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Abstract—Magnetometers play a vital role in geophysics and
space weather prediction applications by collecting terrestrial
magnetic field data. They monitor solar-induced geomagnetic
disturbances, providing essential insights into predicting space
weather effects on technologies such as satellites, power grids,
and communication networks. However, this data often contains
inherent background noise, necessitating accurate baseline cor-
rection methods. Traditional correction techniques are robust
but computationally demanding and unsuitable for real-time
applications. Recent progress has investigated the utilization of
Tiny Machine Learning (TinyML) to process magnetometer data
in real time, especially when resources are limited. However, these
edge-based ML solutions often lack the robustness of more com-
putationally intensive probabilistic models, such as Variational
Autoencoders (VAEs). This paper introduces a TinyML-VAE
surrogate model designed for real-time magnetometer baseline
correction. The surrogate model approximates an implemented
VAE’s performance while operating within the constrained re-
sources of an edge device. The new model retains the VAE’s
uncertainty quantification capabilities by leveraging surrogate
modeling techniques, ensuring robustness. Experimental out-
comes have been displayed, illustrating a comparison between the
performance of the TinyML-VAE and the benchmark established
by the standard VAE.

Index Terms—Edge Machine Learning, TinyML, Variational
Autoencoder, Data Denoising, Geomagnetic Data

I. INTRODUCTION

Magnetometers are pivotal in many domains, ranging from
geophysics to space weather forecasting [1]. The terrestrial
magnetic field data collected by such instruments suffers from
background noise. Therefore, accurate and timely baseline cor-
rection is a prerequisite for the validity of scientific analyses
[2] [3]. Traditional baseline correction methods, while robust,
often necessitate human intervention and are computationally
intensive [2]. Consequently, they fail to meet the requirements
of real-time applications [3].

Recently, initiatives have been undertaken to develop a
machine learning (ML)-enabled magnetometer system for
real-time baseline correction and prediction of ground mag-
netic perturbations [3]. The work leverages a subset of edge
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ML called Tiny Machine Learning (TinyML). The TinyML
paradigm deals with developing and deploying ML models
for resource-constrained edge devices like microcontroller
units (MCU) [3] [4]. Preliminary results on the ML-enabled
magnetometer have shown promise for real-time, low-power,
and efficient data processing. However, unlike offline or
cloud-based ML deployments, the TinyML framework cannot
accommodate computationally expensive models due to the
target hardware’s resource limitations [4]. For example, in the
past literature, cloud-based methods like Variational Autoen-
coders (VAEs) have become preferred for robust data denois-
ing [5]. VAEs, a probabilistic counterpart of Autoencoders
(AE), consist of two sub-modules, one representing an encoder
and the other a decoder [6]. VAE utilized the encoder to map
the raw input data into a posterior probability distribution over
a lower-dimension space. The decoder takes samples from
the encoder-generated distribution to produce a prediction
probability distribution. The predicted distribution denotes the
denoised data constructed from its raw counterparts. Given
the VAE approach’s probabilistic nature, the dispersion of the
distribution denotes the prediction uncertainty, thereby ensur-
ing robustness [7] . Nevertheless, the computational resources
required for implementing such probabilistic models exceed
what is available in most MCUs, and therefore, the TinyML
framework tends to lack robustness [8].

This paper aims to bridge the aforementioned gaps through
the creation of a TinyML implementation, functioning as
a stand-in for the conventional denoising Variational Au-
toencoder (TinyML-VAE surrogate). This method effectively
executes real-time baseline correction for magnetometer data,
utilizing the surrogate model concept within machine learning.
A surrogate model, also known as an emulator, is a particular
case of supervised ML applied in the field of engineering
design [9]. Their use cases have primarily been focused on
accelerating computationally expensive numerical simulation
models. In surrogate modeling, a statistical model is con-
structed to approximate the simulation output [9]. By applying
the surrogate modeling pipeline, the TinyML-VAE surrogate
approximates the original VAE, capturing its uncertainty quan-
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tification capabilities while significantly reducing computa-
tional requirements. This work motivates future research in
integrating large-scale ML models at the edge device for
improvements in robustness.

For this study, a standard VAE was implemented and
trained on historical magnetometer data, and the TinyML-
VAE surrogate is an approximation of the former model.
The performance of the surrogate was compared against the
benchmark set by the standard implementation. The remainder
of the paper is as follows. In Section-II the adopted method-
ology is explained, which elaborates on the data acquisition
and processing steps, along with the development of the
models, and their hardware deployment. Section-III presents
and discusses the empirical results on the performance of the
two models. Finally, Section-IV concludes the paper, with a
note on future work.

II. METHODOLOGY

A. Data Overview, Acquisition And Processing

The Earth’s magnetic field is a vector quantity that can
be defined in the Cartesian framework using three orthogonal
components: BN , BE , and BZ . The vector components, when
presented in a local magnetic coordinate system, are positive
in the direction of north (N ), east (E), and vertically down
(Z). Most geomagnetic observatories deploy variometers (e.g.,
fluxgate magnetometers) that collect the component changes
relative to an undetermined field. This undetermined field
is called the baseline, and it depicts the average or back-
ground magnetic field present along that component without
any external fields. The data for this paper were obtained
from SuperMAG [2]. SuperMAG is a global consortium of
institutions and governmental bodies that manages nearly
600 ground-based magnetometers worldwide. The platform
offers access to verified perturbations in the Earth’s magnetic
field, all presented in a unified local magnetic coordinate
system with consistent time intervals and a common baseline
removal approach. The SuperMAG system isolates variations
from electric currents in Earth’s upper atmosphere by filtering
out the slowly changing, predominant Earth main field [2].
SuperMAG’s data processing mechanism is not performed in
real time. Therefore, this paper employs historical raw and
baseline-adjusted local terrestrial magnetic field data from
the Ottawa (OTT) station for 2001-2018. The magnetometer
in Ottawa is situated at a magnetic latitude of 54.98° N.
It operates on a Universal Time (UT) offset of -5 hours,
indicating that local midnight corresponds to 05:00 UT. The
data recorded from OTT has less than 1% of missing val-
ues. Such incomplete data points were addressed through
linear interpolation. The final dataset utilized for this study,
D⃗ = {D⃗R, D⃗B}, consists of the raw magnetic components
data, D⃗R = {BN , BE , BZ}, and their baseline corrected
counterparts, D⃗B = {B′

N , B′
E , B

′
Z}.

B. Model Overview And Implementation

1) Variational Autoencoder (VAE): Autoencoders (AE) are
a type of neural network architecture used for unsupervised

learning tasks [6]. A standard AE comprises two key sub-
networks: an encoder and a decoder. The encoder maps the
input into a lower-dimensional space called the latent-space.
The idea is to capture the essential features or characteristics
of the input data in a relatively smaller number of dimensions.
The decoder then leverages the latent-space representation to
output a reconstructed form of the input data. AE aims to
estimate the optimal set of network parameters that minimize
the discrepancy between the input and corresponding output.

AEs can be adapted to remove noise from data. Suppose the
original dataset X consists of inherent noise, and we have a de-
noised counterpart X ′ for validation [6]. If X has N number of
samples and M number of features (N×M ), then the encoder
uses the activation function f : RM → Rm for mapping. As
shown in Eq-1, f maps each sample xi in X to a point zi in the
latent-space Rm, where m < M , and wf represents the weight
parameters of the encoder network. The decoder network uses
a second activation function g : Rm → RM , which predicts x̂′

i

from zi, as exhibited in Eq-2, where x̂′
i is a denoised instance

of xi, and wg denotes the weights of the decoder module.
As mentioned, the AE utilizes a loss function L to minimize
the difference between the denoised validation data X ′ and
its corresponding decoder-predicted value, X̂ . The choice of
the activation functions and the optimization algorithm used
in minimizing L is contingent on the problem in focus. A
common example of a loss function is mean-squared error
(MSE), which is depicted in Eq-3.

zi = f(xi, wf ) (1)

x̂i = g(zi, wg) (2)

LMSE =
1

N

N∑
i=1

(x′
i − g(f(xi, wf ), wg))

2 =
1

N

N∑
i=1

(x′
i − x̂′

i)
2

(3)
During the training of AE, both forward and backward prop-

agation occurs [6]. The input data X is fed into the model, and
the encoder maps it into the latent-space Rm. The decoder uses
the latent-space representation Z to predict the reconstructed
data X̂ ′. The X̂ ′ is compared against the validation set X ′ via
the loss function L, and through backward propagation, the
weight parameters wf and wg are updated. The above process
is repeated until L reaches the required threshold value. In
the case of testing, the AE model predicts the results through
forward propagation only.

AEs learn a deterministic mapping from the input space to a
fixed latent space. Its probabilistic counterpart, Variational AE
(VAE), integrates Bayesian inference to exhibit both the latent-
space representation and the predicted output as a posterior
probability distribution [6]. Bayesian inference implements
Bayes’ Theorem, which posits that the posterior probability
distribution is directly proportional to the product of the prior
distribution and the likelihood function [7]. Given a posterior
distribution, its variance quantifies uncertainty, making VAE
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a robust option relative to a standard AE. In VAE, the
encoder produces a posterior distribution of the latent-space
representation f(Z|X,wf ) as demonstrated in Eq-4 and the
sample generation of Z for the decoder is referred to in Eq-
5. The decoder takes the latent-space samples (µz,x′

i
, σ2

z,xi

and predicts a posterior distribution of the reconstructed data
g(X̂ ′|Z,wg), as shown in Eq-6. The loss function for VAE
LV AE primarily consists of two components (See Eq-7) [6].
The first term is the expected negative log-likelihood. This fac-
tor motivates the decoder to learn data reconstruction. Should
the decoder fail to reconstruct the original data adequately,
it will cause LV AE to incur a large cost. The second term
is the Kullback–Leibler (KL) divergence, used as a regular-
ization factor. The KL divergence measures the amount of
information lost for using f(Z|X,wf ) as an approximation for
the actual latent-space representation distribution p(Z). The
KL divergence is an inference problem, and its mathematical
formulation is presented in Eq-8. Variational inference (VI)
solves the KL divergence term by approximating the posterior
with a simpler distribution and minimizing the divergence
between this approximate posterior and the prior. VI allows
the optimization problem to learn the weight parameters of the
encoder and decoder through backpropagation. For simplicity,
it is specified that the prior p(Z) ∼ N (0, 1). The above as-
sumption allows the KL divergence problem to be decomposed
to the terms expressed in Eq-9, where µi and σi are the mean
and standard deviation of the ith component of Z.

f(Z|X,wf ) ∼ N (µz,x′
i
, σ2

z,x′
i
) (4)

Z = µ(X) + σ(X)ϵ, ϵ ∼ N (0, 1) (5)

g(X̂ ′|Z,wg) ∼ N (µ̂x′ , σ̂x′
2) (6)

LV AE = −E[log g(X̂ ′|Z,wg)] +KL[f(Z|X,wf )||p(Z)]
(7)

KL[f(Z|X,wf )||p(Z)] =

∫
f(Z|X,wf ) log

f(Z|X,wf )

p(Z)
dz

(8)

KL[f(Z|X,wf )||p(Z)] =
1

2

N∑
i=1

(σ2
i + µ2

i − 1− log σ2
i ) (9)

For this paper, a VAE was implemented using Python’s Ten-
sorFlow and TensorFlow-probability libraries. The model takes
raw magnetometer component values as input and predicts the
posterior distribution of the baseline corrected values as out-
put. The multivariate encoder network comprises a single vari-
able input layer, three hidden layers, and an output layer with
two neurons. The hidden layers are the TensorFlow-probability
library’s ”Variational Dense Layers” that transform the noisy
input data X into two output vectors: mean (µz,x) and variance

Fig. 1. Overview of the TinyML-VAE Surrogate methodology.

(σ2
z,x). These two vectors define the Gaussian distribution

parameters representing the latent space. The encoder produces
a tensor with ”2 × dimensionalityofthelatentspace” be-
cause the mean and variance are being modeled. The sampling
function shown in Eq-5 takes µz,x and σ2

z,x and samples from
the corresponding Gaussian distribution to produce the latent
variable Z. The decoder network is a mirror image of the
encoder, and it takes (µz,x, σ

2
z,x) as its input and outputs the

µ̂x′ and σ̂x′
2, which are the mean and variance of the predicted

denoised data X̂ ′. Both networks use the Rectified Linear Unit
(ReLU) as their activation function.

As mentioned above, the objective of this study is to perform
baseline correction of the three raw magnetic component
data (BN , BE , orBZ). Distinct instances of the implemented
VAE model were trained and tested for the three components
separately. For example, an instance of the model was first
trained and tested using BN as input and B′

N as the target
variable, and the same process was independently repeated for
BE , and BZ . During the training and testing of the model for a
particular component, the raw data of the component from D⃗R

were provided as the input value for X . Its baseline corrected
counterparts from D⃗′

R were used as the ground truth during
validation and testing. From the dataset, D⃗ 80% were taken
for training, and the remaining 20% were used for testing.

2) Surrogate TinyML Model For VAE (TinyML-VAE Surro-
gate): Surrogate models, sometimes referred to as emulators
or meta-models, are used to mimic the performance of com-
plex simulations or algorithms but at a fraction of the compu-
tational cost [9]. The idea behind surrogate modeling is to use
a simpler, less computationally intensive model to approximate
the output of a more complex model. In essence, the surrogate
model serves as a statistical approximation of the original
model. The surrogate model is generally trained on a dataset
that is generated by running the original, computationally-
intensive model. This approach is highly relevant for TinyML
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Fig. 2. The iBUG-Stick development board (Front and Back Views) is
presented adjacent to a US cent coin, for size comparison.

implementations, which often have limitations on memory,
processing power, and energy consumption.

To implement the TinyML-VAE surrogate model, initially,
the standard VAE is treated as three distinct submodules: the
encoder f(), the latent space representation Z, and the decoder
model g() (See Eq-4-6). In the standard VAE, at each time
step, f() takes a raw magnetic component data xi(xiϵX)
and outputs (µ(xi), σ(xi)

2. Then Eq-5 is used to derive a
set of samples for the latent space representation z⃗i. Given
the set of values for z⃗i for a particular input xi, the mean
and variance of z⃗i is obtained (µz,xi , σ

2
z,xi

). The encoder of
the surrogate model fsurr is trained with X as input and
(µz,xi

, σ2
z,xi

) as target variable. Here, fsurr is a multivariate
feed-forward neural network that consists of an input layer
for a single variable and an output layer with two targets. The
fsurr networks comprise three hidden layers, with ReLU as
their activation function and MSE as the loss function.

The standard VAE decoder g(), at each time step, takes
(µz,xi

, σ2
z,xi

) as input and predicts the mean and variance
of the baseline corrected magnetic component (µ̂x′ , σ̂x′

2) as
output. The surrogate decoder model gsurr is a multivariate,
multivariable feed-forward network where the input layer has
three nodes and the output layer has two. In between, it has
three hidden layers, all of which use ReLU as their activation
function. The network gsurr is trained with (xi, µz,xi , σ

2
z,xi

)

as features (µ̂x′ , σ̂x′
2) as target values. The network gsurr

predicts the mean and variance of the baseline corrected
magnetic component values ( ˆµsurr,x′ , ˆσsurr,x′

2). The trained
surrogate encoder and the decoder are separately converted
into TinyML models using the Tensorflow-Lite Micro library
for deployment and testing using an MCU board. A summary
of the TinyML-VAE surrogate’s methodology is presented in
Fig-1

C. Hardware And Deployment

The surrogate encoder, sampling function decoder TinyML
model, trained for a particular terrestrial magnetic component
data, were deployed into an iBUG-stick development board for
testing (See Fig-2). The iBUG board is an ML-enabled IoT
sensing platform, which has been used in the past literature for
real-time environmental monitoring [10]. It has an RAK11300
Long Range Wide Area Network (LoRaWAN) module and a

Fig. 3. Normalized error plot versus time (min), comparing the Standard
VAE Encoder’s output (µz,xi , σz,xi ), against the TinyML-VAE Surrogate
Encoder’s output, ( ˆµz,xi , ˆσz,xi ).

133MHz dual-core Raspberry Pi RP2040 MCU. The appro-
priate input from the test dataset was provided as streaming
value via the board’s USB port. At each time step, for each test
input, the TinyML encoder’s output (µ̂enc, σ̂

2
enc). The decoder

takes the (µ̂enc, σ̂
2
enc) as input, and predicts (µ̂dec, σ̂

2
dec). Both

the encoder’s and decoder’s forecasts were recorded for further
validation.

III. RESULTS

In this study, Normalized Error (NE) and Normalized Root
Mean-Squared Error (NRMSE) have been adopted as the
metrics of choice to compare the performances of the two
models. Zero is considered a perfect fit in both metrics,
whereas 1 signifies a maximum error. In Fig-3, the NE between
the benchmark and surrogate predicted mean and variance are
presented. The surrogate encoder trained for the component
BE had the poorest performance for mean and variance. It
can also be observed that, generally, the mean prediction of the
surrogate was more accurate than its corresponding variance.
This is because the benchmark variances are samples from
a normal distribution, and the surrogate encoder variance is
a deterministic proxy. The observations are also consistent
when NRMSE is considered. Table-I lists the NMRSE values
for the standard VAE, TinyML-VAE encoder, and TinyML-
VAE decoder. The standard VAE NMRSE is the model’s
performance compared to the ground truth or test dataset.
Therefore, the standard model has no values under the variance
rows, as the variance is just a quantification of the model’s
prediction uncertainty. In the case of the surrogate encoder
and decoder, they compare against the benchmark result set
by the standard VAE’s encoder and decoder.

The variances of the two surrogates are considered, as they
are a deterministic approximation of the standard uncertainty

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud 
Computing and Big Data

582



TABLE I
NORMALIZED RMSE COMPARISON FOR MAGNETIC COMPONENTS

Variable Norm. RMSE
Standard VAE

Norm. RMSE
TinyML-VAE

Encoder

Norm. RMSE
TinyML-VAE

Decoder

BN 0.41 0.54 0.58

BE 0.43 0.61 0.66

BZ 0.41 0.53 0.55

σ2
N – 0.55 0.58

σ2
E – 0.60 0.66

σ2
Z – 0.50 0.55

Fig. 4. Standard VAE and TinyML-VAE Surrogate Decoder’s Predicted Mean
and Variance For Each Magnetic Component (BN , BE , BZ ) Versus Time.

quantification. A similar trend can be observed with the model
trained for BE component performed the poorest. However,
since NRMSE considers the entire prediction sample set, the
variance’s NRMSE seems comparable to its mean counterpart.
This is because, unlike the NE, the NRMSE metric is an
average over each model’s entire prediction set. Consequently,
the averaging operation is likely to reduce the overall error.

Finally, in Fig-4, the predicted mean and variance from the
decoders of both standard VAE and surrogate VAE is presented
in a time series plot, where at each time step, the predicted
mean is enveloped by the upper and lower bound (its cor-
responding variance), which is a quantification of uncertainty.
The authors of this paper highlight that the performance of the
decoder and the overall uncertainty quantification approxima-
tion depends on the effective mapping of the standard model’s
latent space by the encoder. This mapping can be improved
through a distributed or ensemble architecture, where multiple

encoders are executed on distinct MCUs, and the results from
each model can then be approximated into a distribution. A
similar approach can be adopted for the decoders to ensure a
more effective uncertainty quantification approximation.

IV. CONCLUSION AND FUTURE WORK

In this study, surrogate ML techniques were employed to
construct a TinyML model that emulates the functionality of
a computationally expensive VAE. Consequently, the surrogate
methodology allowed the TinyML model to approximate the
uncertainty quantification capabilities of a standard VAE, thus
ensuring robustness. The models were trained and tested for
real-time baseline adjustments on historical magnetometer
data. The performance of the TinyML model was evaluated
against the benchmark set by the standard VAE. The proposed
system is being integrated with a magneto-inductive sensor for
real-time data calibration as an ongoing work on developing
an ML-enabled autonomous magnetometer system. In addi-
tion, an active learning framework is being implemented in
conjunction with a cloud-based platform. The goal is for the
TinyML-VAE model to be retrained in the cloud and updated
at the edge as the real-time data distribution shifts with time.
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