
Comparison of FHE Schemes and Libraries
for Efficient Cryptographic Processing

Arisa Tsuji
Ochanomizu University

2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
arisa-t@ogl.is.ocha.ac.jp

Masato Oguchi
Ochanomizu University

2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
oguchi@is.ocha.ac.jp

Abstract—In recent years, opportunities to collect and analyze
big data in the cloud have increased. Cryptographic processing is
imperative for protecting data on cloud servers, and homomor-
phic encryption, which can perform calculations in an encrypted
state, is highly expected for this purpose. Fully Homomorphic
Encryption (FHE) is an encryption scheme that allows for
addition and multiplication operations any number of times in an
encrypted state. In the pursuit of practical applications of FHE,
multiple encryption schemes have been proposed, and several
libraries are available for executing these schemes.

In this study, we first conducted a comparison to help select
the appropriate FHE encryption scheme and library based on
the execution environment and processing requirements of the
application. Specifically, we organize the time-space complexity
and compatible operations for BFV, BGV, CKKS, and Zama’s
variant of TFHE schemes implemented in OpenFHE, Lattigo,
and TFHEpp libraries. For achieving 128-bit security, it was
found that BGV, BFV, and CKKS, in that order, are the fastest.
Additionally, the memory usage varied depending on the library,
with OpenFHE requiring less memory than Lattigo. It is worth
noting the differences in the encryption processes of BFV, BGV
and CKKS schemes compared with Zama’s variant of TFHE
scheme. In the comparison between CKKS and Zama’s variant
of TFHE, Zama’s variant of TFHE was more compatible with
multiplications between arbitrary values, but CKKS was more
compatible with vector inner products.

A common challenge for all FHE encryption schemes is
their immense time-space complexity. Therefore, as a second
consideration, we compared the execution times and Solid State
Drive (SSD) bandwidths between OpenFHE and TFHEpp for
Zama’s variant of TFHE in environments with limited DRAM,
such as in the cloud. It was found that TFHEpp is faster when
DRAM is limited. This is because the gate key generation time
in OpenFHE significantly increases owing to a lack of memory
required for arithmetic processing.

Index Terms—(Torus) Fully Homomorphic Encryption, SSD

I. INTRODUCTION

In recent years, businesses and individual users have in-
creasingly had the opportunity to operate large-scale systems
to collect and analyze big data using cloud services. When
traditional encryption techniques are employed to operate
in the cloud, data must be decrypted during computation,
which poses a high risk of personal information leakage
and unauthorized use by cloud attackers. Fully Homomorphic
Encryption (FHE) [1] has attracted attention because it enables
the arbitrary computation of encrypted data.

In FHE, multiple encryption schemes such as BFV [2], BGV
[3], CKKS [4], and Zama’s variant of TFHE [5] have been

proposed, each with different internal encryption processes.
In addition, several libraries are available to execute these
encryption schemes, each with unique implementation details.
While it is necessary to select an appropriate encryption
scheme and library depending on the execution environment
and operations to be performed, it is not easy for people other
than cryptography researchers to set appropriate parameters
within FHE libraries and compare libraries or schemes.

In this paper, we first compare the features of multiple
cryptographic libraries and schemes when they are actually
run and aim to provide a reference for practitioners building
systems using FHE. Specifically, we organize the time-space
complexities during multiplication and proper operations for
BFV, BGV, CKKS, and Zama’s variant of TFHE schemes
implemented in OpenFHE [6], Lattigo [7], and TFHEpp
[8] libraries. From our experiments, we found that when
processing integers cryptographically, BGV in Lattigo was
the fastest. In CKKS, which is capable of cryptographic
processing of floating points, Lattigo was faster when there
were fewer consecutive multiplication counts, which is called
the multiplicative depth, whereas OpenFHE was faster when
the multiplicative depth was large. The memory usage depends
on the library, and we discovered that OpenFHE requires
less memory than Lattigo for all encryption schemes. It is
important to note that BFV, BGV, CKKS and Zama’s variant
of TFHE schemes have different fundamental units of com-
putation and bootstrapping mechanisms; therefore, the choice
of the appropriate scheme depends on the type of operations
performed in FHE. In the comparison between CKKS and
Zama’s variant of TFHE schemes, it was observed that Zama’s
variant of TFHE has a lower time-space complexity when
performing multiple multiplications between arbitrary values,
but CKKS is more efficient in vector inner products.

However, a common challenge for all FHE encryption
schemes when considering practical applications is the im-
mense time-space complexity. Particularly in cloud environ-
ments, where resources are shared among multiple VMs or
containers, the efficiency of DRAM usage is low, necessitating
the utilization of storage [9]. Therefore, as a second aspect,
we focus on Zama’s variant of TFHE scheme and compare the
execution time, SSD bandwidth, and implementation efficiency
of OpenFHE and TFHEpp when the DRAM is limited. The
purpose is to select an appropriate library based on the amount

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 584

of DRAM available. Experiments showed that TFHEpp was
faster than OpenFHE because memory limitations cause a lack
of memory required for calculation processing in OpenFHE
gate key creation.

The contributions of this study are as follows:
・Measuring the time-space complexity of FHE encryption
schemes (BFV, BGV, CKKS, Zama’s variant of TFHE) and
libraries (OpenFHE, Lattigo, TFHEpp) and make a compari-
son to select the appropriate one according to the execution
environment and the operations using FHE.
・Comparing the Zama’s variant of TFHE implementations
between OpenFHE and TFHEpp under DRAM constraints, fo-
cusing on execution times, storage bandwidth, and implemen-
tation efficiency. This evaluation aims to assist in choosing an
appropriate library based on the amount of DRAM available.

II. BACKGROUND

A. Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is an encryption
scheme that allows for addition and multiplication operations
any number of times in an encrypted state. FHE always
satisfies (1) and (2).

Fully Homomorphic Encryption� �
Encrypt(m)⊕ Encrypt(n) = Encrypt(m + n)...(1)
Encrypt(m)⊗ Encrypt(n) = Encrypt(m × n)...(2)� �
Figure 1 shows the processing flow of FHE. The flow of

FHE process is as follows:
• Encoding: Convert a message m you want to encrypt

into a plaintext M. In BFV, BGV, and CKKS schemes
(see 2.B), the plaintext is a circular polynomial of degree
N − 1, expressed as Rt = Zt[x]/(x

N + 1). Multiple
messages ms can be packed into one plaintext M. In
Zama’s variant of TFHE scheme (see 2.B), the plaintext
M is a torus, and one message m is converted to one
plaintext M.

• Key generation: Generate a private key and public key
to convert the plaintext M to a ciphertext C.

• Encryption: Generate the ciphertext C from the plain-
text M. In BFV, BGV, and CKKS, the ciphertext C is
expressed by the polynomial Rq = Zq[x]/(x

N +1). The
plaintext Rt is mapped to the ciphertext Rq using noise,
scaling parameters, and public key. In Zama’s variant of
TFHE, a ciphertext is expressed by an (n+1)-order vector
in which each element is a torus.

• Operation: Perform homomorphic addition and homo-
morphic multiplication.

• Modulus switching or rescale: Because it is encrypted
by adding noise to the message m based on the (R)LWE
problem, noise accumulates within the ciphertext C dur-
ing calculations. It is reduced by converting the ciphertext
modulus from q to q′ (q′ < q). The number of executions
must be determined before starting FHE processing. This
operation is called modulus switching in BFV and BGV
and rescale in CKKS.

Fig. 1. Processing flow of FHE.

• Bootstrapping: Reduce the noise accumulated in the
ciphertext C. Noise can be reduced by performing boot-
strapping on ciphertext with noise below a certain level.
By performing bootstrapping at an appropriate timing, it
is possible to multiply continuously any number of times.

• Decryption: Decrypt the ciphertext C using the private
key and output a plaintext Rt′.

• Decoding: Convert the plaintext Rt′ to a message m′

using the inverse procedure of encoding.

B. FHE encryption schemes and libraries

Multiple encryption schemes exist for FHE, including BFV,
BGV, CKKS, TFHE [10], and Zama’s variant of TFHE, and
the encryption processing differs for each. In addition, multiple
libraries that can execute each encryption scheme have been
released.

1) Overview of FHE encryption schemes: Table 1 lists
the features of the FHE encryption schemes BFV, BGV,
CKKS, TFHE, and Zama’s variant of TFHE. BFV, BGV, and
CKKS share the same basic cryptographic processing, such as
the theory of bootstrapping. Bootstrapping in these schemes
reduces noise by decrypting the ciphertext once in a secure
state and then encrypting the decryption result again. These
schemes execute ciphertexts using arithmetic operations. BFV
and BGV can evaluate an integer using the RLWE problem
[11] and store N messages in one plaintext. By constrast,
CKKS can evaluate a floating point using a Fourier transform
and store N/2 messages in one plaintext.

TFHE differs from BFV, BGV, and CKKS in basic cryp-
tographic processing. In TFHE, each bit constituting the
ciphertext is evaluated using a logic circuit. When performing
arithmetic operations, such as addition and multiplication
on ciphertext, it is necessary to combine the logic gates.
Bootstrapping is executed at each logic gate constituting the
circuit. For bootstrapping, it uses a test vector called LUT,
whose coefficients are ciphertexts with a certain amount of
noise reduced. It is possible to evaluate binary values.

Zama’s variant of TFHE is an extension of the TFHE
scheme, with an implementation called programmable boot-
strapping that allows bootstrapping of not only logical oper-
ations but also univariate functions. In addition, it is possible
to evaluate a floating point by implementing an encoder. One
of the future challenges is to reduce drift errors [5] during
calculations. In this study, we compared BFV, BGV, CKKS,
and Zama’s variant of TFHE schemes.

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

585

TABLE I
FEATURES OF FHE SCHEMES

FHE
scheme

feature

arithmetic
operation

logical
operation

domains
packing

size

BFV ✓ integer N
BGV ✓ integer N

CKKS ✓ floating-point N/2
TFHE ✓ binary 1

Zama’s variant ✓ ✓ floating-point 1

TABLE II
LIBRARIES IN WHICH THE FHE ENCRYPTION SCHEMES ARE

IMPLEMENTED

FHE
scheme

library

OpenFHE Lattigo TFHEpp

BFV ✓ ✓
BGV ✓ ✓

CKKS ✓ ✓
TFHE ✓ ✓

Zama’s variant ✓ ✓

2) Overview of FHE libraries: Table 2 lists the libraries
in which the FHE encryption schemes are implemented.
OpenFHE is an open source library and is used inside the
transpiler [12] announced by Google in 2021. TFHE and
Zama’s variant of TFHE schemes are implemented using
libraries such as OpenFHE or TFHEpp. TFHEpp is also an
open-source C++ library and is approximately 10% faster than
the original TFHE implementation.

C. Storage

In a cloud environment, one resource is shared using VMs
and containers; therefore, the DRAM usage efficiency is low,
and it is necessary to utilize storage. An SSD, which has
been actively researched [13], is a type of storage which
features fast read/write speeds and low power consumption.
Figure 2 shows the flow of control signals and data among
the CPUs, DRAMs, and SSDs that configure systems. The
CPU reads, decodes, and executes instructions and outputs
the resulting data. The instructions or data to be executed are
loaded/stored using the DRAM via internal buses. The data
in SSDs are used by the CPU via a DRAM page cache or
buffer cache. If the DRAM capacity is insufficient, the cache

Fig. 2. Control signals and data flow in a system using CPUs, DRAMs, and
SSDs.

is released, and the frequency of accessing the SSDs increases.
In addition, swap out, which copies the contents of unused
memory to the SSD, and swap in, which transfers the contents
of the SSD to memory, are performed. This acts as if there is
more memory, which is called virtual memory, than the actual
DRAM capacity, which is called physical memory.

III. RELATED WORK

[14] classifies multiple FHE schemes and [15] compares
the operations that can be performed for each FHE library.
However, these studies did not include a runtime evaluation.
This study compares and considers the time-space complexity
of multiple FHE libraries and schemes when they are actually
run. [16] created a benchmark called Terminator 2 Benchmark
Suite to compare the computational domains and applications
that can be processed at high speed between multiple libraries.
However, different schemes are used to compare libraries.
In this study, we separately discussed the effects of the
implementation of the library and scheme used. [17] uses
the Microsoft SEAL library to compare the execution times
of BFV, BGV, and CKKS for each cryptographic process.
However, high-speed schemes differ depending on the library
implementation. In this study, we compared the schemes using
multiple libraries. [18] evaluates the cryptographic theory of
SHE [19], LHE [20], and FHE and the execution time of
some schemes that are not publicly available. In this study,
we compared the execution times of the latest open-source
libraries. [21] performs a practical evaluation of multiple
schemes and libraries. In this evaluation, they compared the
execution time between libraries when varying the degree N
of the ciphertext polynomial in each scheme; however, in this
study, we compared the time-space complexity when varying
the multiplicative depth.

IV. EVALUATION OF FHE SCHEMES AND LIBRARIES

We compared BFV, BGV, CKKS, and Zama’s variant
of TFHE schemes implemented in OpenFHE, Lattigo, and
TFHEpp. The evaluation was conducted in the following three
steps:

• BFV, BGV, and CKKS that perform evaluation using
arithmetic operations and can pack messages into a
plaintext. We will compare the time-space complexities
of BFV, BGV, and CKKS implemented in Lattigo and
OpenFHE, respectively, while varying the multiplicative
depth.

• Zama’s variant of TFHE that uses logical operations to
evaluate each bit that composes a ciphertext. We will
compare the time-space complexities of OpenFHE and
TFHEpp.

• CKKS and Zama’s variant of TFHE. We will use
OpenFHE for CKKS and TFHEpp for Zama’s variant of
TFHE to examine the proper operations of these schemes.

A. Evaluation environment

Table 3 lists the parameters used to compare BFV, BGV, and
CKKS schemes. Table 4 lists the parameters used to evaluate

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

586

TABLE III
PARAMETERS USED TO COMPARE BFV, BGV, AND CKKS SCHEMES

(a) Parameters

scheme t N batch

BFV 65537 32768 -
BGV 65537 32768 -

CKKS 65537 65536 32768

(b) Ciphertext modulus q

scheme library mult depth

2 4 6 8 10

BFV Lattigo 118 177 235 294 352
OpenFHE 118 177 236 295 354

BGV Lattigo 118 235 352 410 583
OpenFHE 118 236 354 472 590

CKKS Lattigo 146 236 326 416 506
OpenFHE 145 235 325 415 505

TABLE IV
PARAMETERS USED TO EVALUATE ZAMA’S VARIANT OF TFHE SCHEME

library N n q gadgetBase baseSK

OpenFHE 2048 512 227 27 27

TFHEpp 2048 500 232 26 24

Zama’s variant of TFHE scheme. In Zama’s variant of TFHE,
the ciphertext is represented in two forms: a vector based on
the LWE problem [22] and a polynomial ring based on the
RLWE problem. gadgetBase is a parameter used to reduce
noise in an operation called decomposition for multiplication
between ciphertexts based on RLWE. baseSK is used in an
operation called key switching to convert ciphertext based on
the RLWE problem into ciphertext based on LWE. Table 5
lists the parameters used in the evaluation of CKKS when
comparing the computational strengths of CKKS and Zama’s

TABLE V
PARAMETERS USED FOR THE EVALUATION OF CKKS SCHEME IN

EQUATION (1) AND EQUATION (2)

n t N batch q mult depth

Equation (1)

2 65537 8192 4096 183 2
20 65537 65536 32768 955 20
40 65537 65536 32768 1475 26
60 65537 65536 32768 1640 29
80 65537 65536 32768 1750 31
100 65537 65536 32768 1805 32

Equation (2)

2 65537 4096 2 78 1
20 65537 4096 32 78 1
40 65537 4096 64 78 1
60 65537 4096 64 78 1
80 65537 4096 128 78 1
100 65537 4096 128 78 1

Fig. 3. Comparison of the execution time of BFV, BGV, and CKKS schemes
using openFHE and Lattigo libraries.

Fig. 4. Comparison of memory usage of BFV, BGV, and CKKS schemes
using OpenFHE and Lattigo libraries.

variant of TFHE in Equation (1) and Equation (2) (see 4.B).
For each evaluation, we used the fastest parameter that

satisfied 128-bit security. In addition, the CPU used was an
AMD Ryzen 7 5700G@3.80GHz, with eight cores and 16
logical CPUs. The DRAM capacity was 16GB, and the storage
used was an SK hynix PC711 SSD with a capacity of 238GB.

B. Experimental result

1) Comparison of time-space complexities of BFV, BGV and
CKKS: Figure 3 shows the execution time when changing the
multiplicative depth of BFV, BGV, and CKKS with OpenFHE
and Lattigo. Comparing the schemes, BGV, BFV, and CKKS
were faster at all multiplicative depths, in that order. Among
all schemes and libraries, Lattigo’s BGV is the fastest in terms
of all multiplicative depths. For BFV and CKKS, Lattigo was
faster when the multiplicative depth was small, and OpenFHE
was faster when it was large. Figure 4 shows the memory
usage when changing the multiplicative depth of BFV, BGV,
and CKKS with OpenFHE and Lattigo. CKKS tended to
use more memory than BFV and BGV. OpenFHE can be
executed using less memory for all schemes and number of
multiplications.

For all schemes and libraries, the execution time and mem-
ory usage increased linearly with the multiplicative depth or

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

587

TABLE VI
COMPARISON OF THE EXECUTION TIME OF ZAMA’S VARIANT BETWEEN

OPENFHE AND TFHEPP

library
generating

sk (ms)
generating

gk (ms)
encryption

(ms)
bootstrapping

(ms)
decryption

(ms)

OpenFHE 0.801 3652.380 0.040 463.729 0.007
TFHEpp 0.041 6442.310 0.018 26.865 0.003

degree N of the ciphertext polynomial changes.
2) Time-space complexity of Zama’s variant of TFHE:

Table 6 compares the execution time of Zama’s variant be-
tween OpenFHE and TFHEpp. It takes time to generate a gate
key and bootstrapping. For gate key creation, OpenFHE was
1.764 times faster than TFHEpp. Conversely, in bootstrapping,
TFHEpp was 17.261 times faster than OpenFHE. Therefore,
if bootstrapping is executed several times, TFHEpp is faster.
For both libraries, memory usage increases linearly during the
gate key creation and reaches around 3.3GB upon completion.
In the following bootstrapping, memory usage remains stable
at approximately 3.3GB. A detailed evaluation is presented in
Section 5.

3) Comparison of time and space complexity of CKKS and
Zama’s variant of TFHE: In this experiment, we compared
the time-space complexity when using CKKS in OpenFHE
and Zama’s variant of TFHE in TFHEpp for multiplica-
tions between arbitrary values in (1) and the vector inner
product in (2). For, x ∈ R, a = (a0, a1, ..., an−1), and
b = (b0, b1, ..., bn−1), define (1) and (2) as

f(x) =

n−1∏
i=0

xi (1)

a · b =

n−1∑
i=0

aibi (2)

Evaluation of Equation (1). When executing (1), CKKS first
performs an operation called rotation on a ciphertext polyno-
mial packed with n messages and creates a new ciphertext
by shifting the plaintext vectors in the ciphertext one by one.
They are then multiplied to complete the multiplication of n
elements in the ciphertext. Because multiplication is performed
continuously, bootstrapping must be performed every time the
multiplicative depth is consumed. In contrast, Zama’s variant
of TFHE creates n ciphertexts corresponding to each message
and multiplies them. It executes a programmable bootstrapping
after one multiplication.

Figure 5 shows the time-space complexity associated with
changes in the number of data n when executing Equation
(1) using CKKS and Zama’s variant of TFHE. When the
number of data n is less than 20, CKKS has a low time-
space complexity, and when it is 40 or more, Zama’s variant
of TFHE has a low time-space complexity. In CKKS, it is
necessary to rotate and multiply the packed ciphertext n times.
As the number of multiplications increased, the number of
bootstrappings required also increased. When the number of
data n is 0, 20, 40, 60, 80, or 100, bootstrapping is required 0,

(a) Execution time (b) Memory usage

Fig. 5. Comparison of the execution status of Equation (1) between CKKS
and Zama’s variant of TFHE.

(a) Execution time (b) Memory usage

Fig. 6. Comparison of the execution status of Equation (2) between CKKS
and Zama’s variant of TFHE.

2, 3, 4, or 5 times, respectively. Because the amount of time-
space complexity required for one bootstrapping is large, the
efficiency decreases significantly compared to Zama’s variant
of TFHE as the number of required bootstrappings increases.
In Zama’s variant of TFHE, multiplication and bootstrapping
are required for each number of data n, and the amount of
time-space complexity increases in proportion to the number
of data n. By contrast, because the time-space complexity
required for multiplication and bootstrapping is small, there
is no significant increase.

Evaluation of Equation (2). When executing (2), CKKS
multiplies two ciphertexts, each storing n messages. Next,
addition is performed on the elements in the vector of the
multiplication result (i.e., ciphertext). By contrast, in Zama’s
variant of TFHE, it is necessary to perform n-time multiplica-
tion and bootstrapping for each set of vector elements. After
n multiplications, the n operation results are added.

Figure 6 shows the time-space complexity associated with
changes in the number of data n when executing Equation (2)
using CKKS and Zama’s variant of TFHE. For all n, CKKS
requires less time-space complexity than Zama’s variant of
TFHE. In CKKS, the multiplication result of n elements can be
obtained by only one multiplication between two ciphertexts,
and bootstrapping is not required. In Zama’s variant of TFHE,
it is necessary to perform multiplication and bootstrapping n
times each in the same way as in (1).

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

588

(a) Total

(b) Gate key generation (c) Bootstrapping

Fig. 7. Comparison of the execution time when the DRAM is limited in
Zama’s variant of TFHE with TFHEpp and OpenFHE.

V. EVALUATION OF ZAMA’S VARIANT OF TFHE SCHEME
WHEN DRAM IS LIMITED

FHE has a large time-space complexity; however, in prac-
tice, it is often used on the cloud and executed without suf-
ficient DRAM allocation. Therefore, in this section, we com-
pare the execution time, SSD bandwidth, and implementation
efficiency of OpenFHE and TFHEpp, which can implement
Zama’s variant of TFHE scheme when the DRAM is limited.
In this study, we evaluated a series of cryptographic processing
(key generation, encryption, bootstrapping, and decryption) for
100 messages. We performed an experiment to scale up the
actual execution environment where FHE runs in the cloud,
showing the results when the DRAM was set to 0.5GB, 1GB,
2GB, 3GB, and no limit.

A. Evaluation environment

The CPU used was an AMD Ryzen 7 5700G @ 3.8 GHz
and had 16 logical cores. In our experiments, we use Docker
containers to limit DRAM. We used SK hynix PC711 with
a maximum of 238GB available for swap destination SSD.
Table 4 lists the parameters used in OpenFHE and TFHEpp.

B. Experimental result

Execution time and SSD bandwidth. Figure 7 shows the
changes in the total execution time, gate key generation time,
and bootstrapping execution time when the DRAM is limited
in Zama’s variant of TFHE with TFHEpp and OpenFHE.
OpenFHE generates the gate key faster if memory is not lim-
ited; however, OpenFHE significantly increases the gate key
generation time owing to memory limitations. Table 7 shows
a comparison of SSD bandwidth changes when the DRAM
is limited in Zama’s variant of TFHE between TFHEpp and
OpenFHE. When generating a gate key with OpenFHE, there

TABLE VII
COMPARISON OF SSD BANDWIDTH CHANGES WHEN THE DRAM IS

LIMITED IN ZAMA’S VARIANT OF TFHE BETWEEN TFHEPP AND
OPENFHE

scheme library memory constraint (GB)

0.5 1 2 3 unlimited

gate key generation

OpenFHE read 41.902 47.347 64.349 31.816 0.166
write 39.723 45.412 99.876 41.086 0.179

TFHEpp read 0.635 0.103 0.138 0.053 0.034
write 317.097 254.194 160.888 0.179 0.104

bootstrapping

OpenFHE read 31.358 19.946 17.116 7.985 0.005
write 2.811 10.077 14.553 8.008 0.006

TFHEpp read 33.020 28.433 30.074 38.378 0.724
write 6.318 10.995 33.147 44.998 0.077

is no increase in the bandwidth owing to DRAM limitations.
This is because there is a tendency not to access a large
amount of data during the operation, and the DRAM limit
does not increase the frequency of read/write to the SSD.
However, with DRAM being limited, there is not enough
memory to perform arithmetic processing, which increases the
execution time. When generating a gate key in TFHEpp, SSD
write bandwidth increases significantly owing to the DRAM
limitations. TFHEpp accesses a large amount of data during
the operation, and it is thought the memory used for data
access will be insufficient owing to DRAM limitations.

Regarding bootstrapping, TFHEpp is faster when there is
no memory limit, but TFHEpp is more susceptible to memory
limits than OpenFHE, and the execution time increases rapidly
below 3GB. There is no increase in bandwidth for either
encryption scheme, and it can be seen that the memory
required to perform arithmetic processing in bootstrapping is
insufficient due to DRAM limitations. In terms of the total
execution time, TFHEpp was faster at all DRAM limit values
because of the increase in OpenFHE’s gate key creation time.
Implementation efficiency. Figure 8 shows a comparison
of changes in implementation efficiency when the DRAM
is limited in Zama’s variant of TFHE between TFHEpp and
OpenFHE. If there is no DRAM limit, TFHEpp has a higher
IPC and better computational efficiency. However, owing to
the DRAM limitation, the IPC of TFHEpp is significantly
reduced, reaching to 1.5, which is comparable to OpenFHE
with 0.5GB of DRAM. In addition, the maximum value of
the CPU utilized is 16; however, this was a low value for
both libraries, indicating that the parallelism of processing
was extremely low. By default, TFHEpp performs the entire
process in a single thread, and OpenFHE uses 16 threads for
key generation and one thread for bootstrapping.

The number of L1D cache loads was 2.5 times higher in
TFHEpp. Owing to the DRAM limit, TFHEpp’s L1D cache
load number had decreased to 1513 (MB/sec), which was
approximately the same as OpenFHE. It can be seen that the
L1D cache is not utilized owing to the deterioration in the

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

589

(a) IPC

(b) CPU utilized (c) L1 Dcache load

Fig. 8. Comparison of changes in implementation efficiency when the DRAM
is limited in Zama’s variant of TFHE between TFHEpp and OpenFHE.

computing performance of the CPU.

VI. CONCLUSION

In this study, we first compared the time-space complex-
ities of multiple cryptographic libraries (OpenFHE, Lattigo,
TFHEpp) and schemes (BFV, BGV, CKKS, Zama’s variant of
TFHE). When cryptographically multiplying integers, BGV in
Lattigo is the fastest among BFV, BGV, and CKKS. For CKKS
which can evaluate floating points, Lattigo is faster when the
multiplicative depth is small, and OpenFHE is faster when
there are many. Among all the encryption schemes, OpenFHE
can be executed with less memory than Lattigo.

In addition, CKKS (,BFV and BGV) and Zama’s variant
of TFHE schemes have different basic calculation units and
bootstrapping mechanisms; therefore, the operations at which
they are good are different. When multiplying arbitrary values
40 or more times, Zama’s variant of TFHE requires less time-
space complexity. However, when calculating the inner product
of vectors, CKKS requires less time-space complexity.

Second, we compared the execution time, SSD bandwidth,
and implementation efficiency when limiting DRAM with
multiple values between OpenFHE and TFHEpp, which im-
plement Zama’s variant of TFHE. TFHEpp is faster than
OpenFHE when memory is limited. This is because the gate
key ganeration time in OpenFHE increases significantly, owing
to the lack of memory required for arithmetic processing.

REFERENCES

[1] Craig Gentry. 2009. A FULLY HOMOMORPHIC ENCRYPTION
SCHEME. Stanford University. https://crypto.stanford.edu/craig/craig-
thesis.pdf

[2] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, Report 2012/144.
http://eprint.iacr.org/2012/144.pdf

[3] Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan. 2012. (lev-
eled) fully homomorphic encryption without bootstrapping. In Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Con-
ference (ITCS ’12), 309–325. Association for Computing Machinery.
https://doi.org/10.1145/2090236.2090262

[4] Jung Hee Cheon, Andrey Kim, Miran Kim and Yong-soo Song. 2017.
Homomorphic encryption for arithmetic of approximate numbers. In-
ternational Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt ’17), 409–437.Cryptology ePrint
Archive, Report 2017/421. https://eprint.iacr.org/2016/421.pdf

[5] Ilaria Chillotti, Marc Joye and Pascal Paillier. 2021. Programmable
Bootstrapping Enables Efficient Homomorphic Inference of Deep Neu-
ral Networks. Cyber Security, Cryptology, and Machine Learning
(CSCML ’21), 1–19. Cryptology ePrint Archive, Report 2021/091.
https://eprint.iacr.org/2021/091.pdf

[6] OpenFHE, https://github.com/openfheorg/openfhe-development
[7] Lattigo, https://github.com/tuneinsight/lattigo
[8] TFHEpp, https://github.com/kenmaro3/TFHEpp
[9] Muhammad Tirmazi et al. Borg: the Next Generation. 2020. Fifteenth

European Conference on Computer Systems (EuroSys ’20), 1–4. Ass-
ociation for Computing Machinery. https://doi.org/10.1145/3342195.33-
87517

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. 2020. TFHE: fast fully homomorphic encryption over the
torus. Journal of Cryptology, Volume 33, Number 1, 34–91. Cryptology
ePrint Archive, Report 2018/421. https://eprint.iacr.org/2018/421.pdf

[11] Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan. 2012. (Lev-
eled) fully homomorphic encryption without bootstrapping. Proceed-
ings of the 3rd Innovations in Theoretical Computer Science Con-
ference (ITCS ’12), 309–325. Association for Computing Machinery.
https://doi.org/10.1145/2090236.2090262

[12] google, https://github.com/google/fully-homomorphic-encryption
[13] Jaeyoung Do, Sudipta Sengupta and Steven Swanson. 2019. Pro-

grammable solid state storage in future cloud datacenters. Commu-
nications of the ACM, Volume 62, Issue 6, 54–62. Association for
Computing Machinery. https://doi.org/10.1145/3286588

[14] Sain Sri Sathya, Praneeth Vepakomma, Ramesh Raskar, Ranjan Ra-
machandra and Santanu Bhattacharya. 2018. A Review of Homomorphic
Encryption Libraries for Secure Computation. https://arxiv.org/pdf/181-
2.02428.pdf

[15] Ijcsis Editor and Ahmed El-Yahyaoui. 2016. Fully Homomorphic
Encryption: State of Art and Comparison. International Journal of
Computer Science and Information Security (IJCSIS ’16), Volume 14,
Number 4.

[16] Charles Gouert, Dimitris Mouris and Nektarios Georgios Tsoutsos. 2022.
SoK: New Insights into Fully Homomorphic Encryption Libraries via
Standardized Benchmarks. Proceedings on Privacy Enhancing Technolo-
gies (PoPETs’23), Issue 3, 154–172. Cryptology ePrint Archive, Report
2022/425. https://eprint.iacr.org/2022/425.pdf

[17] Shereen Mohamed Fawaz, Nahla Belal, Adel Elrefaey and Mohamed
Waleed Fakhr. 2021. A Comparative Study of Homomorphic Encryption
Schemes Using Microsoft SEAL. Journal of Physics Conference Series,
Volume 2128, 012021. https://iopscience.iop.org/article/10.1088/1742-
6596/2128/1/012021/pdf

[18] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac and Mauro Conti. 2018.
A Survey on Homomorphic Encryption Schemes: Theory and Implemen-
tation. ACM Computing Surveys, Volume 51, Issue 4, Number 79, 1–35.
Association for Computing Machinery. https://doi.org/10.1145/3214303

[19] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac and Mauro Conti. 2018.
A Survey on Homomorphic Encryption Schemes: Theory and Implemen-
tation. ACM Computing Surveys, Volume 51, Issue 4, Number 79, 1–35.
Association for Computing Machinery. https://doi.org/10.1145/3214303

[20] Frederik Armknecht et al. 2015. A Guide to Fully Homomorphic
Encryption. International Association for Cryptologic Research (IACR),
Report 1192, 1–35. Cryptology ePrint Archive, Report 2015/1192.
https://eprint.iacr.org/2015/1192.pdf

[21] Thi Van Thao Doan, Mohamed-Lamine Messai, Gérald Gavin and
Jérôme Darmont. 2023. A survey on implementations of homomorphic
encryption schemes . The Journal of Supercomputing, Volume 79,
15098–15139. https://doi.org/10.1007/s11227-023-05233-z

[22] Oded Regev. 2009. On lattices, learning with errors, random linear
codes, and cryptography. Journal of the ACM (JACM),Volume 56, Issue
6, 1–40. Association for Computing Machinery. https://doi.org/10.1145-
/1568318.1568324

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

590

