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Abstract—Recently, the sparse recovery (SR) techniques 
could be used to achieve better channel estimates with fewer 
pilot resources in the OFDM system. To improve the priori 
information of SR techniques, in this paper, the smoothed L0 
UnfoldingNet (SL0-UNet) architecture is designed. In the 
proposed architecture, two different learning methods are 
presented to enhance the recovery performance for channel 
estimation. The results show that both two proposed learning 
methods could achieve more robust performance with limited 
complexity increased compared to the traditional SR technique.    

Keywords—Compressed Sensing, Channel Estimation, Deep 
learning, Sparse Recovery, OFDM  

I. INTRODUCTION  

Sparse recovery (SR) techniques, such as Matching 
Pursuit (MP) [1] and Orthogonal Matching Pursuit (OMP) 
[2], has been studied in recent years, however, those 
algorithms are all rely on the priori knowledge of the channel 
model. It has been shown that a small uncertainty on system 
parameters for priori information could lead to higher 
estimation performance losses [3]. Otherwise, to reduce the 
computation complexity, the smoothed L0 norm algorithm 
(SL0) was introduced in [4]. But the key for SL0 algorithm 
to obtain better estimation performance is also based on the 
initialization and priori information. Further, combined the 
deep neural network (DNN) [5] with the SR techniques for 
OFDM channel estimation were proposed. In this approach 
the iterations can be unfolded as DNN, where the optimized 
initial parameters and priori information of the SR 
techniques are obtained from DNN training. To reduce the 
computations complexity, in this paper, a SL0-UnfoldingNet 
(SL0-UNet) is considered, where two different learning 
methods are designed. One is from the traditional SL0 
initialization with lower complexity, the other is from the 
training results of each layer within DNN with better 
performance in the case of lower signal to noise ratio (SNR).  

II.  SYSTEM MODEL 

The channel is expressed as a superposition of L Plane 
waves arriving at the antenna array. After sampling with 
period T , the  discrete time equivalent channel is obtained as: 
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Each plane is characterized by a per path attenuation ia , 

delay i , and phase shift i . If 0 0  and 1i i   , then the 

delay spread is L . The length of the equivalent channel 

 /Lk T , where  0 nh is a 1k   column vector. Then the 

received signal after cyclic prefix removal is: 

           y x h w                                     (2) 

where x is a length N k OFDM symbol, y , x and w are 

column vectors, h is padded with N k zeros and the noise 

is  0, 1,...,mw CN m N   . Also, (2) can be expressed 

in matrix-vector form c  y X h wwhere  D H
c N NX F x F . 

NF is the size N discrete Fourier transform (DFT) matrix, 

and  D  is a diagonalization matrix which place it’s argument 

on the diagonal of a square matrix. For an OFDM symbol, 
the set  1, 2,..., N of sub-carriers with a subset 

P   reserved for
P P pilot symbols. The received 

pilot subcarriers are then expressed as: 

 , ,D
P P PP N N N   y F y x F h F w             (3) 

where , PNF  are the P rows of the size N DFT matrix 

indexed by the P pilot subcarriers and where the 

matrix
P

 consists of  P rows of N N identity matrix 

indexed by P . According to the compressed sensing 

theory, equation (3) is converted into the following form: 

                        P P y Th w                                    (4) 

where P NT   is the product of the basis matrix 

 D
P

 x  and the observed matrix NF . Since vector 
1Nh   is a k sparse vector and contains only a few non-

zero elements in h , the channel estimation problem can be 
transformed into a sparse recovery problem as follows: 

            
0 2

arg min , . . Ps t  
h

h y Th                 (5) 

where   represents the noise level, 
0 2
,   represent the 

L0 norm and L2 norm of the vector respectively. 

SL0 uses a continuous function to approximate the L0 
norm and minimizes the cost function formed by the 
smoothed function through the steepest descent method and 
gradient projection method. For (5), the following Gaussian 
function is considered as: 

                        2 2exp / 2f x x                      (6) 

which satisfies: 

                         1 0
0 0lim x

xf x

 ，

，
                         (7) 

Therefore, assuming lh  is the l th element of h , define the 

following cost function: 
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Then (5) can be converted to the following formula: 

         2
arg min lim , . . Ph

F s t





 h y Th        (9) 

The value of  determines how smooth the function  F h is: 

the larger value of   , the smoother  F h (but worse 

approximation to L0 norm); and the smaller value of , the 
closer behavior of  F h to L0 norm.  is the approximation 

parameter of  F h . In order to obtain the optimal solution 

of (7), a decreasing sequence of approximation parameter is 
usually selected. The steps of SL0 is as follows: 

 Initialization: 
1) Let (0)h be equal to the minimum L2 norm solution 

of 
P y Th ,obtained by pseudo-inverse of T . 

2) Choose a suitable decreasing sequence for  , . 

 For 1, ,i I  : 

1) Let 
i  , i   

2) Maximize(approximately) the function 

 F h on the feasible set 

 2
: P   h h y Th using J iterations of the 

steepest ascent algorithm: 
 Initialization: ( ) ( 1)

0
i ih h . 

 For 1, ,j J  (loop J  times): 

Let 
       2 2

1 1 1exp / 2 /
i

i i i
j j j i iF       h h h  

Let 
      2

1 1i

i i i
j j i i jF    h h h . 

Project 
 i
jh back onto the feasible 

set: 
      i i i
j j P j

  h h T y Th . 

3) Set    i i
Jh h , 1i i  . 

 Final answer:  Ih h . 

In general, the initial parameter sequence  1,..., I   

and  1,..., I   of SL0 algorithm are calculated in advance. 

(0)
1 2max  h , 

1i ic   , where c is usually between 0.5 

and 1, 1 0I      . However, such fixed 

initialization method cannot guarantee the most convergent 
result of SL0 solution, and improper parameter settings may 
cause the accuracy of the algorithm to decrease and the 
convergence speed to slow down. Therefore, it is limited in 
practical application. 

III. DESIGH OF SL0-UNET 

As shown in (4), the vector h  follows a certain sparse 

distribution and matrix T  is fixed, vector Py  will also 

follow a certain sparse distribution. The proposed network is 
the unfolded version of the SL0 iterative algorithm. It is used 

to learn the optimal   sequence and   sequence through 
gradient descent in the unfolded network: 

 The forward pass of SL0-UNet performs the 
estimation as the architecture of SL0-UNet is the 
unfolded SL0 algorithm. Each layer will approach 
the real channel and finally estimate the channel. 

 The backward pass of SL0-UNet performs the 
parameter learning. As the training weight of SL0-
UNet is initialized with general SL0 parameter 
initialization method, the goal of the backward pass 
is to update the parameter so that it can perform 
efficient sparse recovery for all data following a 
certain distribution. 

A. Network Structure 

According to the steps of SL0 algorithm, it can be 
regarded as the network’s I  th layer in Figure 1. The input 

of SL0-UNet is T , Py  and (0)h , and the training 

parameters are  1,..., I   and  1,..., I  . ( )JP   represents 

the inner loop iteration, which can be regarded as a nonlinear 
activation function, and the output is ( )Ih . The i th layer’s 
output of SL0-UNet is expressed as: 

               ( ) ( 1)( , , , )i i
J P i iP  h y ,T h                 (10) 

 
Figure 1 The network structure of SL0-UNet 

( )JP   corresponds to step 2 in Table 1 and it is an internal 

loop in the SL0 algorithm. In SL0-UNet, it is regarded as a 
J -layer subnetwork with input ( )

0, , ,i
P i i y , T h  and 

output ( )i
jh . The structure of the ( 1, 2,..., )j j J  th layer of 

( )JP   is shown in Figure 2, which mainly consists of two 

parts: update module and projection module.  
Update module ( ( )

1:
i
j J ) : After the J th data of layer 

1i   in SL0-UNet is passed through the projection module, 

the output ( 1)i
J
h  is taken as the initial value ( )

0
ih  of layer i , 

then ( 1: )
1:

i I
j J

  can be expressed by the following equation: 

                ( ) ( ) 2 ( )
1 1( )

i

i i i
j j i i jF    h h h                  (11) 

where 
1

2( ) ( ) ( ) 2 2
1 1 1( ) exp( / 2 ) /

i

i i i
j j j i iF  

      h h h , 1,i   

1i   are the approximation parameter and iterative step size 

parameter of layer 1i   respectively, and the output ( )i
Jh  is 

the input of the projection module. 

Projection module( ( )
1:

i
j J ): The output ( )i

Jh  of update 

module ( )i
j  is taken as input, ( 1: )

1:
i I

j JZ 
  can be expressed by 

               ( ) ( ) ( )( )i i i
j j P j

  h h T y T h                      (12) 

Where 1( )H H T T TT , when 1j J   and i I , the 

output ( )i
jh  serves as the input of update module ( )

1
i
j ; when 
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j J and 1i I  , the output ( )i
Jh  serves as the input of the 

first update module ( 1)
1
i  of  layer 1i  in SL0-UNet; when 

j J  and i I , the output ( )I
Jh  serves as the final output 

( )Ih  of the network. 

 

Figure 2 The structure of J th layer in subnetwork ( )JP   

The insertion method of the pilot is shown in Table Ⅰ, and 
the frequency domain data of the pilot is 1. According to (1), 

1{ }train Q
q qh is generated as the training label set, and 1{ }test O

o oh  

is generated as the test label set. The sparsity k  is set to 5.  

According to T , 
1{ }train Q

q qh , 1{ }test O
o oh , the corresponding 

training datasets 
1{ }train Q

q qy  and test datasets 
1{ }test O

o oy  are 

generated, where train train
q qy Th , test test

o o y Th w , and the SNR 

given is 1dB to 30dB with an interval of 1dB. 

TABLE Ⅰ. PILOT INSERTION MODE 

Continuous - 
distributed 

32 pilots are continuously inserted on 128 ~ 159 
subcarriers 

Well-
distributed 

Pilots are spaced at 8 intervals and evenly distributed 
over 256 subcarriers 

Random-
distributed 

Pilots are randomly inserted on each of the 32 
subcarriers 

B. Learning Methods of Parameters in SL0-UNet 

To optimize the parameters,, two learning methods are 
considered corresponding to SL0-UNet1 and SL0-UNet2. 

 SL0-UNet1 

SL0-UNet1 sets 1i ic   , 1 I   , c  is the 

attenuation factor, so the network only trains 1 , 1 , and c  

to get better  1,..., I  and 1,..., I  . The advantage of 

this learning method is that only three parameters need to be 
trained and the probability of obtaining the local optimal 
solution gets smaller. However, the disadvantage is that the 
nonlinear fitting ability of the network is insufficient. 
 SL0-UNet2 

SL0-UNet2 is trained for i  and i  of each layer. The 

number of network learning parameters correspondingly 
changes to 2I . This method has high flexibility and strong 
nonlinear fitting ability. But the disadvantage is that the 
training time is longer and it is easy to fall into local 
optimality. It should be emphasized that under the same 
number of layers, the trained SL0-UNet1 and SL0-UNet2 
will have the same time complexity in application 

C. Initialization and training methods 

1) Initialization 

    The input is set to (0) 0h ,  (0) train
q q

h T y and two 

different initialization is expressed in Table Ⅱ. 

TABLE Ⅱ. TWO DIFFERENT INITIALIZATION METHOD 

   c    

SL0-
UNet1  (0)

1 2max
Q

q q
  h

 0.5c   
1 1   

SL0-
UNet2 

2 (0)
10.5 max{ }i Q

i q q 
 h   

1 1I     

With the minimum L2 norm solution the next value for 
  may be chosen about two to four times of the maximum 

absolute value of the obtained sources (max 
( )i

h ). Different 

from SL0 algorithm, the SL0-UNet avoids calculating the 
least square norm solution of 

p y Th  during initialization, 

so the operation complexity is lower. 
2) Training methods 

      Given the number of network layers I  and the training 

data sets 1 1 1{{ } ,{ } }train Q train Q Q
q q q q q   h y , the normalized Mean 

Square Error (NMSE) is defined as the network loss function,  

            
2

( ) (0)

2
2

( , )
2

ˆ ( , , , )1

train train
q q

I train train
q q q

train
q

Q 

 
   

y h

h T h y h

h

        (13) 

 where, ( ) (0)ˆ ( , , , )I train
q qh T h y the output of I th layer ,   is 

the parameter and (0), , train
qT h y  are the inputs. 

 SL0-UNet1 

          The parameters * * * *
1 1{ , , }c    can be updated 

directly by minimizing the     through the back 

propagation algorithm. 
 SL0-UNet2 

          To be more specific, on the premise of 
* * *
1: 1:{ , }i i i i    obtained after training the i layers  of the 

network, the layer 1i   is trained in two steps. First, keep 
*
1:i  unchanged and learn the parameter 

1i  of  layer 1i   

in the network by using (13)  

      

1

2
(i+1) * (0)

1: 1* 2
1 2

( , )
2

ˆ ({ , }, , , )1
argmin

train train
i q q

train train
q i i q q

i
train
q

Q




 

  
  

y h

h T h y h

h

    (14) 

 were, ( i+1) * ( 0 )
1: 1

ˆ ({ , } , , , )train
q i i q h T h y  represents the output 

of layer 1i   in the network, and then takes *
1: 1{ , }i i   as 

the initial value, and solves (15) to update 1: 1i : 

  

1: 1

2
(i+1) (0)

1: 1* 2
1: 1 2

( , )
2

ˆ ({ }, , , )1
arg min

train train
i q q

train train
q i q q

i
train
q

Q




 

 
  

y h

h T h y h

h

   (15) 

the optimal parameters * * *
1{ , }I

i i i     of layer 1 to layer i  

is obtained. After optimizing the network parameters, the 

estimation result can be obtained by new test datasets test
oy  

                    ( ) * (0)ˆ ˆ ( , , , )test I test
o o o h h T h y                     (16) 

IV. EXPERIMENTAL RESULTS 

In Fig.3, three pilot insertion methods under comb pilot 
sequence structures are tested respectively by using SL0 
algorithm. It is shown that the SL0 algorithm has good 
performance when using fewer pilot resources. The number 
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of network layer in SL0-UNet is set 10, the training data sets 
3000Q   and the number of iterations is 1600. The initial 

values are obtained and shown in Table Ⅲ and Table Ⅳ. It is 
shown that the typical initial value settings obtained by the 
two kinds of network training are different from those of 
traditional SL0 algorithm, and the operation efficiency is 
higher than that of SL0 algorithm. 

In Fig4, it is shown that the channel sparse recovery 
performance of SL0-UNet is better than SL0 algorithm, 
especially, SL0-Unet2 performs better with higher SNR. 

0 2 4 6 8 10 12 14 16

SNR(dB)

-42

-40

-38

-36

-34

-32

-30

-28

Continuous-distributed-32

Well-distributed-32
Random-distributed-32

Random-distributed-16

  
Figure 3 The comparison of three pilot insertion methods 

TABLE Ⅲ. THE OPTIMIZATION OF PARAMETERS IN SL0-UNET1 (WITHOUT NOISE) 

 1  
1  c  

Before 
optimization 

0.0626 1 0.5 

After 
optimization 

0.0528 1.1793 0.6368 

TABLE Ⅳ. THE OPTIMIZATION OF PARAMETERS IN SL0-UNET 2 (WITHOUT NOISE) 

Layer Initial  Final  Initial  Final   

1 0.1083 0.1083 1 1.0000 

2 0.2165 0.0511 1 1.8608 

3 0.1083 0.0562 1 1.6221 

4 0.0541 0.0090 1 1.2975 

5 0.0271 0.0102 1 1.3709 

6 0.0135 0.0145 1 1.3229 

7 0.0068 0.0149 1 1.4483 

8 0.0034 0.0148 1 1.6202 

9 0.0017 0.0130 1 1.6732 

10 0.0008 0.0120 1 1.6840 

TABLE Ⅴ. THE OPERATION COMPLEXITY OF SL0-UNET,SL0 AND OMP 

SR techniques     

SL0-UNet (4 8 1)n mn IJ   

SL0   38 4 1 8 4 / 3mn n IJ mn m     

OMP 3 4 24 2 4 4 / 3 8mnk nk mk k mk     
In Fig.5, it is show that with the increasing of network 

layer I , the complexity of SL0 algorithm is higher than SL0-
UNet1 and SL0-UNet2. For SL0-UNet1 the number of 

parameters that needed to be trained is 2 in each network 
layer, and for SL0-UNet2 the number is 2I .  

In Fig.6, it is shown that when the SNR is lower than 
15dB, the NMSE of SL0-UNet2 is almost consistent with 
SL0 and OMP algorithms, but better than LS algorithm. 
However, when the SNR is higher than 15dB, the NMSE of 
SL0-UNet2 decreases rapidly, while the performance of 
OMP algorithm deteriorates because the priori information 
of sparsity is unknown.  

 
Figure 4 The comparison between SL0, SL0-UNet1, SL0-UNet2 

 

Figure 5 The time complexity between SL0-UNet1, SL0-UNet2 

 
Figure 6 The comparison between SL0, SL0-UNet2, OMP, LS 
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In Fig.7 it is shown that SL0-UNet2 can recover the 
channel well in any situation while the performance of SL0 
and OMP algorithm is not satisfactory.  

Then, in order to investigate whether the proposed 
network can perform channel estimation with fewer pilot 
resources, the number of pilots is set to be 16, 32, 64 when 
constructing the datasets, and the number of pilots that SL0, 
OMP and LS algorithm used is still set to be 32. The 
comparison is shown in Fig8. It is shown that the sparse 
recovery performance of SL0-Unet increases steadily with 
the increase of pilot resources, and is not sensitive to noise. 
And compared with the traditional sparse recovery algorithm, 
it can use less pilot resources to get the same or even better 
results. 

V. CONCLUSIONS 

 A deep neural network model with iterative optimization 
algorithm based on SL0 algorithm is introduced, and the 
network structure, data sets construction, initial parameter 
learning methods and training methods are given in details. 
The simulation results show that under different SNR, SL0-
UNet2 has better recovery effect than SL0-UNet1.  
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Figure 7 The comparison between SL0, SL0-UNet2, OMP, LS 

 

 
Figure 8 The comparison between SL0-UNet-16, SL0-UNet-32,SL0-UNet-64,SL0-32 

OMP-32, LS-32 
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