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Abstract—Cooperative load balancing effectively prevents ser-
vice quality deterioration, particularly under elevated loads
in edge offloading services of resource-limited edge clouds. It
does this by transiently dispersing the load across multiple
geographically proximate edge clouds. Our study introduces a
method that enables quick load redistribution among adjacent
edge clouds, facilitating rapid load distribution through the
dynamic redirection of requests from terminals based on the load
status of the respective edge cloud. This is achieved by updating
the route information within the relay network. To validate our
approach, we developed a prototype of an edge cloud infrastruc-
ture using Kubernetes and a controller responsible for routing
control between edge clouds utilizing Locator/Identity Separation
Protocol (LISP). Through experimentation, we demonstrate an
80% reduction in median response time when distributing the
load across neighboring edge clouds.

Index Terms—edge computing, container, Kubernetes, LISP,
load balancing

I. INTRODUCTION

Numerous studies are underway to explore the practical
implementation of edge computing, which is characterized as
a processing approach that takes place on servers strategically
positioned between the cloud infrastructure and connected
devices [1]. This emerging paradigm facilitates low-latency
responses and mitigates relay traffic. An exmemplary use
case that highlights the potential of edge computing is found
in connected cars, which demand not only substantial data
transmission and swift processing but also rapid processing
capabilities [2]. One specific area of focus within this re-
search is computation offloading. This involves the continuous
transmission of camera images and sensor data from onboard
devices to a server for processing, emphasiziing the need for
extensive data transmission and minimal latency in response
times [3].

The infrastructure supporting edge computing, enabling the
dynamic allocation of server resources through virtualization
technology akin to traditional large-scale clouds, is referred
to as an edge cloud. Notably, the implementation of a mi-
croservices architecture (MSA) with container virtualization
technology and Kubernetes1 on the edge cloud is anticipated to
yield high scalability and agility. This mirrors the capabilities
of traditional clouds, operating at the microservices level,
where each unit provides distinct functions [4].

However, owing to the dispersed nature of edge clouds
across diverse locations, the computing resources at their dis-

1https://kubernetes.io/

posal are inherently more limited when compared with those
present in public clouds or on-premises environments in exten-
sive data centers. In addressing the challenges associated with
the limited computing resources of geographically dispersed
edge clouds, particularly as their distribution widens, the risk
of overload becomes more pronounced. This is especially
critical in edge offloading scenarios where continuous data
uploadsand low-latency responses are paramount.

To mitigate this risk, we are developing a method for
cooperative load balancing among neighboring edge clouds
for edge offloading services [5]. This collaborative approach
involves multiple geographically proximate edge clouds and
public clouds. If a specific edge cloud, operating at full
computational capacity, encounters a load exceeding its stable
operational threshold, the method temporarily redirects surplus
requests to neighboring edge clouds or available public clouds,
ensuring the stable operation of edge offloading services.

While the cooperative load balancing proposed in [5] effec-
tively distributes the computational load of edge offloading, it
presents certain challenges. First, it does not address the distri-
bution of the network load on the edge cloud gateway, which
could be problematic due to the continuous transmission of
extensive data from multiple terminals potentially consuming
a significant portion of the edge cloud’s bandwidth. Second,
data transfers between edge clouds and public clouds result
in increased response times compared with methods involving
direct connections between terminals and each edge cloud or
public cloud.

In this study, we propose a cooperative load distribution
method among neighboring edge clouds to overcome these
challenges. This method dynamically updates the routing
information of the network, dispersing the access destination
edge cloud from the terminal. Edge edge cloud’s offloading
services are assigned a common IP address to which terminals
send their requests. If the requests per second (RPS) for a
particular edge cloud’s offloading service exceeds a certain
threshold, the controller utilizes the Locator/Identity Sepa-
ration Protocol (LISP) [6] to dynamically alter the relevant
router’s mapping registry. This temporarily redirection routes
excess requests to a neighboring edge cloud with available
capacity.

The contributions of this study are as follows:

• By employing a method that disperses the terminal’s
access point to the service in the relay network, we enable
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the distribution of both computational and network loads
in the cooperative load distribution of edge offloading
services among neighboring edge clouds.

• Through evaluation experiments, we demonstrate that,
during periods of overload on a specific edge cloud’s
offloading service, the median response time of terminal
requests is reduced by up to 80% compared to methods
that do not employ our proposed approach.

The rest of this paper is structured as follows. The following
section explores related research. The proposed method along
with its implementation are detailed in Sections III and IV,
respectively. Section V presents the evaluation of the proposed
method through experiments. Finally, we draw our conclusions
in VI.

II. RELATED WORK

In edge and fog computing, individual edge or fog en-
vironments are characterized by limited available resources.
Consequently, in scenarios where a substantial load is present,
coordinated task offloading and load distribution among mul-
tiple environments become crucial to ensure the continuous
provision of stable services [7]. Cooperative load balancing
among neighboring edge server resources is a recognized
approach to mitigate edge server overload [8]. In this coop-
erative load balancing framework, multiple edge servers in
close geographic proximity collaborate. When the number of
requests to a particular edge server surpasses a predetermined
threshold, the excess requests are temporarily redirected to
neighboring edge servers, thereby maintaining stable the edge
server processing. Previous research [9] has proposed collab-
orative resource management and load distribution methods
for multiple fog computing environments, primarily focusing
on mathematical models for achieving resource management
and load distribution. However, for the realization of load
distribution between geographically dispersed edge computing
environments connected via wide area networks, methods
encompassing the network layer are imperative.

Compute-first networking (CFN) and compute aware net-
working (CAN) are methodologies that disperse the terminal’s
access destination by dynamically determining the routing
destination of the network based on real-time computational
and network loads of edge clouds [10]. Similarly, the method
proposed in [11] disperses the terminal’s connecting edge
cloud by exchanging BGP control messages between relay
routers, incorporating both computational and network load
metrics. Another approach presented in [12] determines the
terminal’s access destination edge cloud based on each edge
cloud’s computational load, simultaneously allocating the nec-
essary bandwidth to the route connecting the terminal to the
access destination edge cloud. In contrast to these methods, the
approach presented in this study distinguishes itself by imple-
mentating LISP-compliant routers at the gateway connecting
edge clouds and terminal groups.

A related method proposed in [13] utilizes LISP to distribute
access from terminals to the same service deployed across
multiple edge clouds, deploying services with the same IP

address on Kubernetes clusters on edge clouds and the de-
termining of the connecting edge cloud from terminals using
LISP. While sharing similarities in these aspects, our study
stands out by introducing a method that dynamically switches
the destination edge cloud, presenting a unique contribution.

III. PROPOSED METHOD

In this section, we discuss the proposed cooperative load
distribution method for edge offloading services among neigh-
boring edge clouds.

A. System Overview

The proposed system is illustrated in Figure 1. This sys-
tem operates instances of the same edge offloading service,
accessible via a shared IP address, across all geographically
distributed edge clouds. The edge offloading service, a state-
less service, is designed to sequentially receive vehicle data
from the on-board terminal via the mobile network, conduct
computational processing such as inference, and promptly
return the results to the terminal. A typical service instance
performs sequential object detection processing on images
transmitted at regular intervals from the on-board terminal’s
camera, promptly sending the results back to the terminal.

XTRs, which is a LISP-compliant routers, are strategically
placed at the gateway router (referred to as the client gateway)
connecting terminals in each region and at the access point
(referred to as the edge gateway) of each edge cloud from
the outside. LISP, an encapsulation protocol, separates and
manages device identification (ID) information from location
indication (Locator) information. Within routers that support
LISP, there are two primary types: Ingress Tunnel Router
(ITR) and Egress Tunnel Router (ETR). The ITR encapsulates
packets from a LISP site and sends them to the destination
LISP router’s IP address, while the ETR receives encapsulated
packets and sends the decapsulated packets to the LISP site.
Generally, both ITR and ETR functionalities are implemented
on the same router, commonly referred to as an XTR.

The client gateway is positioned after the UPF of the 5G
mobile network. Each terminal periodically sends a request to
the common IP address of the edge offloading service, and
the intermediate client gateway forwards the request from the
terminal to one of the edge clouds. When the load is light, each
terminal’s request is forwarded to the geographically closest
edge cloud’s offloading service. However, with an increase in
the edge cloud’s load and an anticipation of potential service
degradation owing to longer response times or service interrup-
tions from server overload, the client gateway is dynamically
managed to distribute a portion of requests to neighboring
edge clouds that are not overloaded. The controller determines
the allocation of requests to neighboring edge clouds by
assessing the load on each edge cloud’s offloading service and
regulary monitoring resource availability. This information is
subsequently recorded in the mapping registry of the client
gateway.
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Fig. 1. Overview of proposed architecture

B. Controller Operations

Table I presents a compilation of data models utilized
by the controller for monitoring, static configuration, and
dynamic control tasks. The edge clouds to which the client
gateway connects are defined as edgei, where i is the index
of the edge cloud assigned based on the prioirity level, with
lower values indicating higher priority. Those priorities are
determined by factors such as geographic distance and the
extent of communication delay. For each edge cloud edgei,
the maximum RPS of requests for stable operation of the edge
offloading service is assumed to be pre-measured and defined
as Ci. The controller repetitively executes the following three
operations at intervals of interval seconds:

1) Acquire the RPS of requests to the client gateway
(defined as r).

2) Calculate the weight values for the gateway routers using
Algorithm 1.

3) Register the calculated transfer ratio in the mapping
resolver and promptly update the mapping registry of
the client gateway.

C. Weight Calculation Algorithm

The weight calculation algorithm is described in Algorithm
1. If the RPS directed toward edge1 exceeds the maximum
receivable RPS C1, then w1 is calculated, such that the

TABLE I
CONTROLLER UTILIZED METRICS

Type Metrics Description
Static set-
ting

interval
[seconds]

The time interval at which
the controller retrieves
monitoring-type metrics
and updates the mapping
registry.

Static set-
ting

Ci [RPS] The maximum RPS of requests
that the edge offloading service
on edge cloud edgei can pro-
cess stably.

Monitoring r [RPS] The RPS of requests sent to
the client gateway for the edge
offloading service from clients.

Dynamic
control

weighti The proportion of requests
from terminals that reach the
client gateway and are for-
warded to the edge offloading
service on edge cloud edgei

Algorithm 1 Weight calculation algorithm
Input: r, edges (a list of edgei)
Output: weights (a list of weighti)

1: rleft = r
2: for edgei in edges do
3: if rleft > Ci then
4: weighti = Ci/r
5: rleft = rleft − Ci

6: else
7: weighti = rleft/r
8: rleft = 0
9: break

10: end if
11: end for
12: if rleft > 0 then
13: weight1 = weight1 + rleft/r
14: end if
15: return weights

RPS for requests to edge1 becomes C1. Subsequently, for
the remaining requests rleft = r − C1, w2 is calculated to
distribute rleft to edge2, providing it fits within C2. Similarly,
w3, w4, ... are calculated for edge3, edge4, ... and so forth. If
rleft > 0 after distributing the RPS to all edge clouds edgei
in accordance with Ci, then w1 is recalculated to distribute
the remaining rleft to the highest-priority edge, edge1.

D. Updating the Mapping Registry

Upon the controller registering a new transfer ratio in the
mapping resolver, the updating process of the client gateway’s
mapping registry ensues, adhering to the sequence delineated
in Figure 2. This prompt update is crucial for initiating load
balancing at the client gateway. In standard scenarios, the
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mapping registry of the LISP’s XTR is undergoes updating
when the XTR submits a query to the map resolver promptly
if no entry corresponding to the packet is found in the mapping
registry. The update is completed upon receiving the response.
Entries recorded in the mapping registry are cached for a
designated period, and on condition that the cache persists,
packets are continuously forwarded according to the entries
stored in the mapping registry. In this study, a methodology
involving the transmission of a solicit map request (SMR)
message from the mapping resolver to the XTR is imple-
mented to accelerate the update of the client gateway’s the
mapping registry immediately upon the controller computing
the transfer ratio.

IV. IMPLEMENTATION

This section provides an overview of the software employed
in the implementation of this study.

Table II provides a comprehensive list of the software along
with their respective versions employed in this study. Each
edge cloud is established as an independent Kubernetes cluster.
For measuring the RPS of the edge offloading service, we use
Prometheus2. Centralized monitoring is achieved by deploying
Prometheus agents on each Kubernetes cluster and utilizing a
Prometheus insntance with the Federation feature enabled in
the controller,

Vector Packet Processor (VPP)3 is employed for both the
client and edge gateways. VPP is a software providing network
packet forwarding functionality on Linux. It features LISP
functionality as a plugin and serves as the data plane of XTR.

OpenDaylight4 is used for the mapping resolver. While
OpenDaylight is recognized as an SDN controller, it also
features LISP mapping resolver functionality as a plugin. In
this study, we exclusively leverage this plugin functionality to
utilize Opendaylight as a mapping resolver.

The weight calculation function of the controller is im-
plemented through a custom application using Python3. By
integrating multiple open-source software, the newly devel-
oped software components in the implementation system are
confined solely to the weight calculation function.

V. EVALUATION

In this section, we establish an environment to simulate
multiple geographically dispersed edge cloud environments

2https://prometheus.io/
3https://s3-docs.fd.io/vpp/23.02/
4https://www.opendaylight.org/

TABLE II
SOFTWARE USED FOR IMPLEMENTATION

Component Software OSS Version
Edge Cloud In-
frastructure

Kubernetes 1.26.0

Monitoring Prometheus 1.0.0
LISP XTR VPP 22.10
LISP Mapping
Resolver

OpenDaylight 17.0.0

Weight Calcula-
tion

Python3 Applica-
tion

3.10.9
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Fig. 3. Latency Settings Among Experiment Servers

and deploy a system implementing the proposed method. We
incrementally escalate the rate of RPS from terminals to the
edge offloading service until the RPS reaches a threshold
at which the nearby edge cloud can no longer maintain
stable operation. Our verification process confirms that, under
such circumstances, requests are temporarily redistributed to
other nearby edge clouds, effectively preventing performance
degradation caused by overload.

A. Experimental Configuration

On an OpenStack infrastructure that we have constructed,
we operate virtual machines to simulate multiple edge clouds,
a controller, and a group of clients, as depicted in Figure
3. All virtual machines run on Linux (Ubuntu 20.04) as the
OS. Additionally, we utilize the tc command to intentionally
introduce a fixed delay between each virtual machine, as
illustrated in Figure 3. Edge1 represents a small edge cloud
with wide distribution, directly accessible by terminals via a
wireless access line. We establish a round-trip delay of 40 ms,
considering the delay value of the wireless section. Edge2 is a
medium-sized edge cloud covering a broader area than Edge1,
with a round-trip delay set at 50 ms with the terminal. Edge3,
a large edge cloud encompassing an even larger area, has a
terminal delay set to 30 ms. The communication delay of the
wireless access network can in reality fluctuate significantly.
However, in this study, we prioritize evaluating the feasibility
of implementing the proposed method and assign a fixed
round-trip delay for consistency.

The edge offloading service employed in the experiment
utilizes a simple Nginx web server that only responds with a
4KB HTML page. Each Kubernetes cluster operates a single
container (Pod) for the edge offloading service. The resource
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TABLE III
ALLOCATED RESOURCES AND PARAMETER SETTINGS

Edge
Name

Allocated Resources for Edge
Offloading Service Pod

Controller’s
Parameter
Ci

Edge1 100m CPU, 2GB Memory,
20GB Disk Capacity

400

Edge2 200m CPU, 4GB Memory,
20GB Disk Capacity

800

Edge3 400m CPU, 8GB Memory,
20GB Disk Capacity

1600

request and limit values assigned to the Pod, along with the
Ci values used by the controller for weight calculation, are
allocated varying values for each edge cloud, as detailed in
Table III. Note that for a Pod with 100m CPU and 2GB
memory, the maximum throughput of the web server utilized
in this experiment is 500 transactions per second (TPS).
According to the pre-verification process, if it receives more
than 500 RPS simultaneously, the response time will gradually
deteriorate, leading to occurence of errors.

B. Experimental Procedure

From the virtual machine client, simulating a group of
clients, we initiate requests to the edge offloading service at
1 s intervals, gradually increasing the number of concurrent
requests over time. Specifically, we modulate the RPS from the
terminal to the edge offloading service by adjusting the number
of simultaneous connections from the client, as depicted in
Figure 4. Subsequently, we conduct an experiment to measure
variations in the throughput with TPS of the edge offloading
service and the response time of the requests as the RPS
fluctuates. In a real-world scenario, the RPS of requests to edge
offloading services in a certain region may change based on the
road traffic volume of connected vehicles in that region. For
simplicity, this experiment assumes a linear change in RPS,
as illustrated in Figure 4.

In all cases, the controller’s parameter values, interval, is
set to 10 s, and n is set to 3. We also conduct experiments
with a method that does not distribute the load to the nearby
edge for comparative analysis.

C. Experimental Results

Figure 5 illustrates the variations in the throughput of
Edge1 when load distribution to the nearby edge cloud is
not implemented, along with the changes in the throughput
of Edge1, Edge2, and Edge3 when employing the proposed
method. Additionally, Figure 6 presents the box plot of the
request response time from the client, and Table IV provides
the corresponding statistical values.

In the absence of load balancing, as evident from Figure
5(a), although the client’s requests continue to escalete beyond
150 s from the start of the experiment, the throughput of
Edge1 remains approximately at 500 RPS. As indicated in
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Fig. 5. Throughput

Table IV, both the median and 75th percentile values of
response time have significantly increased. This is attributed to
the occurrence of requests exceeding the stable management
capacity of Edge1, leading to an overloaded state.

Alternatively, when implementing load balancing using the
proposed method, as depicted in Figure 5(b), once the client’s
requests surpass the maximum throughput value of Edge1
(500 RPS), the system begins forwarding requests to Edge2.
Subseqnently, immediately upon the arrival of requests exceed-
ing the maximum throughput at Edge2, requests are further
directed to Edge3. The response time for the requests remain
consistently low, with the median being 1.16 times that of the
25th percentile, and the 75th percentile being only 1.18 times
higher. In comparison to the scenario where load balancing
is not employed, the median response time can be reduced
by a substantial 80%, and the 75th percentile value can be
diminished even further, by an impressive 93%.

D. Future Work

As mentioned in Section I, services utilized in edge offload-
ing necessitate high-capacity data transmission and reception,
along with low-latency responses. This study’s evaluation
employs a general web server as an edge offloading service.
Therefore, future evaluations using services that involve the
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TABLE IV
RESPONSE TIME STATISTICS

Method Proposed Method Without Load
Balancing

Mean 67.2 ms 662.1 ms
Deviation 63.4 ms 810.3 ms
Minimum 55.0 ms 55.0 ms
25th Percentile 57.0 ms 74.9 ms
Median 66.1 ms 329.2 ms
75th Percentile 67.2 ms 962.0 ms
Maximum 6361.4 ms 9385.5 ms

transmission and reception of substantial data amounts are
necessary.

Furthermore, in this study, evaluations are conducted in an
environment where the service load due to requests increases
and decreases linearly. However, real-world load fluctuation
patterns often involve non-linear changes. The expected load
fluctuation patterns must be defined for each use case, and
evaluations must be conducted for each fluctuation pattern.

Additionally, this study assumes an environment with a
single client gateway. In the future, load balanching meth-
ods for environments with multiple client gateways will be
investigated.

VI. CONCLUSION

In this study, we present a method for dynamically adjusting
the mapping registry within the network using LISP XTR.
This approach effectively redistributes the acess destination
of each clouds from the terminal, resulting in collaborative
load balancing for edge offloading services among nearby
edge clouds. Our experiments illustrate that, when compared
to scenarios without load balancing, this method prevents a
decrease in the throughput of edge offloading services and
reduces the median response time by 80%.

Our future endeavors include the following. First, we aim
to enhance the load balancing method. The current study
proposes a load balancing method assuming a single client
gateway. However, when multiple client gateways can access

the same edge cloud, a load balancing method that considers
requests from each client gateway becomes necessary.

Additionally, in the proposed method, we presuppose that
the maximum throughput value of the offloading service at
each edge cloud is predetermined and set as a parameter (Ci).
If the available resources of the edge cloud are variable, fixing
the parameters may not be suitable. Therefore, a method to
dynamically adjust the parameters based on the free resources
and load status of the edge cloud would be beneficial.

Furthermore, as mentioned in Subsection V-D, we will
continue evaluations using edge offloading services that ne-
cessitate large volumes of data and low-latency responses.
Specifically, we plan to concentrate on evaluations utilizing
vehicle edge offloading services that transmit vehicle camera
video sequentially and conduct real-time image processing and
object detection.
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