λ
′
1, λ2) = 1 then

16: if there is no entry in Rt1 indexed by
(λ1, t2) then

17: add (λ1, t2, w1 + w2, λ
′
1, r1) in Rv

18: end if
19: if there is an entry in Rt1 indexed by

(λ1, t2) but with higher cost then
20: replace the entry by (λ1, t2, w1 +

w2, λ
′
1, r1)

21: end if
22: end if
23: end for
24: end for
25: end for
26: until no routing table is modified

The complexity of our algorithm is O(|V |3L) with L being
the number of hops of the min-cost continuous path between
any pair of nodes in the network. In the following lemma, we
give the upper-bound of L.

Lemma 1. Let a denote the maximum number of switching
technologies supported by a node. It holds that L is upper-
bounded by a2|V |2.

Proof. Let P denote a min-cost continuous path. We write P
as a sequence u1, λ1, u2, λ2, · · · , u|P |−1, λ|P |−1, u|P |, where
λi denote the switching technology employed between ui and
ui+1. We can show that there does not exist i and j such that
the following equations hold simultaneously.

ui = uj , ui+1 = uj+1, λi = λj , λi+1 = λj+1.

The proof is rather obvious because if the above equations
hold, we can construct another continuous path with lower
cost by by-passing the sub-path between ui+1 and uj , thus
contradicting the optimality of P . Therefore, it then follows
that P cannot traverse more than a2|V |2 nodes. The lemma is
thus proved.

It follows from Lemma 1 that the worst-case complexity of
our algorithm is O(a2|V |5). However, in practice, the number
of hops of the min-cost continuous path is much smaller
than the worst-case upper-bound. The practical complexity we
observe oscillates between O(|V |3) and O(|V |4).

IV. DISTRIBUTED ROUTING ALGORITHM DESIGN

In the cases where the topology information is not available
at each node or there does not exist a central controller
to compute the routes for all the nodes in the network,
we need to design distributed routing algorithms that can
build the routing table of each node locally by exchanging
information only with its neighbors. In this section, we design
a distributed routing algorithm. Technically, we extend our
idea of forming a longer continuous path by concatenating
two continuous paths P1 and P2. However, to adapt to the
distributed environment, we restrict to the case where P1 is a
single edge, say P1 = (u, v), so that the node u can obtain
the information on P2 from its neighbor v to perform the
concatenation operation. The pseudo-code of our distributed
routing algorithm is depicted below. We assume that the
control channel to exchange routing tables between neighbors
are bi-directional.

Algorithm 2 Distributed routing algorithm: routing table
initialization at node u

1: Ru ← ∅
2: for each λ such that Mu(λ, ϵ) = 1 do
3: add (λ, u, 0, ϵ, u) to Ru

4: end for
5: send Ru to all the neighbors of u

Algorithm 3 Distributed routing algorithm: updating routing
table, invoked at node u upon receiving the routing table Rv

from a neighbor v

1: for each entry (λ, t, w, λ′, r) ∈ Rv do
2: for each λu such that Mu(λu, λ) = 1 do
3: if there is no entry in Ru indexed by (λu, t) then
4: add (λu, t, w + w(u,v), λ

′, v) in Ru

5: end if
6: if there is an entry in Ru indexed by (λu, t) but

with higher cost than w + w(u,v) then
7: replace the entry by (λu, t, w + w(u,v), λ

′, v)
8: end if
9: end for

10: end for
11: send Ru to all the neighbors of u

By performing similar analysis as in the previous section,
we can show that, if time is divided in rounds and each node
update its routing table and sends out the updated table to its
neighbors once per round, all the routing tables converge to
the optimal routes after O(a2|V |2) rounds.

V. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the
efficiency of our algorithms. We generate scale-free topolo-
gies using the Barabàsi-Albert model, where each new node
connects to 3 existing nodes, forming edges in pairs. Besides
the synthetic random network topologies, we also perform
simulations on two real-word topologies described in [3]. The
first one is sampled from the EBONE network of Europe,
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Fig. 2: Percentage of found paths in synthetic and real-word topologies under different p.

called T1, which has 89 nodes and 246 links. The second,
T2, corresponds to the Abovenet network in the US, with 54
nodes and 417 links.

All of our networks incorporate two types of protocols,
with each node u maintaining a two-dimensional matrix
Mu. Within this matrix, each element represents a switching
capacity, which can be either forward or conversion and is
available with probability p. We implemented centralized and
distributed routing algorithms using Python 3.9 and compared
their performance. In the distributed algorithm, each node is
represented as a thread, and each edge, denoted as −→uv, is
managed as a queue, where u is responsible for writing and v
for reading. Notably, in our networks, feasible paths between
nodes do not always exist due to the switching capability
constraint. Therefore, our analysis mainly focuses on tracking
running time and the probability of feasible path existence.
All results in the subsequent figures are averaged over 100
simulation runs.

Figure 2 shows the percentage of found paths as a function
of the probability p. Obviously, we can see that increasing
probability p helps find more feasible paths both in synthetic
and real-word topologies. For instance, for 100 nodes of
synthetic topologies, only roughly 20% pairs of nodes are
linked by feasible paths when p = 0.2, while the percentage
increases to approximately 75% for p = 0.6. Comparing
Figure 2a and Figure 2b, it seems that the real-word topologies
are more influenced by the probability p. On both T1 and
T2, the percentage of found paths reaches 80% when the
probability is around 0.5, and is nearly 100% when p = 0.6.

Figure 3 illustrates the impact of probability p on the
running time when using the centralized algorithm. The result
indicates that the running time grows as p increases. Also, we
find that the more nodes in the network, the more running
time is affected by p. For example, for p = 0.4, our algorithm

completes its task in 1.58s when there are 50 nodes, whereas
it requires 12.1s for 100 nodes. Thus, our observation is
that the performance of the centralized algorithm may pose
a computation bottleneck for large networks.

Figure 4 shows the convergence time of the distributed
algorithm under different p. From the result, we observe
that when p is less than 0.2, the convergence time increases
with p. However, as p surpasses 0.4, it gradually tends to
a stable value. For example, in the interval p ∈ [0.4, 0.8],
the convergence time hovers around 50s for 100 nodes and
approximately 58s for 200 nodes. We also observe that the
convergence time of T2 is higher than T1, even though T2
has fewer nodes.The result suggests that the convergence time
may be intricately more related to the number of network links.

VI. RELATED WORK

The problem of path computation in multi-layer switched
networks was initiated by Jannari et al. [4]. They classified
the constraints related to path computation into prunable and
non-prunable constraints. The switching capability constraint
belongs to the latter. To compute the end-to-end paths, the
authors proposed a channel graph to model this constraint.
A variant of the classical Yen’s algorithm [5] was applied
to compute the paths. Gong and Jabbari later extended the
work in [6] and developed a polynomial-time algorithm to
compute the optimal end-to-end path between a given pair of
source and destination nodes. A comprehensive performance
evaluation of different path computation algorithms in multi-
layer networks was further conducted in [7]. Compared to
these solutions in the literature, our contributions are two-fold.
First, our routing algorithms developed in this paper can solve
the all-pair min-cost path problem and hence compute the min-
cost path for each pair of nodes. Second, we also develop a
distributed routing algorithm without the knowledge of the
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entire topology. Moreover, our algorithms can support hop-to-
hop routing.

Recently, there is another thrust of research focusing on
path computation in multi-layer networks, where, besides
the standard conversion from one switching technology to
another, nested conversion by encapsulating one protocol or
technology inside another is also considered, thus making the
path computation problem even more challenging. We refer
readers to [8]–[14] for representative works on this topic.
The path computation problem in this context is not fully
understood yet, leaving a number of open territories to be
explored.

VII. CONCLUSION AND PERSPECTIVE

We have formulated the problem of min-cost continuous
path computation in multi-layer networks in this paper. We

have developed a routing algorithm by adapting the Floyd-
Warshall algorithm to take into account the switching tech-
nology conversion. We have further developed a distributed
routing algorithm to construct the routing tables based on
local information and interactions with direct neighbors. In
our future work, we plan to explore the more challenging case
of nested adaptation and design efficient routing algorithms in
this context.
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