
Accelerating Autonomous Cyber Operations: A
Symbolic Logic Planner Guided Reinforcement

Learning Approach
Ryan Kerr Steven Ding

Queen’s School of Computing
Kingston, Ontario, Canada

{ryan.kerr, steven.ding}@queensu.ca

Li Li Adrian Taylor
Defence Research and Development Canada

Ottawa, Ontario, Canada
li.li, adrian.taylor@drdc-rddc.gc.ca

Abstract—Training a reinforcement learning agent to learn
network penetration testing is challenging due to the partially-
observable, non-deterministic environment. The large action space
leads to extended training time, an issue of particular concern
in mission-oriented network deployment that requires timely
hardening tests. Current solutions for automating penetration
testing are divided between reinforcement learning (RL) and AI
planning. This work integrates the two paradigms and establishes
a neuro-symbolic agent training system through an interactive
symbolic logic engine. Two methods are examined for accelerating
the pentest agent training in this system, namely: invalid action
masking for Deep Q-Networks and using a symbolic logic engine
as an environment driver. The results show that invalid action
masking is highly effective at reducing the number of steps to
convergence, while the logic-based simulator provides a significant
per-step performance improvement to speed up training. These
results highlight that a hybrid neuro-symbolic approach is a
viable, and perhaps even necessary, method for developing and
improving cyber RL agents.

I. INTRODUCTION

As the world becomes increasingly interconnected, cyberse-
curity is critical for protecting our modern way of life. However,
cybersecurity is unfortunately asymmetrical by its very nature:
defenders must maintain full coverage over their networks
while adversaries need only a handful of flaws to engender
considerable harm and devastating consequences. This divide
is further exacerbated by the global shortage of cyber security
talent, motivating autonomous cyber defense capabilities to fill
in the gap. The development of a fully autonomous defensive
(blue) agent is critical for levelling the playing field. Many
tools for automating or simplifying defense tasks are available
today.

Thus, much of the current research is directed toward
developing adversarial (red) agents that are capable of carrying
out simulated attacks against one’s own network. This practice,
known as penetration testing, is used by human experts
to identify vulnerabilities in a network’s defences, provide
actionable steps towards hardening the network against a real
attack. Penetration testing is also commonly used as a method
for training cybersecurity experts. However, red team exercises,
such as penetration testing, are costly in terms of both the
expertise and the time required to execute. An autonomous red

agent allows defenders to harden their networks and get ahead
of emergent threats at a considerably reduced cost.

Prior work in simulated penetration testing has been largely
divided into two categories: domain knowledge-driven ap-
proaches and Deep Reinforcement Learning (DRL) approaches.
Knowledge-driven approaches rely on the ability to formally
define the dynamics of an environment – often in the form of
symbolic logic [1, 2, 3] – to deterministically derive how an
agent should act. Recent work by Miller et al. [4] applied a
variant of online re-planning whereby an agent constructs a
partial plan based on its current knowledge, executes the plan
in the environment, and then repeats the process, incorporating
any new observations, until the goal is reached. Since the
agent may not be able to sufficiently plan ahead with limited
visibility, Miller et al. [4] implemented rules for extrapolating
from the current state and only executed the first action of
each plan before repeating the full process.

The opposite branch, DRL, does not require complete
knowledge of the environment and instead relies on experience
to determine how an agent will act. Agents try to learn the
best course of action purely through repeated interaction with
the environment. Since a formal model is not required for
the agent, researchers have developed and trained agents on
everything from abstract simulations of networks [5, 6, 7] to
real networks [8, 9, 10] with the hopes discovering novel tactics.
However, a key drawback of RL is that the agent must learn the
environment dynamics from scratch, and as a consequence, take
upwards of millions of interactions to show any meaningful
improvement – especially when faced with large action spaces
[7].

The purpose of the research presented in this paper is to
determine the viability of a middle ground where an agent can
exploit domain knowledge to accelerate learning while retaining
the capacity to explore and demonstrate emergent behaviour.
To this end, this paper presents the following contributions:

• AR1ST0TLE, an interactive PDDL symbolic logic engine.
• A novel use of PDDL for invalid action masking.
• The use of a symbolic logic engine as an RL training

environment.

2024 International Conference on Computing, Networking and Communications (ICNC): AI and Machine Learning
for Communications and Networking

979-8-3503-7099-7/24/$31.00 ©2024 Crown 641

II. PROBLEM DESCRIPTION

A. Partially Observable Markov Decision Process (POMDP)

Markov decision Processes (MDPs) are a mathematical
framework for describing decision problems in domains with
uncertainty. An MDP is formally defined by the 4-tuple
⟨S,A, T ,R⟩ where S is the state space, A is the action
space, T is a transition function giving the probability of
reaching a successor state s′ ∈ S from a given state-action
pair T (s, a) = Pr(s′|s, a), R is a reward function R(s, a, s′).

The agent’s overall objective is to learn a policy π for
selecting the best action a for a given state s, such that the
agent maximizes its accumulated reward.

Partially-observable MDPs (POMDPs) are a generalization
over MDPs where an agent only has partial visibility of the
environment. Given an agent only has partial visibility of the
environment, the MDP is extended to a POMDP by including
an observation space Ω and an observation function O that
gives the probability of getting an observation o when moving
to a new state O(s′, a, o) = Pr(o|s′, a).

In a POMDP, the agent operates on a probability distribution
over S rather than on ground states s ∈ S directly. These
distributions, referred to as belief states b, reflect the agent’s
certainty of being in, or not in, any of the underlying states s.
When taking actions, the agent updates its belief states based
on the observations it receives. By operating at this higher
level, it is possible to solve a POMDP by treating it as an
MDP over belief states rather than ground states.

B. Classical Planning

Planning problems are defined by P = ⟨F ,A, I,G⟩ where
F is the set of atoms, A is the action space, I is the initial
state where I ⊂ F , and G is the goal condition. A state can
be described as the subset of atoms in F that are true, and by
the closed-world assumption, atoms not found in s are implied
false. Every action a ∈ A can be further divided into the tuple
⟨prea, effa⟩ where prea describes the action’s precondition and
effa is the action’s effect. An action a is said to be applicable1

for a given state s iff prea holds in s. This can be thought of
as an MDP where T (s, a, s′) = 1 if an action is valid and 0
otherwise.

The objective of a planner is to find a sequence of actions
Π = ⟨a0, a1, . . . , an⟩ that takes the agent from the initial state
I to some goal state SG while optionally maximizing some
utility function, such as an expected reward, or minimizing a
cost, such as the plan length.

In practice, planners use the Planning Domain Definition
Language (PDDL) to describe problem domains and divide the
problem into two parts: the domain, describing the dynamics
of the environment, and a problem, describing a specific
instance. Domain definitions specify predicates, which are
possible properties of objects that can be true or false, and
operators, which serve as templates for actions by defining
parameterized versions of prea and effa. The problem definition

1The terms (in)applicable and (in)valid are used interchangeably throughout
this paper.

declares the specific objects within a domain instance, such
as the hosts on a network and their software, in addition to
the initial state I and the goal G. The combination of the
predicates and objects form F . For instance, the predicate
has_software can be combined with the host object
WebServer and a software object NGINX to a possible fact
(has software WebServer NGINX) ∈ F . The same reasoning
applies to operators and A: when an operator, such as
Escalate, is combined with the an appropriate object, such
as the earlier server, it forms the action (Escalate WebServer) ∈
A.

C. Online Planning Problems

As the agent has partial observability and no prior knowledge
of the environment, it requires an analogue of POMDPs
for planning problems. As such, the agent’s problem Pk is
described as a dynamic subset of the full problem P (i.e.
Pk ⊆ P) whereby Pk = ⟨Fk,Ak, Ik,Gk⟩ and k denotes the
subset of known elements in the corresponding set (i.e. Fk ⊆ F
and so on). The known action space Ak is further defined as
{a ∈ A : prea \Fk = ∅}. Since the agent does not know
the values (let alone the existence) of f /∈ Fk, the agent’s
ability to reason about action effects is bounded by Fk (i.e.
effak = effa ∩Fk). The true effect effa of an action a is only
revealed after running the action, at which point the agent
can update its knowledge to include previously unknown facts
Fk ← Fk ∪ effa. This method is described as “online” as the
full plan cannot be constructed prior to executing actions due
to the necessary interaction with the environment and considers
the possibility that external factors may invalidate the execution
of a plan.

D. Deep Reinforcement Learning (DRL)

Reinforcement Learning (RL) is a method whereby an
agent learns to maximize a reward signal through repeated
interaction with an environment. Critically, RL agents are
capable of learning without having any knowledge of the
environment dynamics, including the transition probabilities
T , action preconditions prea, and action effects effa. This
capability enables agents to learn an optimal policy in complex
environments, such as a live network.

A red agent typically begins with initial access on a host
and must navigate through the network to achieve its goal of
impacting a target host. The red agent learns an optimized
attack course of action without any domain-specific knowledge
through repeated trial-and-error alone. For this paper, this is
achieved using the current state-of-the-art algorithm, Proximal
Policy Optimization (PPO), which learns a policy function
π : S → A to select the best action a ∈ A for a given state
s ∈ S based on experience.

III. THE SYMBOLIC LOGIC ENGINE

To improve the performance of an autonomous red agent, the
proposed solution integrates an online planning logic engine
with DRL. AR1ST0TLE is the devised PDDL1.2-compatible
Haskell logic engine designed to function in environments

2

642

with minimal prior knowledge and unbounded uncertainty.
AR1ST0TLE supports a number of PDDL extensions, including
the ADL extension set, allowing for increased expressiveness
while still maintaining compatibility with existing off-the-shell
planners, such as Fast-Forward2 (FF) [11].

The primary use-case of AR1ST0TLE is to inform a decision-
making agent of the actions that are applicable, or valid,
for a given state (AV = {a ∈ Ak : prea(s)}). Similar
to online re-planning frameworks, AR1ST0TLE is designed
to be interleaved with every step of execution in order to
monitor changes to the environment’s state. At each step, the
agent selects an action from the list of applicable actions,
executes the action in the environment, and then reports the
resulting observations to AR1ST0TLE as a conjunction of
PDDL-formatted atoms. Considering the agent is operating
over the partially-observable problem, Pk, rather than the
fully observable problem, P , the agent will inevitably discover
previously unknown objects (f /∈ Fk) as it navigates through
the environment. When an unknown object is identified in the
observation, AR1ST0TLE gleans the type information from the
corresponding predicate definition and registers the new object
with the appropriate type, expanding Fk. Once all objects and
their types have been resolved, AR1ST0TLE can optionally
combine the expected action effect with the observation, then
evaluate each operator to generate the list of applicable actions
to return to the agent.

This use-case is in contrast to existing uncertainty-aware
symbolic logic systems, such as Bonet and Geffner [12]’s K-
replanner and Miller et al. [4]’s planning system, where the
system serves as the decision making controller rather than as
an auxiliary system. Unlike the implementation by Miller et al.
[4], AR1ST0TLE is entirely PDDL-based similar to the K-
replanner. However, unlike the K-replanner, AR1ST0TLE does
not share the requirement to explicitly declare facts as “hidden”
a priori and does not place restrictions on what can appear in
the effect of an action (with the exception of contradictions),
allowing for a greater degree of flexibility.

IV. EXPERIMENT ENVIRONMENT

The Cyber Operations Research Gym (CybORG)3 is an open-
source, OpenAI gym-compatible penetration testing simulator
and emulator for training RL agents to attack or defend a
network [13]. CybORG includes a number of training scenarios
of which scenario 1b is selected as an experimental example
in this paper. Scenario 1b features a small enterprise network
composed of three subnets: a user subnet containing five hosts,
an enterprise subnet with four hosts, and an operational subnet
with an additional four hosts. All hosts within a subnet are
capable of communicating directly with each other, but only
certain hosts can communicate with specific hosts on a remote
subnet.

The red agent begins on a specific host in the user subnet.
The goal of the red agent is to impact a service on a specific

2Available from https://fai.cs.uni-saarland.de/hoffmann/ff.html
3Available from https://github.com/cage-challenge/CybORG

server located in the operational subnet. To achieve this, the
agent has the following five operations at its disposal:

• NetScan (Subnet): Reveals all hosts on the specified
subnet. Requires the agent to have superuser access to at
least one of the hosts on the specified subnets.

• PortScan (Host): Reveals all listening ports open on a
specified host. Requires the agent to have a foothold on
the host’s subnet and have visibility of the host.

• Exploit (Host): Attempts to exploit a remote service on
a host, giving the agent basic (user) access of the host.

• Escalate (Host): Attempts a privilege escalation to
upgrade the agent’s access level on the specified host
from basic access to superuser access. This action will
additionally reveal any subnet-external hosts that are
reachable from the target host.

• Impact (Host): Impacts the function/services on the
specified host. Requires superuser access.

When enumerated with all the possible parameters, such
as the specific host or subnet to target, the agent can take a
total of 55 different actions in the scenario environment. The
original CybORG scenaio features a defender (blue) agent that
attempts to mitigate the red agent’s advances and remediate
any compromised hosts, however, the defender is disabled for
the purpose of this research. In this work, red actions are
monotonic, meaning past observations and progress cannot be
erased or invalidated, remaining consistent with prior literature
[14, 4].

1) NetScan UserNet
2) PortScan User{1a,2b,3c,4d}
3) Exploit User{1a,2b,3c,4d}
4) Escalate User{1a,2b,3c,4d}
5) PortScan Enterprise{0a,b,1c,d}
6) Exploit Enterprise{0a,b,1c,d}
7) Escalate Enterprise{0a,b,1c,d}
8) NetScan EnterpriseSubnet

9) PortScan Enterprise3
10) Exploit Enterprise3
11) Escalate Enterprise3
12) PortScan OpServer
13) Exploit OpServer
14) Escalate OpServer
15) Impact OpServer

TABLE I: The optimal course of action for the red agent. There
are 4 redundant paths, marked by the superscripts a-d.

The shortest – and optimal – attack path for the agent is as
follows: the agent performs “NetScan” on the initial subnet,
revealing the four neighbouring hosts. The agent then performs
the sequence “PortScan” followed by “Exploit” then “Escalate”
against any one of the newly discovered hosts to reveal a
new host located in the intermediate, enterprise subnet. The
agent then repeats the same sequence against the enterprise
host to gain a foothold on the enterprise subnet, where the
agent must repeat the process against an enterprise host. Unlike
the user subnet, there is only a single host that leads to the
operational subnet from the enterprise subnet. Assuming the
agent successfully selects the correct host, the agent will gain
superuser access to the target server after carrying out the
above steps. At this point, the agent can use the “Impact”
action against the operation server, achieving its goal, and
ending the scenario. In total, this path consists of 15 steps.

Two reward functions are applied in the experiments:

3

643

Enterprise
Subnet

Operations
Subnet

User
Subnet

User0

User1

User2

User3

User4

OpServerEnt1

Ent0

Ent2

Ent3

Op2

Op0

Op1

Fig. 1: Scenario diagram. Each box demarks a subnet where all hosts within the subnet can communicate with each other. The
dashed arrows indicate inter-subnet reachability. The adversary (red) begins in the user subnet and must progressively scan for
and exploit hosts to find its way to impact the goal host (yellow).

1) The agent is only rewarded upon reaching its goal.
2) The agent is given a small reward for taking a valid

action, a medium reward for discovering new hosts for
the first time, and a large reward for the goal.

These reward functions are designed to entice the agent into
achieving the goal quickly without using any information the
agent is not privy to, such as the agent’s distance to the target.

Although this scenario is somewhat abstracted in comparison
to a real-world network, it is representative of the tactical-level
challenges an agent is faced with. When all 55 actions are
available to a random agent at every step, then the agent has a
4 in 5515 (1 in 3.18e25) chance of reaching the goal within 15
steps. Furthermore, each action will yield an effect and reward
at most once, meaning an agent may collect disproportionately
more samples of actions failing compared to samples of actions
yielding an effect. In theory, this could complicate the agent’s
ability to learn actions that are only applicable late-game as
the agent must first adequately learn the preceding steps before
it can observe late-game samples.

A. Environment Mapping to Symbolic Logic

To stand up AR1ST0TLE for the CybORG environment,
the set of predicates, object types, and formal definitions for
each of the 5 above operators were derived from the CybORG
code to form the PDDL domain definition. Additionally, a
CybORG-to-PDDL translation layer was devised as part of the
agent to convert the state into a PDDL problem file containing
either the fully-observable state for classical planning, or
the partially-observable state for AR1ST0TLE. This layer
is also used to supply AR1ST0TLE with new observations
directly at run-time and additionally forms the basis of the
PPO’s state space. The state of each individual host can be
described by a boolean vector where each element indicates
whether a predicate, such as (superuser_access HOST)
or (in_network HOST StartSubnet), has appeared in
the observation at any point. It follows that the state can be

described as a matrix where each column is a predicate and
each row is a corresponding host.

V. METHODS

A. Action Masking

Classical planners operate under the assumption that the
world is fully-observable and deterministic, allowing the
planner to reliably derive successor states of state-action
pairs and select the best action based on some valuation of
the resulting states. When faced with partial observability,
however, there is no guarantee that the expected successor state
adequately reflect reality: the only way to reliably generate an
accurate successor state is to take an action in the environment
and observe the changes. Consequently, when combined with
the assumption that actions applied to a state are monotonic
and irreversible, this prevents planners from backtracking to
explore possible alternatives starting from a previous state.

In lieu of the certainty required to preview the next states
and a utility function to rank them, it is possible to leverage a
neural network to select the best action using only the current
state and a candidate action. A PPO model is integrated with
AR1ST0TLE to form a neuro-symbolic system that operates
similar to an online planning system, where the symbolic
component reduces the action space and the neural component
selects the best action from the subset.

The PPO policy function is implemented as an NN that
outputs a fixed-size vector (π : R|s| → R|A|) where each
element of the vector corresponds to a specific action.The
challenge arises when not all of the actions are available to the
agent. At every step, only a subset of actions are valid actions
that the agent can execute, either due to the action preconditions
not being satisfied or the agent not knowing of the existence of
the required parameters. Many such invalid actions exist in the
action space of a red agent – for the presented experimental
environment, over 80% of the 55 actions are invalid at any given
time step. If there are no limitations to the actions available

4

644

to the agent, the agent must spend additional training time
learning which actions are valid through trial-and-error.

The subset of applicable actions AV is identified by
AR1ST0TLE, and a mask [a ∈ AV : a ∈ A] is applied
to the outputs corresponding to valid actions and the remaining
values are set such that the agent cannot choose the invalid
actions. Huang and Ontañón [15] proved that simply zeroing
out elements corresponding invalid actions before applying the
softmax function produces a valid policy gradient, and thus, a
valid policy function π. Likewise, when choosing a random
action, the sample weights of invalid actions are set to zero
and the remaining weights are re-normalized accordingly. To
prevent having to re-derive the action mask for every state
when performing experience replay, the mask is conveniently
stored alongside the state in the experience replay buffer.

B. AR1ST0TLE as an Environment Driver

The neuro-symbolic system requires an accurate description
of the scenario environment and uses AR1ST0TLE to keep
track of the agent’s state during execution. As a consequence,
AR1ST0TLE duplicates a substantial portion of CybORG’s
functionality needed to simulate the environment. In theory,
using AR1ST0TLE in place of CybORG should accelerate
training by eliminating any duplicated work at run-time. To
fully replicate the functionality in practice, AR1ST0TLE only
requires a reward function R and a transition function T to
be specified in addition to the domain.

While AR1ST0TLE does not have the ability to represent
numbers directly, preventing it from representing functions
such as those based on the number of hosts under the agent’s
control, the rewards in Section IV are constrained to three
discrete reward values. Accordingly, the reward is encoded
as a conditional effect as a “reward” predicate, which a Gym
interface wrapper around AR1ST0TLE then maps to a numeric
value.

Similarly, the transition function T cannot be directly
modelled in AR1ST0TLE, however, actions in experimental
environment only have 2 possible outcomes: success, leading
to a deterministic successor state, and failure, remaining in the
current state. Valid actions have a fixed, non-zero probability of
success, whereas invalid actions will always fail. As such, when
the agent calls for a valid action, the wrapper will generate
a random number in the range [0, 1] and test whether the
value falls within the action’s success threshold. The wrapper
will only forward actions to AR1ST0TLE when the action is
deemed successful, returning an immediate failure to the agent
and leaving the state unchanged otherwise.

VI. EXPERIMENTAL RESULTS

A. Random Agent and Baseline PPO

A random agent without any constraints on the action space
took an average of 722.62 steps (σ = 180.56), or 48.2× the
optimal plan length of 15, to reach the goal. As such, the
cut-off for all agents was set just above this value at 750 steps
per episode.

Cut-off at 750; Lower is better

0 1000 2000 3000 4000 5000
Episode

640

660

680

700

720

740

760

St
ep

s

Goal-Only Reward
Intermediate Rewards
Random (Mean)

Fig. 2: Baseline PPO rolling average steps per episode.

Minimum 16; Lower is better

0 1000 2000 3000 4000 5000
Episode

14

16

18

20

22

24

26

28

30

32

St
ep

s

Goal-Only Reward
Intemediate Rewards
Random (Mean)

Fig. 3: Masked PPO rolling average steps per episode.

Max 16; Higher is better

0 1000 2000 3000 4000 5000
Episode

0

2

4

6

8

10

12

14

16

Pr
og

re
ss

 L
ev

el

Baseline (Goal-Only Reward)
Baseline (Intermediate Rewards)
Masked (Goal-Only Reward)
Masked (Intemediate Rewards)
Random (Mean)

Fig. 4: Agent progress per episode. Each level corresponds to
the plans outlined in Table I. Higher is better.

5

645

The Stable Baselines 3 PPO implementation was used as a
baseline for this experiment [16]. As seen in figure 2, the
baseline agents frequently achieved the goal of impacting
the target server throughout training, however, these agents
performed worse than the random agent on average. Figure
4 reveals that the agents were typically able to discover and
exploit the last host in the enterprise subnet (step 9 and 10
in table I) on average. The agent with intermediate rewards
managed an average of approximately 742 steps, on par with
random, and the goal-only agent performed slightly worse at
an average of approximately 738 steps.

B. Neuro-Symbolic Agent

This experiment used the Stable Baselines 3 Contrib Masked
PPO implementation by Huang and Ontañón [15] using the
same default hyper-parameters as the baseline. When compared
to the random baseline, the random neuro-symbolic agent is
capable of reaching the to just shy of 30 steps – only twice
the optimal path length. This is a ∼96% reduction in the
average number of random steps required to reach the goal and
represents a significant reduction in the problem complexity
for the red agent. This is confirmed by the results in figure ??
where the agents learn the optimal path and complete episodes
with an average of 16.3± 0.1 steps after 60k total steps. It is
likely possible to further refine the results for both the masked
agent and baselines through hyper-parameter turning, however,
these results show that action masking is highly effective for
achieving near-optimal results without requiring any additional
tuning.

C. Environment Driver

To test whether using AR1ST0TLE as an environment driver
is feasible, both CybORG and AR1ST0TLE were run in parallel
to ensure the two environments were equivalent. Once this
equivalency was verified, both environments were run for
100,000 steps with an agent that repeatedly executed a plan
and an agent that selected actions at random. In both cases,
the environment was reset when the agent reached the goal.

Step Time Reset Time Total Time

Plan CybORG 1.41ms 21.69ms 4m45s

AR1ST0TLE 0.66ms 0.13ms 1m07s

Random CybORG 1.38ms 21.64ms 2m20s

AR1ST0TLE 0.02ms 0.13ms 3s

TABLE II: Average performance comparison over 100,000
steps between CybORG and AR1ST0TLE as an environment
driver on a Ryzen Threadripper PRO 3995WX CPU running
Ubuntu 20.04.

Table II provides a summary of the average step times,
average reset times, runtimes from each trial. AR1ST0TLE
outperformed CybORG by a noticeable margin, being ∼4.25×
faster in the plan trial and ∼47× faster in the random trial.

The difference in AR1ST0TLE’s performance between
the plan and random trials is largely due to the fact that

AR1ST0TLE identifies all valid actions in a single step and
instantly fails any actions that did not appear in the set for the
steps following. As a result of this “short-circuit,” AR1ST0TLE
only needs to perform computations when a valid action is
executed. In contrast, CybORG’s performance does not vary
between trials as action validation is performed at every action
execution.

Despite both environments having to perform this validation
at every step for the plan-based agent, AR1ST0TLE was able
to consistently outperform CybORG while managing to test
the validity of all actions as opposed to an individual action.
Moreover, AR1ST0TLE was nearly 167× faster than CybORG
in terms of resetting the environment, making up the remainder
of the performance difference.

The plan trial is especially important as it reflects the
expected performance for the neuro-symbolic agent described
in Section VI-B where having the set of valid actions is vital
for deciding the next action. When AR1ST0TLE is auxiliary to
CybORG to generate the valid action space, the total runtime
is closer to the individual runtimes combined (5m52s in this
case). It follows that using AR1ST0TLE as an environment
eliminates 81% of the overhead by removing CybORG from
the equation, substantially accelerating RL training.

Given this acceleration, AR1ST0TLE was used in place
of CybORG to train the RL agents and generate the results
featured in the previous sections. The models were then
validated on CybORG to ensure compatibility.

VII. CONCLUSION AND FUTURE WORK

The CybORG scenario demonstrates the challenges of
operating in a partially-observable environment. This research
has shown that the intersection of RL and symbolic logic is
highly effective for training agents quickly. A logic engine
alleviates the need for an RL agent to learn the dynamics
of an environment from scratch. Conversely, the use of the
RL paradigm enables AI planning techniques in partially-
observable domains without having to rigorously define rules
and compute multiple plans. This research also introduced a
novel use of a symbolic logic engine as light-weight environ-
ment driver, significantly speeding up agent training compared
to the existing CybORG environment. Further research is
required to evaluate whether this approach can be scaled to
larger networks and environments with increasingly complex
dynamics, and whether this approach generalizes to variations
of the given scenario and different networks.

REFERENCES

[1] C. Phillips and L. P. Swiler, “A graph-based system
for network-vulnerability analysis,” in Proceedings
of the 1998 Workshop on New Security Paradigms,
ser. NSPW ’98. New York, NY, USA: Association
for Computing Machinery, 1998, p. 71–79. [Online].
Available: https://doi.org/10.1145/310889.310919

[2] J. L. Obes, C. Sarraute, and G. Richarte, “Attack
planning in the real world,” in Proceedings of the
Second International Workshop on Security and Artificial

6

646

Intelligence, AAAI 2010, vol. abs/1306.4044, 2013.
[Online]. Available: http://arxiv.org/abs/1306.4044

[3] S. Jajodia, S. Noel, P. Kalapa, M. Albanese, and
J. Williams, “Cauldron mission-centric cyber situational
awareness with defense in depth,” in 2011 - MILCOM
2011 Military Communications Conference, 2011, pp.
1339–1344.

[4] D. Miller, R. Alford, A. Applebaum, H. Foster, C. Little,
and B. E. Strom, “Automated adversary emulation: A
case for planning and acting with unknowns,” MITRE
Technical Papers, 2018.

[5] J. Schwartz and H. Kurniawati, “Autonomous penetration
testing using reinforcement learning,” CoRR, vol.
abs/1905.05965, 2019. [Online]. Available: http://arxiv.
org/abs/1905.05965

[6] Microsoft Defender Research Team, “CyberBattleSim,”
https://github.com/microsoft/cyberbattlesim, 2021, created
by Christian Seifert, Michael Betser, William Blum, James
Bono, Kate Farris, Emily Goren, Justin Grana, Kris-
tian Holsheimer, Brandon Marken, Joshua Neil, Nicole
Nichols, Jugal Parikh, Haoran Wei.

[7] K. Tran, A. Akella, M. Standen, J. Kim, D. Bowman,
T. Richer, and C. Lin, “Deep hierarchical reinforcement
agents for automated penetration testing,” in Proceedings
of the First International Workshop on Adaptive Cyber
Defense, IJCAI 2021, vol. abs/2109.06449, 2021. [Online].
Available: https://arxiv.org/abs/2109.06449

[8] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim,
and D. Marriott, “Cyborg: A gym for the development
of autonomous cyber agents,” in Proceedings of the
First International Workshop on Adaptive Cyber Defense,
IJCAI 2021, vol. abs/2108.09118, 2021. [Online].
Available: https://arxiv.org/abs/2108.09118

[9] L. Li, R. Fayad, and A. Taylor, “Cygil: A cyber gym
for training autonomous agents over emulated network
systems,” in Proceedings of the First International
Workshop on Adaptive Cyber Defense, IJCAI 2021,
vol. abs/2109.03331, 2021. [Online]. Available: https:
//arxiv.org/abs/2109.03331

[10] A. Molina-Markham, C. Miniter, B. Powell, and A. Ridley,
“Network environment design for autonomous cyberde-
fense,” 2021.

[11] J. Hoffmann and B. Nebel, “The FF planning system:
Fast plan generation through heuristic search,” Journal
of Artificial Intelligence Research, vol. 14, pp. 253–302,
2001.

[12] B. Bonet and H. Geffner, “Planning under partial
observability by classical replanning: Theory and
experiments,” in IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, T. Walsh,
Ed. IJCAI/AAAI, 2011, pp. 1936–1941. [Online].
Available: https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-324

[13] M. Standen, M. Lucas, D. Bowman, T. J. Richer,
J. Kim, and D. Marriott, “Cyborg: A gym for the

development of autonomous cyber agents,” CoRR,
vol. abs/2108.09118, 2021. [Online]. Available: https:
//arxiv.org/abs/2108.09118

[14] J. Hoffmann, “Simulated Penetration Testing: From
”Dijkstra” to ”Turing Test++”,” in Proceedings of the
Twenty-Fifth International Conference on Automated
Planning and Scheduling, ICAPS 2015, Jerusalem, Israel,
June 7-11, 2015, R. I. Brafman, C. Domshlak, P. Haslum,
and S. Zilberstein, Eds. AAAI Press, 2015, pp. 364–372.
[Online]. Available: http://www.aaai.org/ocs/index.php/
ICAPS/ICAPS15/paper/view/10495

[15] S. Huang and S. Ontañón, “A closer look at invalid
action masking in policy gradient algorithms,” The
International FLAIRS Conference Proceedings, vol. 35,
may 2022. [Online]. Available: https://doi.org/10.32473/
flairs.v35i.130584

[16] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kan-
ervisto, R. Traore, P. Dhariwal, C. Hesse, O. Klimov,
A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu, “Stable Baselines,” https://github.com/hill-a/
stable-baselines, 2018.

7

647

