
Straggler Mitigation in Edge Computing with
Coded Compressed Sensing

Yangyang Tao
Department of Computer Science

Northern Kentucky University
Highland Heights, KY, USA

ytao13@stevens.edu

Junxiu Zhou
Department of Computer Science

Northern Kentucky University
Highland Heights, KY, USA

zhouj2@nku.edu

Abstract—In edge computing the performance of distributed
edge computation tasks are adversely impacted by stragglers
(i.e., slowest devices). Previous research addresses this problem
using coding techniques to bypass the dependence on stragglers.
In stead of completely discarding partially unfinished coded
computations on stragglers, recent research incorporates those
computations contributed by stragglers before the deadline. A
faster computation recovery is achieved. One problem with this
approach, however, is the recovery accuracy because it is based
on lossy quantization over coded data. In this paper, we treat
the partially unfinished coded computation as erroneous com-
putations and formulate the computation recovery problem as a
compressed sensing (CS) problem. With this rateless approximate
code approach, we can recover the erroneous computations with
a high accuracy rate when the ratio of stragglers is relatively
low. Experimental results show that we reduce the error rate by
average of 32% under various straggler ratios compare with the
state of the art.

Index Terms—Edge Computing, Parallel Machine Learning,
Federated Learning, Compressed Sensing, Rateless Coding

I. INTRODUCTION

Edge computing is a promising distributed computing
paradigm for data analytic applications in 5G and future
generation networks. In edge computing, computing devices
(i.e., edge devices) are brought closer to sources of data (bring
computation to data), e.g., Internet of Things (IoT), which
results in reduced response time and bandwidth efficiency [1].
Due to device/network heterogeneity and byzantine failures,
the response delay on different edge devices may vary signifi-
cantly [2]. Some may be much slower than others and become
stragglers (and hence bottlenecks) in distributed computation
tasks.

To mitigate the adverse impacts of stragglers, one approach
is to use coding techniques and disperse coded data at each
edge device. For linear operations as seen in distributed
machine learning and matrix multiplication, individual edge
devices can execute the operations on coded data and send
their local results to the server (a.k.a. the master controller).
The latter will decode the locally computed results to recover
the actual results. In case stragglers are not able to return
their results timely, the master controller will collect data from
other devices for the recovery. To this end, various coding
techniques, such as the maximum distance separable (MDS)
code [3] and the rateless code [4], have been investigated.

One outstanding problem with these approaches is that they
completely discard the partial incomplete results collected
from the stragglers [3], or introduce additional communication
and computational costs to recover the complete results from
the stragglers ([4]). To fully utilize partial incomplete results
of the stragglers, Kim et. al [5] recently proposed to use binary
coding approach to approximate the missing local results of
the stragglers using both non-stragglers’ results and the partial
results of the stragglers. As compared to previous research
Kim et. al [5] result in a better chance of recovery even if
there are not sufficient devices in the coding scheme (e.g.,
less than k devices in (n, k)-coding schemes. The proposed
scheme is also more robust under network topology dynamics
)(e.g., due to device mobility).

Kim et. al [5], however, also exhibits several limitations as
follows. First, this approach relies on lossy quantization over
coded data, which results in decoding errors with the recovery.
Second, it requires to exchange additional state information
between edge devices and the master controller. Last but
not the least, a brute force based approximation is needed
to encode and decode the data. These problems negatively
impacted the recovery accuracy, bandwidth and computation
efficiency.

In this work, we take a different approach and propose
a rateless approximate code method to address the straggler
issue. Specifically, we treat the intermediate coded compu-
tation results from stragglers as erroneous computations. As
long as the relatively number of stragglers in the coded edge
computing system is small, the error vector over all edge nodes
has the sparse property. The erroneous coded computation of
the straggler can therefore be formulated as a compressed
sensing (CS) problem. By carefully designing the generator
matrix under certain constraints during the coding process,
the orthogonal matching pursuit (OMP) algorithm can be used
to solve the CS problem and the error vector can be exactly
recovered. Subsequently, the complete computation results of
a straggler can be recovered by subtracting the recovered error
from the obtained erroneous computation. Experimental results
show that we reduce the error rate by average of 32% under
various straggler ratios (from 10% - 90%).

In summary, the proposed rateless approximate code design
has the following contributions:

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 567

(1) To our best knowledge, this is the first work that uses the
CS technology to approximate the error caused by stragglers
in a coded edge computing;

(2) Unlike most coding-based methods that ignore the
erroneously coded computation results generated by stragglers,
in this work, we utilize them to recover the error vector.

(3) The proposed approach can achieve a lower error rate
and even exact recovery under CS constraints as compared to
the state of the art. Unlike previous work, our error recovery
process does not need to store state information, such as the
position of the error parts in erroneous computation. As a
result, the CS process can be efficiently solved with linear
complexity in terms of the total number of stragglers and
coding parameter.

(4) Theoretical analysis and experimental results show that
under given constraints, the proposed method outperforms
state-of-the-art work by an average of 32% in terms of
recovery error reduction.

The rest of this paper is organized as follows. Section II
overviews related work. Section III presents the system model
and our design. We present experimental results to evaluate
the proposed design in Section IV, which is followed by the
conclusion in Section V.

II. RELATED WORK

A. Coded Edge Computing

Edge computing is a distributed computing paradigm has
recently drawn extensive attention. Due to heterogeneity of
devices and network conditions, the computational power
and response time of edge devices vary and some may be
much slower than others for distributed computation tasks.
To address the straggler problem, many techniques have been
proposed in the literature. One promising approach is to apply
coding techniques and disperse coded data to edge devices.
Linear operations can be directly computed on coded data
by edge devices. The master controller collects local coded
results and decode to recover the actual results. To address the
problem of stragglers, various techniques have been proposed
in the literature.

In ref. [3], Lee et. al proposed to use MDS code to resolve
the straggler issue. This approach codes a training data matrix
for distributed learning using the MDS code and hence the
coded computation from any subset of the edge nodes can
be used to recover the original computation. However, this
approach ignored the computation obtained from stragglers.
Mallick and Joshi [4] resorted to rateless code to encode the
training data matrix. As the result, the original computation
can be recovered with a slight overhead of coded computation
from edge node.

Recently, Kim et al. [5] proposed a binary coding approach
for distributed edge computing. This approach encodes the
original data with a two-step coding process. First, it maps the
data into binary coding through quantization; then, the binary
coded data is encoded through a binary generator matrix.
With this binary coding process, the edge nodes are able
to finish their computation process after receiving a number

Decode and recover
the erroneous coded

computations

Edge Device

Edge Device

Partial coded
computation

Partial coded
computation

Edge Device

Edge Device

Edge Device

Straggler Edge
Device

Straggler Edge
Device

Error: 0

Error: 0

Error: e1

Error: e2

Error: 0

Master Controller

Fig. 1. Edge computation system model with coded large-scale
matrix vector multiplication.

of rows of the coded data from the master controller. Then
the master collects the coded computation results from edge
nodes and estimates the original computation by employing
the maximum likelihood method. In this work the results from
stragglers will be collected at the master controller and treated
as the computation with errors, which will be used to estimate
the expected results from the stragglers. Inspired by [5], this
paper uses the CS technology to recover the erroneous coded
computing on stragglers. Based on the recovered error vector,
we will eliminate the errors from the coded computation result.
The proposed approach overcomes several limitations of [5]
with a reduced recovery complexity and a higher recovery
accuracy under given constraints.

B. Compressed Sensing

Compressed sensing (CS) is a fundamental methodology
in signal processing discipline, which has gained extensive
interests in various areas [6]. Under the sparsity and coherence
conditions, CS can solve an under-determined linear system
and efficiently acquire and reconstruct a signal. The under-
determined linear system can be represented by b = AxT .
Matrix A has more columns than rows, so this linear system
has no unique solution x. Of particular interest is to find
x which is a sparse representation of b, via `1 norm mini-
mization. Since the representation is nondeterministic, if there
exists a constant ε and the linear equation meets restriction
||b−AxT || < ε, the solution is called the sparse approxima-
tion of b. In this representation, b is no long required to be in
span(A). There are numerous well-known algorithms (basis
pursuit, matching pursuit and Stage wise greedy approach) [7]
that can be used to solve this approximation problem.

III. SYSTEM MODEL AND OUR DESIGN

A. System Model

We take a classic distributed coded edge computating
scenario into consideration as shown in Fig. 1, i.e., a star
edge computing network architecture with a single master and
n edge nodes. To simplify the discussion, we consider the
computation task to be a general problem of coded large-scale

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

568

matrix vector multiplication (yc = GAxT). Distributed large
matrix vector multiplication is the fundamental component
of many scientific analysis and data analytic applications,
such as solving partial differential linear programming systems
[8], neural network process [9], graph computation [10] and
distributed optimization [11]. For the main task of large-
scale matrix-vector multiplication, the matrix is coded and
distributed to edge nodes along with the vector by the master.
Multiplication is conducted on edge nodes over coded matrix
before the result is aggregated from edge nodes and sent to
master for decoding. The master node works as the fusion
node to distribute the coded partial training data matrix GA
and weight vector xT to edge nodes. Each edge node computes
the partial matrix vector multiplication and returns the result
to master. Considering a systematic rateless coding approach
(the original training data matrix will be retained in the
coded training data matrix), the generator matrix G for the

systematic rateless coding is of form G = [
I

P
]. P is the

parity part which determines redundancy blocks of the coded
matrix and I is the identity matrix. The original computation
is y = AxT . The ultimate goal is to recover this original
computation through the decoding process. Decoding starts
when the total of received partial coded computation from
edge nodes reaches the required amount (for rateless coding,
the required amount of coded computation results is slightly
large than the original computation). The decoding can be
represented by y = AxT = G−1yc. However, some of
the coded computation may contain errors due to the insta-
bility of edge nodes for the deadline sensitive applications.
So the received coded computation can be represented by
y
′
= yc+eT , eT is the error vector. The entry of error vector

is 0 if the edge node finishes the coded computation within the
given deadline; otherwise, the entry denotes the error due to
the unfinished coded computation. The number of none-zero
entries of the error vector is determined by the number of
stragglers. Different from traditional MDS code that discard
the erroneous intermediate results and continue to wait for the
rest of edge nodes to return the results, the proposed rateless
approximate coding design utilizes these partially completed
or erroneous intermediate results.

B. Rateless Approximate Code

The proposed rateless approximate code design for a dis-
tributed large matrix vector multiplication problem is illus-
trated in this section. Given a training data matrix Am×q

(m < q, m and q are the row and column size of A) and
the weight vector xq , we first divide the matrix into k row
splits as [A

m
k ×q
j], j ∈ [1, k].Gn×k = [Ik

Pn−k×k] is the generator
matrix over a field Fλ for the coding design, λ = 2. Therefore,
the encoded matrix data is A

′
= Gn×k[Aj], j ∈ [1, k], Aj has

dimension m
k × q. The master node distributes the encoded

matrix data and the weight vector to n edge nodes. Each of
the edge nodes is responsible for the partial computation of
[A
′

i]
m
k ×qxT , i ∈ [1, n], over encoded matrix data it received.

The overall coded computation received from edge nodes can

be represented as y
′
= A

′
xT +eT , where y

′
has a dimension

of m× 1. The encoding and computation process is shown as
below:

y = AxT

yc = A
′
xT

y
′
= yc + eT

The ultimate goal is to recover the original computation
y = AxT based on coded partial results returned by edge
nodes. In order to decode the coded computation, rateless code
design requires the coded partial computations are from at
least k+ δ edge nodes, where δ is a small number. Under this
scheme, the first step is to recover the error vector eT in the
coded computation y

′
before decoding. Given the number of

stragglers s << k + δ, the error vector is actually a sparse
vector because the number of none zero entries of the error
vector is determined by s. So eT is a sparse vector. In order to
construct a CS problem for eT , we introduce the parity check
matrix of G as Hn−k×n = [−Pn−k×k|In−k]. The detailed
construction of the CS problem is shown below:

ỹ
′
= Hy

′

= H(yc + eT)

= Hyc + HeT

= HGAxT + HeT

HGA = 0(n−k)×1 (1)

ỹ
′
= HeT (2)

Eq. (1) is from the property of the parity check matrix and
Eq. (2) is the compact form of the CS. In this CS problem,
we are not concerned about which part of the eT is none
zero since eT is sparse. We can recover an optimal e∗ as the
error vector. It is easy to show that this CS problem could
be conveniently solved with the Orthogonal Matching Pursuit
(OMP) algorithm. After we get the error vector, the coded
computation can be recovered by yc = y

′ − e∗. Finally, the
decode process G−1yc recovers the original computation of
AxT.

C. Generator Matrix Construction

In this section, we give the prerequisites for the CS problem
and propose an algorithm for constructing the generator matrix
under the given prerequisites. In the CS problem constructed
in previous section, we treat the parity check matrix H as the
sensing matrix and eT as the sparse coefficients. The relation-
ship between coherence properties of H and the number of
stragglers is defined in Theorem III.1.

Theorem III.1. Given the error vector eT , the number of
stragglers s, µ as the coherence of H and H = [−P|I], we
have the below inequality:

||e||0 = s
m

k
<

1

2
(µ−1 + 1) (3)

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

569

where

µ = max
i6=j

| < (pi, pj) > |
||pi||2||pj ||2

(4)

Proof. The number of error entries in error vector eT are
determined by the number of stragglers s. For a deadline
sensitive application, the error only occurs when the edge
nodes fail to finish the computation on time. Then the returned
computation contains errors at unfinished locations of the
computation. For each edge node, it needs to process m

k rows
of A. So eT has a sparsity of smk . According to the definition
of rateless code, we have smk << (k+ δ)mk ≈ m. Thus eT is
a sparse vector. Recall the definition of CS problem, we have
the inequality in Eq. (3). Since H = [−P|I], the coherence
of columns related to the parity matrix P of H . Then the
coherence µ can be represented in Eq. (4). The bound of µ is
proved to be [k

(n−k)(n−1) ,1] [12].

Under Theorem III.1, we construct the generator matrix G
accordingly to ensure the coherence of parity check matrix H
of G fulfills the desired constraints of Eq. (3). The algorithm
is given in Algorithm 1.

Algorithm 1 Generator Matrix Construction

1: procedure
2: Initialization:
3: Initialize P parity part from sub Gaussian distribution
4: Initialize s, m, k
5: Initialize µ from Eq. (4) coherence of P
6: loop:
7: while Eq. (3) is False do
8: Draw value for column pi and pj
9: from sub Gaussian distribution

10: µ := Eq. (4)
11: end while
12: end loop

13: Return G = [
I

P
], H = [−P|I]

14: end procedure

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed rateless ap-
proximate coding method, we conducted extensive experi-
ments on the test-bed environment CloudLab [13]. We used
a total of 20 nodes in CloudLab with 1 as the master and 19
as the edge nodes. The configuration is identical for all the
edge nodes in terms of CPU, memory and storage. However,
we manually introduced heterogeneity to the edge nodes by
defining a straggler probability. The straggler probability
indicates the probability that the specific edge node cannot
finish the task within the deadline. It simulates the instability
of the edge nodes in real environments. The implementation is
based on the Message Passing Interface for python (MPI4py)
library [14]. The benefit of MPI4py is program once and run
on every edge node which reduced the effort to program the
logic for each node. We used the synchronous communication

scheme of MPI4py to program the tasks for our experiment.
We have also implemented a MDS coded scheme [3] and
coded edge computing [5] for comparison purpose.

The performance of the proposed rateless approximate code
is evaluated with three other approaches: 1) uncoded edge
computing, 2) MDS code based edge computing and 3) coded
edge computing [5]. The uncoded edge computing approach
doesn’t have any augment techniques to handle the straggler
issue. MDS code approach first divides the original data into
k row splits and then encodes those row splits into n coded
data shards. n−k of the data shards are redundancy. Here the
coding parameter (n, k) is the same for coded edge computing
and the proposed rateless approximate code approach. The
size of the quantization bit of coded edge computing is
chosen according to the max value of synthesized training
data matrix. For the three coded approaches, the generator
matrix is binary matrix contains only 0 and 1. The design
follows a systematic coding scheme which contains a complete
copy of original data in coded data shards. For the proposed
rateless approximate code, the generator matrix is generated
with Algorithm 1.

The tasks we chose for the experiments are large distributed
matrix vector multiplication and federated multi-task learning
(FMTL) [15] in a deadline sensitive mode. There is a preset
deadline for both tasks. When the computation time reaches
the deadline, the edge nodes are required to return current
finished computation to master. For large distributed matrix
vector multiplication, a synthesized training data matrix and
a weight vector are given as A and x respectively. The
(training) data matrix is sampled from a given distribution.
In the experiments, the dimension of A is set as 100000× 10
and the length of weight vector is selected as 10. Since we
have total 19 edge nodes, the number of row splits k is in
the range of [2, 18]. The purpose is that there should be at
least 2 row splits and at least 1 redundancy. n = 19 is the
total number of edge nodes. This coding parameters (n, k)
holds for all three coding approaches in our experiment. The
number of stragglers is the critical factor for the experiments
in our design. We vary the number of stragglers from 1 to 10
in our experiments to evaluate the error rate of the recovered
computation from the edge nodes. The error rate is calculated
as the ratio of the total incorrectly recovered computation to
the total computation. The results are shown in Fig. 2.

As shown in Fig. 2, the straggler probability is 0.6, which
indicates among the given number of straggler edge nodes,
there are 60% of chance that it cannot finish the computation
within the deadline. We experimented on three values of
coding parameter k: 10, 15, 18. The rest of the configurations
are all identical. For each straggler number, the error rate
(percentage of error) of recovered computation is averaged
from multiple runs of experiments. As shown in Fig. 2a
(k=10), with the increase of the number of stragglers, the
error rate of uncoded edge computing is the highest. This is
because the uncoded approach is the most vulnerable to the
impact of stragglers. The MDS coded approach and the coded
edge computing approach have similar error rates. However,

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

570

1 2 3 4 5 6 7 8 9 10
Number of Stragglers (s)

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r r

at
e

of
 re

co
ve

re
d

co
m

pu
ta

tio
n

Uncoded edge computing: 0.2749
MDS coded approach: 0.1778
Coded edge computing: 0.1908
Rateless approximate code: 0.1602

(a) Error rate with coding parameter k = 10

1 2 3 4 5 6 7 8 9 10
Number of Stragglers (s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e
of

 re
co

ve
re

d
co

m
pu

ta
tio

n

Uncoded edge computing: 0.3565
MDS coded approach: 0.3948
Coded edge computing: 0.2648
Rateless approximate code: 0.2173

(b) Error rate with coding parameter k = 15

1 2 3 4 5 6 7 8 9 10
Number of Stragglers (s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e
of

 re
co

ve
re

d
co

m
pu

ta
tio

n

Uncoded edge computing: 0.7722
MDS coded approach: 0.6781
Coded edge computing: 0.4271
Reteless approximate code: 0.3367

(c) Error rate with coding parameter k = 18

Fig. 2. Distributed matrix vector multiplication with given coding parameter k = 10, 15, and 18 and straggler probability =
0.6. The rest parameters are given by default.

1 2 3 4 5 6 7 8 9 10
Number of Stragglers (s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
er

ce
nt

ag
e

of
 w

ei
gh

t

Uncoded edge computing: 0.3942
MDS coded approach: 0.3453
Coded edge computing: 0.3087
Rateless approximate code: 0.2866

(a) Error rate with coding parameter k = 10

1 2 3 4 5 6 7 8 9 10
Number of Stragglers (s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
er

ce
nt

ag
e

of
 w

ei
gh

t

Uncoded edge computing: 0.466
MDS coded approach: 0.4382
Coded edge computing: 0.3975
Rateless approximate code: 0.3637

(b) Error rate with coding parameter k = 15

1 2 3 4 5 6 7 8 9 10
Number of Stragglers (s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r p
er

ce
nt

ag
e

of
 w

ei
gh

t

Uncoded edge computing: 0.5725
MDS coded approach: 0.5384
Coded edge computing: 0.4975
Rateless approximate code: 0.4509

(c) Error rate with coding parameter k = 18

Fig. 3. FMTL with given coding parameter k = 10, 15, and 18 and straggler probability = 0.7. The rest parameters are given
by default.

the error rate of the MDS coded approach starts to surge when
the number of stragglers exceeds 9. The reason is that the
redundancy of the coding scheme is n − k = 9. When the
number of stragglers exceeds 9, the MDS coded approach
has 100% chance to receive the computation results from
stragglers. The coded edge computing has three quantization
processes during the computation. So it suffers from the loss
of accuracy in the decoding process. The error rate of coded
edge computing is also higher than the proposed approach.
Our rateless approximate approach has the lowest average
error rate because it can recover exactly the errors in the
coded computation. However, when the amount of stragglers
becomes large, our approach also suffers from the surge of
error. This is because the number of stragglers approaches the
restriction of the maximum coherence of parity check matrix
H .

We also compared the error rate between the 4 models with
5 different straggler probabilities (10% , 30% , 50% , 70% ,and
90%). The results are shown in Table I. We fixed the coding
parameter as k = 10 and straggler number as s = 9. The error
rate is the average from multiple runs of experiments. The
highlighted error rate is the optimal one among the 4 models
for the given probability. For all of the 4 models, the error rates
increase as the straggler probability increases. But the overall

TABLE I. Average error rate of recovered computation for 4
models regarding different straggler probability. The coding
parameter k = 10 and straggler number s = 9.

Model/Straggler Probability 10% 30% 50% 70% 90%
Uncoded edge computing 0.19 0.24 0.28 0.36 0.48
MDS coded edge computing [3] 0.12 0.15 0.21 0.23 0.28
Coded edge computing [5] 0.13 0.14 0.24 0.22 0.24
Rateless approximate code 0.08 0.16 0.18 0.20 0.19

average error rate is not as high as Fig. 2 for a high straggler
probability. The reason is that the number of stragglers is fixed
to 9 which equals to the number of redundancy in the coding
scheme. For our proposed rateless approximate code approach,
the error rate is lower than other 3 models in almost every
straggler probability scenario (the only higher case is when
the straggler rate is 30%, the reason is due to the coding
parameter for th other two approach is exactly the number
of the redundancy n − k, however, in real environment this
is not always the case). Therefore, our proposed approach has
the best performance regarding the error rate of the recovered
computation.

Next, in order to evaluate the proposed solution with a
real edge learning algorithm, we incorporate the MDS code

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

571

approach, coded edge computing and rateless approximate
code to FMTL and conducted the experiment on it. FMTL is
proposed to solve the non-linear distributed machine learning
problem. It captures the non-linear relationship among each
local training. The FMTL problem can be represent as follow:

min
X,Ω
{
n∑
i=1

1

ts

ts∑
t=1

`i(−αt) +
1

2λ
αTKα} (5)

In the formula, X is the weight matrix and each column
corresponds to the weight vector of edge node i. Ω is the
model weight relationship calculated from the weight vector
of each edge node. ts is the total number of training samples
on each edge node. `i is the loss function according to the
given machine learning model. αt is the dual variable of the
`i. K is the kernel matrix. λ is a constant. The ultimate goal
is to update the weight vector of each edge node. FMTL first
solves the minimization problem of Eq. (5). Then the weight
is updated by X , αt, and A.

FMTL runs in a federated format. However, the MDS
code approach, coded edge computing approach, and proposed
rateless approximate code approach all contain a coded data
distribution process. In the implementation, we conduct this
process preferentially and distributed the coded weight vector
to each edge node. The edge node then conducts the com-
putation for the weight of local model with a given convex
loss function and uploads the local weight to the master node.
The master node will decode the computation accordingly
and update the relationship Ω. For this experiment, we define
the error rate as the average weight difference between the 4
models and the vanilla FMTL without stragglers. The weight
difference is the percentage of differed element in the weight
matrix. The results are presented in Fig. 3 which shows the
error percentage of the weight matrix.

As shown in Fig. 3, the overall error rate is higher as
compared with the previous task. As in FMTL, the weights
are calculated from the weight relationship Ω of each edge
node and the weight relationship Ω is computed from all the
weight vectors. So the error will propagate to more positions
during the computation. We used a similar configuration of
coding parameter k (10, 15, and 18) and straggler probability
0.7 in this experiment. Other configuration are all identical for
all the 4 models. The uncoded approach is the vanilla FMTL
but with stragglers. It has the highest error with the increase
of the number of stragglers. The performance of the MDS
coded approach is similar to the uncoded approach as it only
has the decoding process and doesn’t consider the recovery
of error. For the coded edge computing approach and the
proposed rateless approximate coding approach, the error rates
are lower in general since both of them recover the error part
in the computation. The proposed rateless approximate coding
approach has the best performance among all. However, due to
the constraints in Theorem III.1, when the number of stragglers
is large, our proposed rateless approximate coding approach
will also suffer from a high error rate though it still behaves
better than other three models.

V. CONCLUSION

This paper focuses on the straggler problem in the edge
computing with deadline sensitive applications. How to reduce
the impact from the stragglers is a key challenge that hinder
the development of edge computing. One track of solution
which is coded edge computing tries to use coding tech-
niques (MDS coding, rateless coding, and binary coding) to
resolve the problem. Inspired by previous works, this paper
proposes rateless approximate coding, which combines the
rateless coding with CS to reconstruct the errors in unfinished
computations from stragglers. It first construct the CS through
the generator matrix design with given constraints, then solve
the CS problem to recover the error. The recovered error is
subtracted from coded computation to recover the original
computation. Through the experiment on two typical tasks,
we prove the proposed rateless approximate coding achieves
the lowest recovery error compare with other state of arts.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[2] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief,
“Communication-efficient edge ai: Algorithms and systems,” arXiv
preprint arXiv:2002.09668, 2020.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.

[4] A. Mallick and G. Joshi, “Rateless codes for distributed computations
with sparse compressed matrices,” in 2019 IEEE International Sympo-
sium on Information Theory (ISIT), 2019, pp. 2793–2797.

[5] K. T. Kim, C. Joe-Wong, and M. Chiang, “Coded edge computing,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 237–246.

[6] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applica-
tions. Cambridge university press, 2012.

[7] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxi-
mation,” IEEE Transactions on Information theory, vol. 50, no. 10, pp.
2231–2242, 2004.

[8] W. F. Ames, Numerical methods for partial differential equations.
Academic press, 2014.

[9] W. Dally, “High-performance hardware for machine learning,” NIPS
Tutorial, vol. 2, 2015.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[11] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[12] L. Welch, “Lower bounds on the maximum cross correlation of signals

(corresp.),” IEEE Transactions on Information theory, vol. 20, no. 3, pp.
397–399, 1974.

[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and oper-
ation of cloudlab,” in USENIX Annual Technical Conference (USENIX
ATC 19). USENIX, 2019, pp. 1–14.

[14] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed
computing using python,” Advances in Water Resources, vol. 34, no. 9,
pp. 1124–1139, 2011.

[15] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4424–4434.

2024 International Conference on Computing, Networking and Communications (ICNC): Edge Computing, Cloud
Computing and Big Data

572

