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Abstract— Visual question answering (VQA) is an artificial 
intelligence (AI) and computer vision (CV) comprehensive task to 
answer questions about the visual content of an image, such as 
“what color is the bus?” or “how many people are in the photo?” 
VQA has shown great potential and importance in various 
domains, ranging from medical imaging applications, autonomous 
driving, to virtual assistants and search engines. This study 
develops a framework to tackle VQA research challenges by 
adopting and extending recent breakthroughs in attention 
techniques, natural language processing, and image classification 
models. In addition, different from other previous work that uses 
static question embedding, we investigate how alternative dynamic 
embedding models enhance the effectiveness of VQA task. The 
work is evaluated using the latest developed VQA v2 dataset with 
a 9% improvement over the results obtained with static word 
embedding. We also deployed the model as a cloud based VQA 
system to facilitate VQA tasks in real-life applications.  

Keywords—deep learning, dynamic embedding, parallel co-
attention, visual question answering 

I. INTRODUCTION  
Visual question answering (VQA) is a challenging task 

actively studied by computer vision (CV) and natural language 
processing (NLP) research communities [1] to understand the 
content of an image and answer questions in natural language. 
As a highly cognitive task, it requires an understanding of the 
interactions and relationships between objects as well as actions, 
events, object counts, and text bound within an image. 
According to [2], currently most VQA models perform 
inadequately to provide answers to visual questions and there is 
significant potential for research and room for improvement to 
achieve better results.  

To address this need, we aim to improve the performance of 
VQA models by leveraging the latest research and findings in 
attention techniques, natural language processing, and image 
classification models. Specifically, to enable a model to answer 
natural language questions that rely on specific visual 
information in images, it must be able to identify the relevant 
areas of the image that pertain to the question and focus on these 
areas. This gave rise to the concept of “attention,” which enables 
VQA models to enhance their performance by using attention 
mechanisms to determine “where to look” and incorporating this 
information into the model. In our research, we adopt and extend 
the visual co-attention techniques, and incorporate state-of-the-
art dynamic word embedding and image classification models to 
improve the VQA performance. The model is then deployed to 

the cloud where the system will use reasoning over visual 
elements, in conjunction with cognitive understanding of input 
images, and natural language text to infer answers to questions. 

II. RELATED WORK 
In this section, we will highlight the most used datasets in 

the VQA research and related research findings in VQA.  

A. Datasets  
The evolution of VQA datasets has been instrumental in 

advancing the research in this field. One of the first and most 
popular VQA datasets is the DAQUAR dataset [3]. It provides 
indoor images with associated natural language questions, 
answers, and bounding boxes, which served as a benchmark for 
early VQA models. However, its size was small with only 1,449 
images, 6794 training and 5674 test question-answer pairs. 
Afterwards, COCO-QA dataset [4] and VQA v1 dataset [5] were 
introduced with more data. However, COCO-QA dataset limited 
each answer to be a single word and VQA v1 dataset covered 
only a limited set of question types and a limited range of visual 
concepts and attributes. VQA v2 dataset [6] was then released 
to address such limitations. It is a balanced dataset that adds 
more comprehensive real-life questions and annotations to cover 
everyday scenarios. Most existing state-of-the-art VQA models 
performed worse on VQA v2 dataset because of the dataset’s 
more challenging and realistic setup [6].   

B. Existing VQA Research  
1) Attention in VQA: Attention was first proposed for the 

task of machine translation where the decoder could focus on 
relevant parts of the source language text as it generates the 
target-language text. Attention has emerged as the most widely 
used mechanism to address the VQA challenges [7] as different 
parts of the input image and question may be more relevant to 
find an answer. Co-attention was then proposed [8] to apply 
attention to the natural language question together with image 
attention to aid in answering the question.  

2)  Hierarchical Co-Attention: Question hierarchy is an 
important concept that can be used to direct attention to 
different levels of granularity in the question. One way to 
implement question hierarchy is by using unigrams, bigrams, 
and trigrams [9]. Hierarchical co-attention is a technique that 
uses this question hierarchy to train the model to extract more 
detailed and nuanced information about different parts of the 
question to improve the VQA performance. The hierarchical 

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 6



co-attention techniques developed in [10] are still used on [2] 
as a standard benchmark and demo for VQA. However, the 
work in [10] used static word embedding (one-hot-encoding) to 
transform the words used in their questions into tokens to be fed 
to their network. One of the main drawbacks of using static 
word embeddings is that they may not be able to capture the 
nuances of language in a specific domain and words in a 
contextualized setting [9]. 

III. VQA FRAMEWORK 
As illustrated in Fig. 1, the VQA framework in our study 

mainly consists of data preprocessing on both questions and 
images, and VQA modeling process with the hierarchical co-
attention technique. 

 

 

 
Fig. 1. Overall VQA framework 

 

A. Data preprocessing  
Data preprocessing is an important step that involves 

cleaning, transforming, and organizing the data to make it usable 
for further analysis. In this study, data preprocessing is 
conducted on the questions and images.  

1) Question Preprocessing: The first several steps for 
question preprocessing are similar to those of most NLP tasks, 
i.e., segmenting the questions,  eliminating the punctuation and 
converting all words to lowercase, and then applying 
tokenization to break down the text into smaller units (tokens). 
Afterward, word embedding technique is used to represent 
words in a numerical format such as arrays or tensors. Different 
from the previous work [10] that uses static embedding, this 
study investigates the effect of dynamic embedding on VQA 
performance. Dynamic word embeddings, also known as 
contextualized word embeddings, have emerged as a successor 
to static word embeddings in NLP because they are able to 
capture the meaning of a word in a specific context. A lot of 
dynamic word embeddings have emerged such as BERT [11] 
and its variants RoBERTa, ALBERT, XLMRoBERTa [12] as 
well as GPT [13]. However, dynamic word embeddings are 
more computationally expensive to generate and require large 
amounts of training data, making them more challenging to use. 
As discussed in [14], BERT’s last hidden state contains the vast 

majority of valuable information needed. In our research, we 
utilized BERT’s last hidden layer output to generate question 
embeddings while minimizing computation across all layers of 
the BERT model. In addition, we explore the impact of dynamic 
versus static embedding on model accuracy by applying a range 
of dynamic embedding models to the questions.  

2) Image preprocessing: For image feature extraction, there 
are several existing pre-trained models that are commonly used 
including VGG [15], ResNet [16], and Inception [17]. These 
models have been trained on large datasets, such as ImageNet, 
and have been pre-trained to extract features from images. 
Previous VQA studies have used VGG and ResNet.  Since 
ResNet has always been preferred and out-performed VGG 
[18], ResNet34 is used for image feature extraction in our study. 
ResNet was originally designed to accept input images with 
dimensions that are multiples of 112 or 224 [19]. However, 
larger image sizes require more memory and time to train. To 
balance performance with computational resources, we resized 
our images to 448 × 448. This resolution allows for strong 
performance while requiring a reasonable amount of memory.  

B. VQA Model 
Co-attention model was proposed in [10] for VQA that 

jointly reasons about image and question attention. Co-attention 
is about instructing the model “where to look” or “visual 
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attention,” and “what words to listen to” or “question attention.” 
In our work, we adopted the parallel method since it yielded 
better results than the alternating method [10]. In parallel co-
attention, the image representation is used to guide the question 
attention, and the question representation to guide image 
attention in parallel.  

1) Question hierarchy: For the VQA model, the question is 
a sentence that the model needs to understand and extract the 
important features so it can generate an accurate answer. In this 
work, the model has a hierarchical architecture that co-attends 
to the image and question at three levels: 1) word-level;  
2) phrase level; and 3) question level. At the word-level, we 
embed the words to a vector space through an embedding 
matrix. At the phrase level, 1-dimensional convolution neural 
networks are used to capture the information contained in 
unigrams, bigrams, and trigrams. Here, unigrams are for 
individual words in a sentence, bigrams for pairs of consecutive 
words, and trigrams for triples of consecutive words. These 
different levels of granularity are commonly used in NLP. 
Specifically, we convolve word representations with temporal 
filters of varying support and then combine the various 𝑛-gram 
responses by pooling them into a single phrase-level 
representation. Once the phrase-level embedding is obtained, it 
undergoes processing in a Long Short-Term Memory (LSTM). 
LSTM is a type of Recurrent Neural Networks (RNNs) 
designed to overcome the problem of vanishing gradients, 
which can occur when training RNNs on long sequences of 
data. However, despite their effectiveness, LSTMs can still 
suffer from forgetting, where previous information is lost as the 
network processes new input. Therefore, when using LSTMs to 
create sentence embeddings, 𝑛-gram  phrase-level 
representation is used to overcome the problem of forgetting 
and ensure that important information from previous words at 
previous timesteps is retained.  

2) Parallel co-attention:   For each level of the question 
representation in the question hierarchy, we construct joint 
question and image co-attention maps, which are then 
combined recursively to ultimately predict a distribution over 
the answers. As discussed earlier, each question is tokenized in 
question preprocessing step and then passed to a dynamic word 
embedding model. The base model of the dynamic word 
embedding is used so each word of the question is represented 
as a 768-size tensor, by taking the output of the BERT model’s 
last hidden layer. ResNet34 outputs 512 features for images so 
in this work we zero-padded the image tensor with 128 on both 
sides to match the question embedding. Parallel co-attention 
attends to the image and question simultaneously. In this work, 
we connect the image and question by calculating the similarity 
between image and question features at all pairs of image-
locations and question-locations. The image and question 
attention vectors are calculated as follows:  

Given an image 𝑉	with 𝑁 features, it is represented as: 

 𝑉 ∈ 𝑅!×# (1) 

Similarly, a question 𝑄	with 𝑇 words is represented as: 

  𝑄 ∈ 𝑅!×$ (2) 

The affinity matrix 𝐶 ∈ 𝑅$×# is then calculated as: 

              	𝐶 = tanh	(𝑄$𝑊%𝑉)                          (3) 

where  𝑊% ∈ 𝑅!×! represents the weights.  

After computing this affinity matrix, one possible way of 
computing the image (or question) attention is to simply 
maximize out the affinity over the locations of another modality. 
We consider this affinity matrix as a feature and learn to predict 
image and question attention maps as shown in (4):  

𝐻& = tanh:𝑊&𝑉 + :𝑊'𝑄<𝐶<	 
𝐻' = tanh:𝑊'𝑄 + (𝑊&𝑉)𝐶$< 

𝑎& = softmax(𝑊(&
$ 𝐻&) 

                               𝑎' = softmax:𝑊('
$ 𝐻'<                         (4) 

Here, 𝑊&,𝑊' ∈ 𝑅)×!  and 𝑊(&,𝑊(' ∈ 𝑅)  are the weight 
parameters; 𝑎& ∈ 𝑅#  and 𝑎' ∈ 𝑅$  are the attention probabilities 
of each image region 𝑣* and word 𝑞+, respectively. The affinity 
matrix 𝐶 transforms question attention space to image attention 
space (vice versa for CT). Based on the above attention weights, 
the image and question attention vectors are calculated as the 
weighted sum of the image features and question features. 
Finally, parallel image and question attention vectors are 
calculated in (5):  

   𝑣E = ∑ 𝑎*&#
*,- 𝑣*; 𝑞E = ∑ 𝑎+

'$
+,- 𝑞+              (5) 

The parallel co-attention is done at each level in the 
hierarchy, leading to 𝑣E.	 and 𝑞E.  where 𝑟 ∈ {𝑤, 𝑝, 𝑠}	with 𝑤 
being the word, 𝑝 the phrase and 𝑠 the sentence. In other words, 
we predict the answer based on the co-attended features of the 
image and question from all three levels. To encode the attention 
features recursively, we utilize a multi-layer-perceptron (MLP) 
with a SoftMax transformation to the encoded features to obtain 
the probability matrix of all classes. A class with the highest 
probability is then chosen as the the predicted answer. Here, the 
probability is calculated in (6): 

ℎ/ = tanh:𝑊/(𝑞E/ + 𝑣E/)<	 
ℎ0 = tanh:𝑊0[(𝑞E0 + 𝑣E0), ℎ/]< 
ℎ1 = tanh(𝑊1[(𝑞E1 + 𝑣E1), ℎ0]) 

                               𝑝 = softmax(𝑊(ℎ1)                           (6) 
Here, 𝑊/ ,	𝑊0 , 𝑊1  and 𝑊(  are the weight parameters,	[∙] is 

the concatenation operation on two vectors, and 𝑝  is the 
probability of the final answer.  

IV. EVALUATION 
The evaluation is centered on two fundamental components: 

the VQA model and the deployed web application. This section 
will synthesize the study's outcomes and evaluations of the 
model's elements.  

A. Experimental dataset and evaluation metric 
As discussed in Section II, VQA v2 dataset is used to 

develop and evaluate our VQA model because it offers a diverse 

2024 Workshop on Computing, Networking and Communications (CNC)

8



range of images and questions from different sources, providing 
a comprehensive set for VQA training and evaluation, and is 
extensively utilized in the research community. Its training 
dataset has 443,757 questions, 4,437,570 annotations, and the 
validation has 214,354 questions and 2,143,540 annotations [6].  

For model training, with the goal to obtain  accurate ground 
truth answers for each question in the dataset, annotations with 
a confidence level of “yes” are retained as training data. This 
ensured that we captured all the possible answers that are with 
the highest confidence level for each question.  As a result, such 
an extensive list of possible answers lead to the task that’s 
commonly referred as open-ended VQA. The open-ended nature 
means that the model must select one answer from a multitude 
of potential answers, making it more challenging to obtain 
accurate results. The complexity of this task is further 
compounded by the fact that the model must not only recognize 
and understand the image but also comprehend the question and 
its intent to provide an appropriate answer. A further 
investigation showed that while the number of answer classes in 
the VQA v2 dataset is approximately 120,000, among them, a 
few thousand answers are in fact used to cover the majority of 
the questions.  For example, the top 1,000 most common 
answers in VQA v2 account for the answers to more than 90% 
of all questions in the dataset. This discovery allowed us to 
reframe the open-ended question answering challenge into a 
1000-way multiple choice problem. This approach enables the 
model to potentially provide more accurate answers with a 
smaller model size. In addition, adopting this approach allowed 
us to convert the VQA task into a classification problem without 
losing significant information from the dataset [20].  

For model evaluation, for each question, one ground truth 
answer with the top votes is labeled as the correct answer that 
will be used to compare with the model predicted answer. This 
is because simple accuracy is used as the primary evaluation 
metric for our VQA model. It quantifies the model’s 
performance by computing the ratio of correct predictions to the 
total number of predictions or questions as in (7).  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 #	45	'671+84*1	9*1/7.7!	:4..7:+;<
#	+4+9;	'671+84*1

                  (7) 

Simple accuracy does have a potential drawback as it 
requires exact matches and overlooks factors such as the 
confidence level of the predictions. However, it is easy to 
comprehend and interpret, and evaluate model performance 
more strictly. It is therefore a metric commonly used for VQA 
model evaluation [2]. 

B. VQA task evaluation   
1) Static vs dynamic embedding: The objective of this 

experiment is to evaluate the effect of static and dynamic word 
embedding techniques on VQA. One-hot-encoding static 
embedding used in previous VQA work [10] is compared with 
three dynamic embeddings including BERT, XLMRoBERTa 
[12] - a variant of BERT, and T5 [21]. The experiment was 
conducted using a batch size of 25. For dynamic embedding, 
the base model has an output size of 768, whereas static 
embedding utilizes a regular embedding layer with an output of 
512. During training, both dynamic and static embeddings 
utilized ResNet18 for image encoding that has an output size of 

512. Therefore, in models using dynamic word embedding, 
image tensors have to be zero-padded to match the size of 
question embedding.  

 
Fig. 2. Static vs dynamic embedding  

As shown in Fig. 2, dynamic question embedding improves 
the accuracy of the VQA model by 9% as compared to the static 
embedding in previous research. The figure also demonstrates 
that XLMRoBERTa has a similar impact on accuracy as BERT 
and T5 [21]. These findings imply that different versions of 
BERT and T5 do not significantly affect the visual question 
answering task. We therefore use BERT as the question 
embedding method in our VQA model. It is also worth noting 
that the accuracy value (47%) is relatively low because we 
evaluate how accurately the predicted answer matches with the 
top 1 ground-truth answer labeled for each question as discussed 
earlier. Nevertheless, this level of simple accuracy rate is about 
10% improvement in performance when compared to those of 
previous research. In the future, other performance evaluation 
metrics such as Wu-Palmer Similarity [22] may be used to take 
into account the semantic meanings and connotation between 
the model’s predicted answer and ground-truth answers ranked 
among the top instead of only the top 1 answer (e.g., a “dog” 
picture may have top-ranked labels including “dog,” “puppy,” 
“pet” that are semantically related).  

 
Fig. 3. ResNet18 versus ResNet34   

2) ResNet18 vs ResNet34: ResNet18 and ResNet34 are both 
variants of the ResNet architecture [16] where ResNet34 is 
deeper and more complex (with 34 layers including 33 
convolutional layers and 1 fully connected layer) than 
ResNet18 (18 layers with 17 convolutional layers and 1 fully 
connected layer). With BERT base model for question 
embedding, Fig. 3 reveals that ResNet34 had a slight 
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improvement (approximately 0.5%) over ResNet18 on 
validation accuracy. However, ResNet34 requires more 
computational resources due to its increased complexity.  
Model deployment: Our developed VQA model  is saved and 
integrated into the Flask app backend. It is then deployed on the 
Google Cloud Platform service where its REST Web API 
provides a scalable web endpoint for online inference. We also 
deveoped a React-based website (https://vqa-react-
app3.wm.r.appspot.com) for public access. To assess its 
usability, a survey based on the USE Questionnaire [23] was 
developed to solicit feedback from users. The questions cover 
four main dimensions: usefulness, satisfaction, ease of use, and 
ease of learning. The sixteen survey participants comprise a 
representative sample of users from different age groups 
ranging from 20 to over 40 and different occupation including 
students, software engineer, reseracher, and marketing. 
According to the survey findings, users encountered no 
difficulties in using the web application, and their overall level 
of satisfaction was rated as a 4 on a scale of 1 (dissatisfaction) 
to 5 (extremely satisfied). Note that due to the relatively small 
survey size, the feedback cannot be considered statistically 
solid. However, the responses are helpful for us to identify the 
strength of our work and the areas for future improvements.  

V. CONCLUSIONS 
In this work, we present a VQA framework that leverages 

the latest developments in computer vision and NLP. It uses 
dynamic word embedding for question encoding and ResNet for 
image encoding, and employs the parallel co-attention  
technique to deliver answers for visual questions. The model is 
trained and evaluated on the VQA v2 dataset with 9% 
performance improvement over previous research using static 
word embedding. A web application is also developed for public 
use and evaluation. In general, the work demonstrates promising 
outcomes in accurately answering questions based on visual 
inputs. In the future, performance may be further improved by 
integrating an optical character recognition (OCR) module to 
process image-embedded text and contextual data into the 
model. The model can also be trained with other recently 
developed image encoders such as U-NET or InceptionV3.  
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