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Abstract—To monitor RF activity and coordinate access to
a channel that is shared by heterogeneous wireless systems,
network administrators and/or users must be able to identify
observed transmissions rapidly and accurately. Recent research
shows that deep neural networks (DNNs) can identify the under-
lying waveform of an RF signal based on the in-phase/quadrature
(I/Q) samples without decoding them. Such DNNs take as input
a fixed-size window of I/Q samples. To utilize the temporal
features at various scales and improve the classification accuracy,
we propose a two-stage DNN classification structure. In the
first stage, DNN is designed to detect and classify long-term
periodic features, such as the cyclic prefix (CP). The output of
this classifier is then used as a latent variable for a second-
stage protocol (technology) classifier. To evaluate this model, we
consider spectrum sharing between Wi-Fi, LTE License Assisted
Access (LAA), and 5G NR-unlicensed(NR-U) over the unlicensed
5GHz bands. Compared to the ResNet-18-1D, the proposed two-
stage approach improves the classification accuracy from 71%
to 90% while reducing the trainable parameters from 3.8 to 1.8
million. As a result, our compact design is more accurate and
energy efficient than computational-intensive DNNs for mobile
devices.

Index Terms—Deep learning, signal classification, waveform
coexistence, spectrum sharing

I. INTRODUCTION

The demand for wireless capacity continues to outgrow

spectrum availability, especially at low and mid bands (e.g.,

sub-7 GHz). To efficiently utilize the allocated spectrum,

various spectrum-sharing architectures have been proposed [1].

For example, in the Citizens Broadband Radio Service

(CBRS), a three-tier access system is employed, which enables

commercial users to share spectrum with incumbent federal

and non-federal users [2]. A dynamic frequency selection

approach was adopted for the Unlicensed National Information

Infrastructure (UNII) bands, permitting LTE License Assisted

Access (LAA) and 5G NR-unlicensed (NR-U) cellular tech-

nologies to share these bands with Wi-Fi devices [3]. Spectrum

sharing and coexistence inevitably introduces interference

among users. Therefore, it is critical for network coordinators

to rapidly classify observed signals for the purpose of reducing

interference and assigning fair channel access.

This research was supported in part by NSF (grants # 2229386 and
1822071) and by the Broadband Wireless Access & Applications Center
(BWAC). Any opinions, findings, conclusions, or recommendations expressed
in this paper are those of the author(s) and do not necessarily reflect the views
of NSF.

Identifying the waveforms of heterogeneous protocols is

difficult unless the given contending device is equipped with

multiple radios. Deep neural networks (DNNs) are designed

and proven to complete multi-class detection accurately. In

contrast to traditional waveform-based sensing methods, DNN

classifiers do not require prior knowledge about the protocol

or devices and are efficient for signal detection in shared

bands. In our paper, we investigate the DNN for heterogeneous

wireless technology1 classification over a shared spectrum,

focusing on Wi-Fi, LTE-LAA, and 5G NR-U in the unlicensed

5 GHz bands as an example.

Several DNNs have been recently proposed to classify RF

signals based on received in-phase/quadrature (I/Q) samples

[4]–[8]. These approaches take a fixed-size window to sample

the I/Q stream and use these samples to train the DNN.

Generally, a shorter window captures short-term changes in

the sequence and is able to detect the signal faster. How-

ever, the cyclic features often occur at longer time scales

than a typical window of I/Q samples fed into a classical

signal classifier. In addition, a longer window includes more

information embedded in the waveform, such as periodicity

of the cyclic prefix (CP) in OFDM waveforms, the regularly

inserted pilot messages in the time-frequency resource map

of the OFDMA schedule, and the alternating pattern of the

time-division duplexing (TDD) cycle. In our work, we propose

a two-stage classification structure to approximate the cyclic

feature on a large scale and then use them for wireless protocol

classification with a short sampling window size. In other

words, we aim to capture additional temporal features in

different scales for an accurate protocol classifier.

In a 5G NR waveform, the CP is inserted after each OFDM

symbol. The symbol duration (including the CP) ranges from

4.47 μsec to 71.4 μsec, depending on the numerology (equiv-

alently, the subcarrier spacing). At a sampling rate of 100

M samples/sec, these symbol durations correspond to 447 to

7140 samples. Even if one were to reduce the sampling rate by

an order of magnitude (i.e., 10 M samples/sec), thousands of

samples per window are still needed to capture multiple CPs

for use in one classification instance. Hence, the window sizes

of 128 or 512 I/Q pairs, as utilized in [4], [5], are inadequate

for capturing temporal correlations associated with CP. In

1We use wireless protocol and wireless technology interchangeably in our
paper.
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Fig. 1. Example of OFDM cyclic prefix.

this paper, we first investigate the feasibility of CP duration

approximation with a sufficient long sampling window. By

incorporating additional temporal features from CP estimation

with raw I/Q samples, we show that the protocol classification

accuracy effectively gets enhanced.

Even though there are other advanced DNN structures for

accurate classification, these structures usually require more

computational resources. In [9], the author proposes to use

the number of trainable parameters to compare the complexity

of models. The more parameters indicate more energy con-

sumption and more memories required. In wireless mobile

networks, such complexity and consumption are practical

concerns. Our proposed structure shows that a concise multi-

layer perceptron (MLP) with a few trainable parameters can

achieve high accuracy, making DNN classifiers feasible for

deployment in wireless networks.

II. CYCLIC PREFIX FOR WIRELESS TECHNOLOGIES

CP acts as a buffer region or guard interval to protect

the OFDM signals from inter-symbol interference, as shown

in Figure 1. It repeats the end of the symbol so the linear

convolution of a frequency-selective multi-path channel can be

modeled as circular convolution, which in turn may transform

to the frequency domain via a discrete Fourier transform.

LTE waveforms have a subcarrier spacing (SCS) of 15 kHz

with two optional CP durations corresponding to normal

and extended CPs. The normal CP is intended to support

propagation conditions with a delay spread up to 4.7 μs, while

the extended CP support up to 16.7 μs. In general, the normal

CP is more commonly found. There are 10 subframes in a 10-

msec LTE frame, and each subframe contains 6 or 7 OFDM

symbols, depending on whether a normal or extended CP is

used. In the case of a normal CP, the first symbol has a duration

of 5.2 μs while the remaining 6 symbols have durations of 4.69

μs each. For simplicity, we treat both as one CP type. The CP

parameters for LTE are summarized in Table I.

TABLE I
CP AND SYMBOL DURATIONS FOR VARIOUS TYPES OF LTE SIGNALS

LTE

Subcarrier Spacing 15 KHz
OFDM Symbols/Subframe 7/6 (normal/extended CP)

CP Length (Normal)
5.2 μs (first symbol)/

4.69 μs (six following symbols)
CP Length (Extended) 16.67 μs

Symbol Duration (without CP) 66.67 μs

3GPP standards define several 5G NR waveforms with dif-

ferent CP and symbol durations, depending on the numerology

(or SCS), as shown in Table II. Some of these durations

are meant for Frequency Range 2 (FR2), which is mmWave

spectrum. Given that we focus on spectrum sharing with LTE

and Wi-Fi, we only consider a subset of the 5G NR CPs in

FR1 (“sub-6 GHz bands”). Note when SCS = 60 kHz, the

CP duration have two options depending on the normal or

extended settings, similar to the LTE. Other than that, one

SCS has only one corresponding CP duration setting.

TABLE II
CP AND SYMBOL DURATION FOR VARIOUS TYPES OF 5G NR SIGNALS (I

IS THE INDEX OF AN OFDM SYMBOL IN A FRAME)

5G NR

SCS Duration CP for Long Symbols CP for Other Symbols
15 KHz 66.67 μs 5.2 μs (for i = 0 or 7) 4.69 μs
30 KHz 33.33 μs 2.86 μs (for i = 0 or 14) 2.34 μs

60 KHz 16.67 μs
1.69 μs (NCP), 4.17 1.17 μs (NCP),

μs (ECP), for i = 0 or 28 4.17 μs (ECP)
120 KHz 8.33 μs 1.11 μs (for i = 0 or 56) 0.59 μs
240 KHz 4.17 μs 0.81 μs (for i = 0 or 112) 0.29 μs

Wi-Fi signals also have cyclic features, called guard inter-

vals (GIs). For instance, in Wi-Fi 5, specified by the IEEE

802.11ac standard, long and short GIs can be used, with

corresponding durations of 0.8 and 0.4 μs, respectively. In both

cases, the OFDM symbol duration without the GI is 3.2 μs.

Wi-Fi 6, as specified by the IEEE 802.11ax standard, uses a

much longer symbol duration of 12.8 μs and, correspondingly,

a smaller SCS of 78.125 kHz. Three different GIs are available,

as shown in Table III.

TABLE III
CP AND GI DURATIONS FOR VARIOUS TYPES OF WI-FI 5/6 SIGNALS

802.11ac (Wi-Fi 5) 802.11ax (Wi-Fi 6/6E)

Symbol Duration 3.2 μs Symbol Duration 12.8 μs
Subcarrier Spacing 312.5 KHz Subcarrier Spacing 78.125 KHz

Long GI 0.8 μs Normal GI 0.8 μs
Short GI 0.4 μs Double GI 1.6 μs

Quadruple GI 3.2 μs

III. WIRELESS TECHNOLOGY CLASSIFIER DESIGN WITH

CP AS LATENT VECTOR

Our wireless technology classifier employs a two-stage

prediction approach. The protocol prediction hinges on two

consecutive classifiers functioning at distinct time scales, as

depicted in Figure 2. In the initial stage, the CP/symbol

duration classifier2 utilizes a lengthy window Wcp, illustrated

in black, to sample the I/Q stream. Subsequently, the protocol

classifier in the second stage utilizes a shorter window W ∗,

indicated in red, to predict the protocol type of the received

signal. For regular classifiers in [4]–[8], the window size is

equivalent to W ∗. In contrast, our two-stage approach approx-

imates the CP types from Wcp and generates the prediction as

2For simplicity, we abbreviate the CP/symbol duration classifier as the CP
classifier in our paper.
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the latent variable for protocol classification. Such latent vector

is padded, reshaped, and appended to W ∗, forming W ∗ +N
input to the second (protocol) classifier, as shown in green,

where N depends on the number of CP types. In our work,

we consider that the sampling windows are non-overlapping

for both the CP and protocol classifiers. Because W ∗ < Wcp,

the same latent vector will be used for multiple instances at the

second classifier. For simplicity, we set Wcp to be an integer

multiple of W ∗.

A. Training and Testing Process

We split the data into non-overlapping two sets, where 80%

of data is for training and the rest 20% is for testing. There

are two stages in the training process. In the first stage, the

I/Q pairs are sampled into windows of Wcp. These windows

are used to train the CP classifier with CP labels. We then use

the trained classifier to generate the CP predictions for the

training set. These predictions are the latent vectors for the

next stage classifier. In the second stage, we train the protocol

classifier using the I/Q pairs and latent vectors within W ∗+N .

Correspondingly, the labels become the protocol types. During

the testing phase, we also evaluate our model in two stages.

Firstly, the trained CP classifier uses the I/Q pairs within Wcp

to generate latent vectors for the testing set. After that, the

I/Q pairs associated with latent vectors (W ∗ + N ) are used

as input for protocol classification. Finally, we compare the

output of the second-stage classifier with the true protocol

label to evaluate our model’s accuracy.

B. Cyclic Prefix Assisted (CyPA) Latent Vector

A DNN can be represented by the mapping z = g(x; θ),
where x is a window of I/Q samples and θ is the set of

learnable DNN parameters. The input x is in R
2×W , where

W is the window size (in consecutive samples) and the

first (second) row represents the sequence of I (Q) values,

respectively. The output z is in R
K , and K is the number of

classes. The input matrix x is passed through the DNN and is

represented by a feature vector that is the result of a projection

and nonlinear (activation) function, φ(·). For our CP classifier,

the activation function for the last layer (i.e., output layer) is

the softmax function σ: σ(z)i =
ezi∑K

j=1 ezj
.

Where i ∈ {1, 2, ...,K} .
= K. After activation function,

the classifier output results {σ(z)1, σ(z)2, ..., σ(z)K}. These

results have been normalized by softmax function so we

treat them as the confidence for each CP class. To gener-

ate the prediction, the classifier assigns a label f(x; θ) =
arg maxk(σ(z)k) to the received input, where k ∈ K. To make

use of the hard outcome and keep it the same length of as the

confidence vector, we apply one-hot encoding [10]. Such a

output vector consists of all ‘0’s except for one element that

has a value ‘1’. The location of bit ‘1’ within the output vector

indicates the most likely CP type. These two types of output

of the CP classifier are used as the latent vector that consists

of either probabilities (soft outcome) or binary values (hard

outcome), indicating the CP duration belongs to a given type.

CP/Symbol 
Duration Classifier

Protocol Classifier

Appending Latent Vector

Input Window 
for CP Classifier 
with Size of

Window Shift on 
I/Q Stream

Input Window for Protocol 
Classifier without Latent Vector 
with Size of  ௖ܹ௣ ܹ∗ Input Window for Protocol 

Classifier with Latent Vector
with Size of  f ܹ∗ + ܰ

ܰ Depends on the 
Number of CP Classes 

Fig. 2. Overall structure of the two-stage protocol classifier.

TABLE IV
HYPERPARAMETERS FOR PROPOSED TWO-STAGE CLASSIFICATION

STRUCTURE

Activation Function ReLU
Loss Categorical Cross-entropy

Overfitting Prevention Early Stopping (Patience = 10)
Batch Size 512
Optimizer Adam

Max Training Epochs 100

C. Hyperparameters for Classifiers

We use MLPs for both the CP and protocol classifiers. The

CP classifier includes four layers with sizes 512, 256, 64, and

7. In contrast, the protocol classifier has the same structure

except three neurons in the output layer. This is because

we consider three possible protocols associated with seven

types of CPs. Other hyperparameters for classifier training

are summarized in Table IV. We’ve studied the performance

with/without dropout and normalization in these classifiers. We

found both to have negligible impact on the classification ac-

curacy. For brevity, we present the results when normalization

and dropout are not performed.

IV. DATA GENERATION

Data generation for the three technologies is conducted

using Matlab LTE, 5G, and WLAN communication toolboxes.

We produce a dataset for 7 different CP “types”: two related

to LTE signals (Normal and Extended CPs), two to 5G NR

signals (15 kHz and 30 kHz SCS), two to 802.11ax signals

(Normal and Double GIs), and one to 802.11ac signals (long

GI). For each type of CP, we generate 15 AWGN channel

realizations, where 12 are used for training and 3 for testing.

Each realization includes about 300, 000 I/Q pairs. Among the

three types of signals, LTE with Extended CP has the longest

OFDM+CP duration (83.34 μs). At a sampling rate of 30.72

MS/sec, this duration corresponds to about 2560 I/Q samples.

Thus, we set Wcp = 2560, which ensures that any window

sample will cover at least one OFDM duration plus its CP or

GI for all protocols. Considering non-overlapping windows,

each realization results in 307200/2560=120 windows, ending

with 1,440 sample windows for training and 360 sample

windows for testing for each CP type. In total, we have
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10,080 and 2,520 windows of samples for training and testing,

respectively, across all 7 CP types. These CP types correspond

to the SCS value by definition.

The channel realizations are produced at SNR = 15 dB,

where the SNR value is controlled by channel noise. The I/Q

samples (with noise included) are normalized by their mean

energy over the whole realization. Since our final objective

is detecting the wireless protocol types, we restrain the same

bandwidth of 20 MHz and the same modulation scheme of

64-QAM for all three protocols to eliminate their impact.

Some other parameter values are selected to ensure that the

realizations of different technologies are equal in length, as

measured in the number of I/Q samples/realization. While

this is not a requirement, it ensures the results for different

technologies have the same statistical confidence.

V. PERFORMANCE EVALUATION

Our proposed CyPA structure includes two stages. In the

first stage, we use a CP/symbol duration classifier, as described

in Section III, to classify CP and generate latent variables.

We depict the classification results of the 7 CP types in

the confusion matrix shown in Figure 3. The CP classifier

can accurately detect the GI duration of a Wi-Fi signal with

100% accuracy. This can be explained by the fact that the

GI durations for Wi-Fi (0.8 or 1.6 μs) are quite distinct

and are much shorter than the CP durations used for LTE

and 5G NR. The classifier can also successfully distinguish

between Wi-Fi 6 and Wi-Fi 5, even if both have the same

GI duration of 0.8 μs. In contrast, differentiating between the

CP durations of LTE and 5G NR is not as easy. In fact, the

average classification accuracy for the four CP types of LTE

and 5G NR is just 51.5%. The overall testing accuracy for the

CP classifier is 72.34%.

We also considered other state-of-art classifiers, including

LSTM, bidirectional RNN, VT-CNN2, and ResNet [4], [5],

[11]–[13]. However, these classifiers have limited accuracy

improvement but a much more significant increase in model

size. We compare these models with CyPA in Section V-C.

The inaccurate prediction also indicates that the regular DNN

structure is challenging to fully utilize the CP information.

As a result, we propose a two-stage design for protocol

classification, where we develop the second-stage classifier

using the latent variable generated from the CP classifier.

A. Precision, Recall, and F1 Score

We consider using precision, recall, and F1 score to eval-

uate the second-stage classifier. For each protocol, the result

becomes binary. There are True Positive (TP), True Negative

(TN), False Positive (FP), and False Negative (FN), four

types of classification depending on the actual and predicted

labels. Precision is defined as TP/(TP+FP) to illustrate the

accuracy among all positive predictions. In contrast, recall

equals TP/(TP+FN), showing accuracy among all actual pos-

itive inputs. A higher precision and recall represent a better

classifier. F1 score is generated from precision and recall as

2×precision×recall/(precision + recall). This is approximately

Fig. 3. Confusion matrix for the CP classifier, considering 7 CP types (SNR
= 15 dB).

the harmonic mean of precision and recall. A high F1 score

indicates the classifier is less bias in FN and FP.

TABLE V
PRECISION, RECALL AND F1 SCORE FOR CLASSIFIERS WITH DIFFERENT

CP TYPES AS LATENT VARIABLES

Metrics Protocol Without CP (%) With Hard CP (%) With Soft CP(%)

Precision
LTE 63.52 64.15 79.61
5G 57.47 70.82 80.39

Wi-Fi 100 100 100

Recall
LTE 59.86 68.73 80.23
5G 61.17 66.37 79.76

Wi-Fi 100 100 100

F1 Score
LTE 61.65 66.36 79.92
5G 59.26 68.53 80.08

Wi-Fi 100 100 100

1) Evaluating the Performance of a Single-Stage Protocol
Classifier (without CP): Before we study the combined two-

classifier design, as a reference point we first study the

performance of a protocol classifier that does not rely on the

CP duration classifier, i.e., it only uses a single classification

stage. In this case, the protocol classifier has three possible

outcomes (labels): LTE, 5G, and Wi-Fi. The training and

testing data are the same as the ones used to study the 7-label

CP duration classifier, i.e., realizations of different variants of

the three protocols. We set W ∗ = 2560. An MLP classifier is

used, and the corresponding results are presented as ’Without

CP’ in Table V. Although the Wi-Fi signal can be accurately

identified, the classifier is not as accurate in differentiating

between LTE and 5G NR signals. The F1 score is only around

60% for these two labels, indicating the classifier has high FN

and FP predictions. The overall testing accuracy for the 3-label

protocol classifier is 77.17%.

2) Evaluating the Performance of the Two-Classifier Struc-
ture with Hard CP: We evaluate the overall performance of the

two-classifier design. We first train the CP classifier, as shown

in Figure 3. After that, we train the second (protocol) classifier

using the true values of the latent vector (binary). This is

because the true CP labels of the input are known during the
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(a) (b) (c)

Fig. 4. ROC curve for wireless technology (protocol) classifiers with different CP types as appended latent variables, trained and tested under data with
multiple CP types per protocol. (a) Without CP, (b) with hard CP, and (c) with soft CP.

training phase. These labels provide more accurate information

for the protocol classifier training. However, during the testing,

we can only rely on the first classifier to predict values of

the latent vector (also binary). The classification accuracy is

summarized as ’With Hard CP’ in Table V. Compared to a

protocol classifier without CP, appending hard CPs improves

the precision, recall, and F1 score for 5G signals by 13.35%,

5.2%, and 9.27%, respectively. The precision and F1 score

for LTE improves slightly, but the increment in the recall is

8.87%. In addition, the average accuracy over three classes

increases from 77.17% to 81.42%.

3) Evaluating the Performance of the Two-Classifier Struc-
ture with Soft CP: Although the appended latent vector

improves the classification accuracy, the appended vectors in

the training and testing phases are different (one is true while

the other is predicted). Instead, we consider appending the

predicted soft output of the first classifier to both training and

testing samples used in the second classifier. This approach

is justified by the fact that predictions on CP type are only

72.34% accurate on average, implying that the predicted and

true latent vectors can differ significantly, thus impairing

the second classifier. Even though the soft-predicted latent

vector is not 100% accurate during the training part, it still

approximates the distribution of the CP types. Using this

approach, we obtained the results as ’With Soft CP’ in Table

V. The precision, recall, and F1 scores for LTE and 5G are

further improved by another 10% than hard CPs. On average,

the classification accuracy for the 2-classifier design increases

to 88.57%.

The above evaluation for the protocol classifier has a

window length of W ∗ = 2056. However, in some cases,

predictions can be made based on a smaller window size.

Accordingly, we investigate the accuracy of protocol classi-

fication under two other values of W ∗ (with Wcp = 2560),

considering these three CP types, and show the results in

Figure 5. When W ∗ = 512, we can see that the classification

accuracy improves from 71.75% when only one classifier is

used to 80.54% when appending hard CPs. It means the latent

variable about the CP generated from the first classifier is

valuable for the protocol classifier. Moreover, the accuracy

further improves to 89.99% when appending the soft CPs.

Without CP

With True CP

With Predicted CP (soft)

Appended Latent Variables during Training
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Fig. 5. The impact of true and soft CP information on classification accuracy
of the protocol classifier.

This indicates appending the confidence about the CP from the

first classifier can effectively enhance the accuracy of protocol

classification, even if the protocol classifier has a much shorter

window size. We further vary the length of such window, and

a similar trend is observed when W ∗ = 640.

B. Receiver Operating Characteristic (ROC) Curve

We compare the ROC for these three CP types to illustrate

the diagnostic ability of the classifier as its discrimination

threshold is varied, as shown in Figure 4. The ROC curve is

plotted by True Positive Rate (TPR) and False Positive Rate

(FPR). The higher Area Under the Curve (AUC) means a better

model’s performance distinguishing between the positive and

negative classes. Among these three classes, the ROC curve for

Wi-Fi is perfect. This is because the Wi-Fi signal significantly

differs in the CP duration from cellular signals. It aligns with

the observation in Figure 3, where Wi-Fi signals have a 100%

classification accuracy. In addition, we observe that classifiers

without CP and with hard CP have a similar average AUC,

even if the appended hard CP improves the classification

accuracy. By including the soft CP, the average AUC is

improved to 0.97, bringing a better classification for both LTE

and 5G NR.

C. Trainable Parameters

Our CyPA design can effectively increase classification

accuracy. Meanwhile, the model is controlled to be compact

with less trainable parameters [9] than the other models. We
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TABLE VI
NUMBER OF PARAMETERS AND CORRESPONDING ACCURACY

COMPARISON

Method/Model Parameters Testing Accuracy (%)
VT-CNN2 [4] 52,474,451 88.04
Bi-LSTM [5] 13,284,483 86.86
LSTM [11] 6,728,835 74.43

ResNet-50-1D [12] 7,245,123 71.85
ResNet-18-1D [13] 3,859,651 71.46

Ours 1,874,314 89.99

compared our model with some state-of-art approaches [4],

[5], [11]–[13] for three-label protocol classification with the

same dataset. Our CyPA design requires Wcp∗ = 2560; all the

rest classifiers also apply the window size of 2560 for the fair

comparison. ResNet [14] allows shortcut in DNN blocks and

facilitate the neural network to become deeper. However, such

an operation in the block reduces the size of the intermediate

output for the next layer due to the filter function. In our case,

the inputs have the size of 2 × W , and the shape of 2 does

not support the procedure as in the image inputs. Therefore,

we replace all Conv2D and Pooling2D layers to Conv1D and

Pooling1D layers as authors did in [12]. We call the modified

model ResNet-1D and train them for protocol classification.

We summarize the parameters and testing accuracy of these

models in Table. Models with more parameters tend to have

higher accuracy for protocol classification. VT-CNN2 has the

most parameters with 88.04% accuracy. While bidirectional

LSTM has only one-quarter parameters of VT-CNN2, it has a

less accurate prediction. LSTM and ResNet-50-1D reduce the

parameters to less than ten million, sacrificing the classification

accuracy to less than 80%. Comparing ResNet-18-1D with

ResNet-50-1D, the parameter amount gets reduced to almost

half, but the accuracy keeps similar. Among these model, our

design has the least parameters of 1,874,314 and achieve the

highest accuracy of 89.99%.

D. Impact of CP Window Size

We have evaluated the proposed approach with Wcp = 2560
to guarantee the CP window includes at least one cyclic period.

In addition to this window size, we extend our evaluation

to Wcp = 3840 and 5120, with the same neural network

structure as before. The results of the protocol classification

are summarized in Table VII. We observe that the longer Wcp

can improve the accuracy of the protocol classifier without CP

prediction. Moreover, the proposed CP prediction embedded

approach can still increase classification accuracy by around

10% in these CP window sizes. The accuracy improvement in

all three window sizes validates the effectiveness of the CyPA

design.

VI. DISCUSSIONS

Applying a CP-duration classifier as a first stage, followed

by a protocol classifier, leads to significant performance gain in

the classification accuracy. In addition, such a structure is more

resource efficient since it requires much fewer parameters than

TABLE VII
PROTOCOL CLASSIFICATION ACCURACY COMPARISON UNDER

DIFFERENT Wcp

Wcp Accuracy without CP Accuracy with Predicted CP (soft)
2560 77.17% 89.99%
3840 84.30% 94.01%
5120 85.47% 93.69%

DNN models with the similar accuracy performance. Although

we implement our approach to classifying LTE, 5G, and Wi-

Fi signals, such an idea can be used to classify other wireless

technologies with periodic frame/packet duration settings (e.g.,

WiMAX and Bluetooth). In addition to advantages, there are

also limitations in our work. For example, our results are all

based on the simulation data and have not considered real

channels. We will study and address these limitations in our

future work.
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