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Abstract—Vision-aided blockage prediction has been recog-
nized as a promising approach for stable Millimeter wave
(mmWave) vehicle-to-everything (V2X) communications. For the
supplement of channel-based prediction, the vision-aided ap-
proach can predict the communication condition in the near
future, i.e., several hundred milliseconds; however, both the
accuracy and prediction time of exiting work using monocular
vision are not enough for mmWave V2X communications. To
address the challenge, the paper proposes a stereo-aided blockage
prediction that extracts explicit features for blockage prediction
using a simple algorithm, i.e., stereo depth estimation. Through
the emulation using a dataset generated by CARLA, we demon-
strate that the proposal achieves four times faster computation
than the existing method using monocular vision while improving
the prediction accuracy by 15.688 %.

Index Terms—Deep learning, Millimeter Wave, Computer
vision, Stereo camera

I. INTRODUCTION

Millimeter wave (mmWave) is attracting much attention
for vehicle-to-everything (V2X) communications because it
can support cooperative perception applications such as image
and point cloud sharing. However, the loss of connection in
mmWave communications occurs due to sudden blockages
by surrounding mobility. Blockage prediction and beam man-
agement in mmWave communications are recognized as key
challenges toward stable cooperative perception [1].

In recent years, several works have addressed the chal-
lenge of blockage predictions, which can be classified into
light detection and ranging (LiDAR)-based [2], [3] and RGB
camera-based approaches [4], [5]. In the work [2], the authors
proposed a blockage prediction model that processes the point
cloud generated by LiDAR data to capture the dynamics of
communication environments. The work [3] proposed a static
cluster removal algorithm for LiDAR data processing and
showed that the LiDAR-based blockage prediction approach
outperforms the wireless signature approach when the predic-
tion interval is larger than 0.2 s.

Because LiDAR sensor needs a high cost and time-consume
process, RGB camera-based approach has been studied to
address the issue [5]. In the work [4], the authors proposed a
blockage prediction using RGB camera. The proposed model
has a deep structure consisting of object detection, bounding
box embedding, and recurrent prediction; hence, it consumes

high processing time. The work [5] extends the object detec-
tion of the aforementioned model, i.e., 3D object detection is
used to extract the size and location of vehicles accurately. The
work showed that 3D object detection, i.e., depth information,
can improve prediction accuracy; however, it still suffers from
computation costs.

This paper proposes a novel blockage prediction method to
reduce the computation time while achieving high prediction
accuracy. Specifically, we employ a stereo camera instead of
an RGB monocular camera. The stereo camera can estimate
the depth information with few computation costs, while the
existing RGB camera-based approach [5] needs a deep neural
network for depth information extraction. Also, the stereo
camera-based depth estimator has a lower estimation error
compared to 3D object detection with an RGB camera.

The major contributions of this paper are listed as follows.
• We introduce a deep neural network structure that is spe-

cialized for stereo-aided blockage prediction for mmWave
V2X.

• The proposed model is evaluated using a dataset obtained
by CARLA simulator [6]. We show that the stereo-
aided blockage prediction can outperform the monocular
camera-based approach in terms of computation time and
prediction accuracy.

• The impact of maximum prediction frames is discussed.
We show that there is an optimal setting to maximize the
prediction accuracy.

II. BLOCKAGE PREDICTION WITH STEREO CAMERA

We consider V2X networks where a roadside unit beside the
road transmits a high volume of data to a connected vehicle for
driving assistance. The roadside unit has mmWave antenna for
data communications and a microwave antenna for dedicated
short-range communications (DSRC) [7]. Assuming a heavy
traffic road, mmWave communications often lose a connection
due to the sudden blockage surrounding vehicles. The loss of
connection in the mmWave communication is mainly due to a
sudden blockage of the dominant links caused by surrounding
vehicle mobility. Accurate estimation of blockage needs prior
channels state information (CSI); however, the approach can-
not achieve enough accuracy of the current and future states
due to the high-speed mobility in V2X scenarios. This paper,

2024 International Conference on Computing, Networking and Communications (ICNC): AI and Machine Learning for Communications 
and Networking

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 624



(Latitude, Longitude)(Latitude, Longitude)

Stereo images Depth images

Future blockage 
probabilities

Depth   
prediction   

model

Blockage 
prediction      

model

Left lens Right lens

Receiver’s location masks

Location 
masking     
model

Receiver’s locations

(Latitude, Longitude)

Fig. 1. Proposed blockage prediction system using a stereo camera.

therefore, aims to investigate future blockage prediction using
computer vision. Compared to the existing work [5] using a
monocular camera, we improve accuracy and prediction speed
by introducing a DL-based blockage prediction model using a
stereo camera.

Fig. 1 depicts the proposed blockage prediction system. The
system needs m time-series images obtained at the roadside
unit and GNSS information of the receiver to output blockage
probabilities of future n frames. The proposed system consists
of three models, i.e., the depth prediction model, location
masking model, and blockage prediction model.

A. Depth prediction model

We first construct the m time-series depth images corre-
sponding to the input m stereo images. The depth image is
useful for DL-based prediction models because 1) the clear
geometry of vehicles can be determined with this data, and 2)
vehicles can be easily detected even if the sizes of vehicles are
different. Hence, the depth image can improve the robustness
of the DL-based prediction model compared to the RGB
images.

In the paper, we use a traditional depth prediction model,
i.e., stereo block matching (StereoBM) [8], instead of DL-
based models [9]. This is because StereoBM is a fast com-
putation speed with enough prediction accuracy. Stereo BM
calculates features of blocks based on kernel operation for
left and right images and calculates the distance z as follows:

z =
f × b

d
, (1)

where f is the focal length of cameras, d is the distance
between points where the same feature exists in two images,
and b is the distance between the right and left lens.

B. Location masking model

In addition to the depth image, we employ a location mask
that indicates the receiver’s location in the image domain.
The mask can strengthen the feature of the receiver and its
surroundings, which is preferred information for blockage
prediction.

The roadside unit constructs the mask using the receiver’s
GNSS information transmitted from the receiver using the
DSRC system. Note that this paper assumes the sensing cycles
of the stereo camera and GNSS are the same and ignores the
time gap. The size of the mask is the same as the depth image.
The masking block (chunks of pixels) is calculated from the
relative distance between the roadside unit and receiver and the
view angle of the cameras. We set the block size to be 20×20,
which is enough size to remain the feature in convolutional
processes.

C. Blockage prediction model

We introduce our proposed blockage prediction model as
shown in Fig. 2. The model uses m depth images and location
masks to predict the blockage probability of future n frames.
The model consists of 3D convolutional layers, ConvLSTM
layers [10], 2D convolution layers, and linear (feedforward
neural network) layers. At first, the 3D convolution layers
aim to generate feature maps that indicate the location of
objects in each frame. The ConvLSTM layers extract time-
series features between the feature maps generated by 3D
convolution layers. The 2D convolution layers generate the
latent variables that characterize the blockage state. Finally,
the linear layers predict the future blockage probability of
mmWave communications between the roadside and the re-
ceiver. Batch normalization and rectified linear unit (ReLU)
are employed for each layer. The sigmoid function is employed
to output the prediction values.

The number of prediction frames n can be determined based
on the computation time. Specifically, we should set higher
prediction frames than the computation time. Therefore, the
next section investigates the computation time and impact of
n on prediction accuracy.

III. PERFORMANCE EVALUATION

In the section, we evaluate the effectiveness of the stereo-
aided blockage prediction, comparing it with the conventional
work using a monocular camera [5]. Further, we investigate
the impact of prediction frames on accuracy and discuss the
optimal number of time frame settings.

625



3D Convolution

Max Pooling

3D Convolution

3D Convolution

Linear

Linear

Linear

ConvLSTM

ConvLSTM

2D Convolution

2D Convolution

Global Average 
Pooling

Future blockage probability

Depth images 
and 

Receiver’s location masks

ConvLSTM

ConvLSTM

2D Convolution

2D Convolution

Global Average 
Pooling

ConvLSTM

ConvLSTM

2D Convolution

2D Convolution

Global Average 
Pooling

3D Convolution

Fig. 2. Blockage prediction model

A. Dataset construction

We simulate mmWave V2X communications in urban areas
using CARLA [6] to construct the dataset of blockages.
CARLA is an autonomous driving simulator that allows us to
freely place vehicles and many kinds of sensors on some maps.
Fig. 3 shows the envisioned city and location of roadside units.
We simulate based on the [5] which represents an urban area.
Specifically, we use a town10 map in CARLA to simulate
a realistic urban area. We deploy five roadside units with a
mmWave antenna and a stereo camera. Table I summarizes
the parameters of CARLA simulations.

As for the parameters of a stereo camera, we refer to the
commercial product, i.e., ZMP RoboVision3 [11]. The frame
rate is 30 FPS, the resolution is 1920 × 1080, and the angle
of view is 111.46◦. The distance between the left and right

1

No.01No.02

No.03No.04

No.05

x

y

Roadside unit

Fig. 3. Bird’s-eye view of the envisioned city, where five roadside units
deploy beside the roads.
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Fig. 4. An example of V2X communications scenario.

lens is 20 cm.
As for wireless communications configurations, the wireless

band is 60 GHz. The transmitter is installed next to the stereo
camera. Note that we decide whether blockage occurs or
not based on visible line of sight without consideration of
the Fresnel zone. A single receiver vehicle (Toyota Prius) is
deployed into the network while 25 other vehicles (random
types other than Toyota Prius) may become a blockage. All
vehicles move around with the speed of 30 ± 5 km/h. The
received antenna is installed beside of wing mirror; thus, the
height is around 0.7 m.

Fig. 4 shows an example of V2X communications scenar-
ios. The roadside unit captures 300 frame images for each
simulation. The blockage dataset for each roadside unit is
summarised in Table II. The dataset contains 42.2 % blockage
data and 57.8 % non-blockage cases.
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TABLE I
PARAMETER SETTINGS IN SIMULATION

Parameter value
Frame rate 30 FPS
Camera angle of view 111.46◦

Resolution 1920× 1080
lens distance 20 cm
Height of stereo camera 1.5 m
Frequency 60 GHz
Height of transmitter 1.5 m
Moving speed of receiver 30± 5 km/h
Height of receiver 0.7 m
Number of receiver vehicles 1
Number of surrounding vehicles 25

TABLE II
BLOCKAGE DATASET GENERATED BY CARLA

No.1 No.2 No.3 No.4 No.5
Blockages 131 101 161 162 78
Non-blockages 169 199 139 138 222

B. Model training

Table III shows the parameter setting for model training.
The number of input frames m is set to 3, and the number of
prediction frames n is set to 10. Input frames are reshaped to
240 × 135 resolution, and each pixel value is normalized to
the range of [0, 1]. Note that the proposal uses both the left
and right images, while the conventional method uses only the
left image.

The number of epochs, batch size, and learning rate are set
to 300, 128, 5×10−4, respectively. Mean squared error (MSE)
is used to calculate the loss function for back proportion. Fur-
ther, we use Adam with the setting of β1 = 0.5, β2 = 0.999.
We train five models and select one with the best estimation
accuracy in the training data as the prediction model in testing.
For training, we use the dataset of roadside units of No. 1,
2, 3, and 4. The dataset of roadside unit No. 5 is used for
testing. The model training and testing are executed by the
computer consisting of AMD Ryzen 7 5800X3D and Nvidia
RTX A6000.

In the prediction, we execute binary classification based on
the continuous value of the output. We employ a blockage
threshold for the binary classification that optimizes precision
P and recall R in validation. The precision P and recall R is
defined as

P =
TP

TP + FP
, (2)

R =
TP

TP + FN
, (3)

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively. We define
blockage and non-blockage as positive and negative, respec-
tively. We calculate a harmonic mean of precision and recall
to determine the threshold.

C. Accuracy

Table IV summarizes the accuracy of blockage prediction
methods. Accuracy is expressed as TP + TN/(TP + FP +

TABLE III
MODEL PARAMETERS

Parameter value
Input image size 240× 135
Number of input frames m 3
Number of prediction frames n 10
Normalization [0, 1]
Epoch 300
Batch size 128
Learning rate 5× 10−4

Loss function Mean squared error (MSE)
Optimization Adam

TABLE IV
ACCURACY OF BLOCKAGE PREDICTION

Accuracy Precision Recall
Proposal 77.248 % 47.000 % 83.932 %
Conventional 61.560 % 32.804 % 83.036 %

TN+FN). The proposal improves the accuracy by 15.688 %,
compared to the conventional method. The performance gain
happens due to the improved precision, i.e., a decrease in
FP (the probability of the false prediction of the blockage
in non-blockage cases). As the conventional method treats all
extracted 3D bounding boxes equally for blockage prediction,
it tends to predict the blockage based on the density of
vehicles, thereby causing the false prediction of the blockage
in case of higher density. The proposal can address the issue
for the following reasons: i) It employs a location mask to
prioritize the feature of vehicles closer to the receiver, ii) The
depth information provides the explicit feature on blockage
prediction that can reduce the FP.

We can see a tiny improvement in recall, i.e., the probability
of the false prediction of non-blockage in blockage cases. The
main reason for the decrease in the recall is the extraction
error of the blockage feature. Indeed, the conventional method
can not detect some vehicles, as shown in Fig. 5(a). As 3D
object detection is a complex algorithm, it is difficult to train
a model robust to the size of objects. Because the model is
trained to fit the size of objects far from the transmitter, the
conventional method may cause false predictions due to the
error of object detection. Meanwhile, the proposal employs
depth images as input features of blockage prediction. The
depth images can provide distance from the transmitter and
the shape of the vehicles. Because we can recognize the 3D
geometry of the V2X communications, the proposal improves
the probability of the false prediction of non-blockage. In the
paper, the proposal employs a prediction model similar to
the conventional method to justify the effectiveness of stereo-
vision. We can improve the accuracy by designing an adequate
deep neural network model for depth images.

D. Computation time

Table V shows the computation times. The computation
time consists of feature construction time and blockage pre-
diction time. The proposal employs depth prediction with
stereo vision as feature construction, while the existing method
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Fig. 5. Examples of blockage features that are used for blockage predictions.

TABLE V
COMPUTATION TIME

Total Feature construction Blockage prediction
Proposal 19.663 ms 15.012 ms 4.651 ms
Conventional 94.023 ms 89.232 ms 4.791 ms

employs 3D object detection with monocular vision. The pro-
posal significantly reduces the total computation time thanks
to lightweight depth prediction, i.e., 15.012 ms. Meanwhile,
3D object detection of the existing method needs a vast
computation time, i.e., 89.232 ms, because the neural network
architecture should be deep and complex to achieve enough de-
tection accuracy. The proposal and the existing method employ
similar neural network architecture for blockage prediction;
hence, the computation time is almost the same.

E. Prediction frames analysis

We finally analyze the impact of maximum prediction
frames n on the accuracy. We evaluate the accuracy of four
models with different n settings, i.e., 5, 10, 15, and 20 frames.
As shown in Fig. 6, all models have an optimal point around
the middle of n. This is because i) the considered images have
temporal correlation due to the mobility of vehicles, and ii)
the model fits into the middle of time-series data with the
data-driven learning approach. Therefore, we should prepare
a model with an adequate n setting based on the cycle of
beam alignment and tracking. On the other hand, the setting
of lower n can improve the maximum accuracy. Considering
the computation time constraints, the proposal can use n ≥ 1;
however, the conventional method should use n ≥ 3. Thus,
the proposal can further improve the accuracy.
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Fig. 6. The impact of maximum prediction frames n on the accuracy at each
prediction frame.

IV. CONCLUSION

In this paper, we proposed a stereo-aided blockage pre-
diction model for mmWave V2X communications. By using
stereo vision, the proposed model can improve the accuracy by
15.688 %, compared to the existing model using a monocular
camera. Further, we demonstrated that the proposal achieves
around four times faster than the existing model. The proposal
can execute predictions in around 20 ms cycle. To the best of
our knowledge, the proposal is the fastest blockage prediction.
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