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Abstract—Connected and Autonomous Vehicle (CAVs) can
proactively share future trajectories with each other and coor-
dinate for safe navigation and efficient route planning. However,
for a vehicle to rely on a nearby vehicle’s trajectory data for
real-time navigation decisions, it needs to trust data shared by
neighboring vehicles. There exist no such distributed method to
do so, and therefore, we propose OBSERVE, a lightweight trust
model for nearby vehicles to endorse each others’ trajectories
in real-time using blockchain. Vehicles self-organize to endorse
each others trajectories through consensus, where, each vehicle
verify nearby vehicles trajectory by predicting the corresponding
trajectory, compare results with peers, and reach consensus on
its truthfulness. We employ simple machine learning for vehicles
to predict neighbors trajectories instead of the computationally
heavy vision based prediction algorithms, thus leveraging times-
tamped coordinates towards an energy efficient endorsement.
OBSERVE is validated on realistic data and has shown to achieve
higher prediction accuracy with lower computation overhead.

Index Terms—Machine Learning, Blockchain, Connected and
Autonomous Vehicles

I. INTRODUCTION

The increase in computing, caching and communication
capabilities of CAVs enable them to send and receive tra-
jectories along other perception data in real-time for safe
navigation around each other. Vehicles can leverage the shared
data from nearby vehicles for collective navigation decisions,
where energy efficient routes can be defined based on nearby
vehicles intended trajectories, while avoiding other vehicles
and obstacles.

We envision an intersection traffic scenario in a world of
CAVs with no signalling required since all vehicles crossing
the intersection would proactively share the path they would
take during the crossing of the intersection. To realize this,
the data from each vehicle crossing the intersection need to be
trusted, and therefore, there is a need to verify the truthfulness
of the trajectories shared by vehicles.

Currently, there exist no solution to trust such data shared
among vehicles in real-time and therefore, in this paper,
we propose OBSERVE, Optimized Blockchain to Store and
Endorse Reliability of Vehicles Efficiently. A blockchain
based zero trust protocol for real-time distributed vehicles
trajectory data validation and endorsement through consensus.
In OBSERVE, first, vehicles self-organize to share each others
trajectories, each vehicle receiving the trajectory from a neigh-
boring vehicle predicts the corresponding neighbor trajectory

for a given amount of time. It endorses the vehicle’s reliability
if the predicted trajectories are similar to the actual GPS
coordinates of the vehicle during that time. The endorsement
information is then stored on a distributed ledger. Blockchain
is a promising candidate for storing immutable records regard-
ing trust on nodes, where multiple peers in the consortium
based permissioned network mutually endorse each other’s
data using a consensus mechanism [1], where a majority of
peers agreeing on the truthfullness of a given node’s data
enables it to build trust in the network.

Additionally, we employ simple machine learning algo-
rithms on vehicles to reduce the computing requirements for
performing the predictions, since complex algorithms would
require more computing resources and therefore, providing an
energy efficient trust, but verify solution considering future
Electric Vehicles (EVs) or E-CAVs. We evaluated the proposed
OBSERVE protocol using several machine learning models,
including transformers [2] and vision based models [3], and
the results show it to be accurately predicting trajectories,
while consuming less computing resources on the vehicles.

The contribution of this paper are summarized as follows:

• We propose OBSERVE, a zero trust protocol for en-
dorsing vehicles trajectories data in real-time using
blockchain-based consensus.

• We employ several machine learning models to develop
the predictive trust on nearby vehicles in using neighbor-
ing vehicles trajectory data.

• We show that the desired predictive trust can be achieved
using simple machine instead of employing complex
models, with the goal to reduce resource consumption
on vehicles.

• We evaluated the proposed OBSERVE protocol using
simulated connected vehicles trajectories from New York
city, and have shown that it can efficiently develop trust
among nearby vehicles in real-time.

The rest of the paper is organized as follows. The following
section highlights the related work. We describe the proposed
OBSERVE protocol in Section III. Evaluation using different
machine learning models on connected vehicles data is per-
formed in IV along discussion on the results. In section V,
we conclude the paper along providing insights on our future
directions.
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II. RELATED WORK

There has been numerous work done with the idea of
realizing CAVs. With respect to our area of interest with
reducing network overhead and decreasing latency, there has
been work in deploying similar models aiming to leverage the
vast amount of sensory data available.

The problems that we aim to address that these other works
do not is the aggregated inputs of sensory features increase
the computational overhead which is a vital constraint for
vehicles with limited power supplies. Additionally, adding in
more metrics and sensory inputs decreases the network latency
which also can be detrimental in a real-time environment with
a topologically dynamical environment.

Transformers, first introduced by Google Brain team in
2017 [4] changed the landscape with respect to how we
view recurrent neural networks and ultimately steering away
from these architectures for sequence related tasks. Their
proliferation in the last few years has been widely profound
and their use-cases continues to be expanded upon today as
we learn about their potential for processing sequential inputs.
Pursuant to our use case of transformers in CAVs, Qu et al.
propose the validity of the application of transformers in ro-
bust CAVs models for privacy preservation through Federated
Learning [5]. They surmised that transformer models could
mitigate device forgetting which helps accelerate global model
convergence when dealing with strong data heterogeneity.
Much speculation and interest has been garnered with the
recent advent of the power of transformer models. Their
recent introduction to CAVs has seen a huge proliferation
with promising results. Liu et. al made considerable gains in
predictive motion trajectories through multimodal transformers
[6]. Wang et al. propose a fusion of LiDAR and camera
images to perform object detection with stacked transformers
[7]. Prakash, Chitti, and Geiger also propose a multimodal
transformer model leveraging LiDAR image representations
as well as HD Camera inputs for end-to-end image predic-
tion [8]. While these research efforts propose novel concepts
and introduce increased metrics for object detection through
transformers, none factor in the important resource-dependent
constraints on CAVs. Our work with OBSERVE targets to
measure more efficiently the resource constraints while trying
to minimize network latency.

With the strong proliferation of blockchain technologies and
ideas first conceptualized by Satoshi Nakamoto [9], an inun-
dation of thought and ideas around the world of blockchain
has exploded. Their use-cases have expanded beyond what S.
Nakamoto originally thought and have shown strong demand
in all areas of privacy (Health, Finance, Advertising, etc.).
There resistance to tampering and non-repudiation makes them
a strong candidate for a vehicular ad-hoc network. To date,
Noh et al. gave a retrospective overview of how encryption
schemes can further be applied to public ledgers in an vehicu-
lar ad-hoc network and also performed a rudimentary analysis
on selected consensus algorithms and their effects as network
size scales. [10]. X. Zhang and X. Chen gave a perspective

on how VANETs can leverage a consortium blockchain can
be used to offset immense storage constraints required for
densely populated networks [11]. We adopt the notion of using
a consortium blockchain in our network for non-repudiation,
quick ledger access for vehicle trust, and storage concerns.

III. THE OBSERVE PROTOCOL

In this section we describe the proposed zero trust protocol,
we begin by first defining the scope of the system model below.

A. System Model

The system comprises of a set of nodes, such as vehicles
V = {v1, v2, ...vn} connected through wireless communica-
tion technology such as Dedicated Short-Range Communi-
cations (DSCR) or Cellular (C-V2X) enabling each vehicle
to share trajectories as well as predictions and endorsement
information storage on blockchain.

The trajectory of a vehicle v is defined as Cv(l, t) =<
(l1v, t

1
v), (l

2
v, t

2
v), ...(l

m
v , tmv ) > with sequence of locations,

l1v, l
2
v, .. at times t1v, t

2
v, .., respectively. The vehicle location

information is further composed of the geographical latitude
and longitude lv = (latv, lonv) as its corresponding Global
Positioning System (GPS) coordinate. We assume the vehi-
cles are synchronized to a common clock with the time as
T = {t0, t1, t2, ...} representing consecutive time instants t0,
t1, t2 and so on, while time can be further divided into regular
slots ∆t1 = t1 − t0,∆t2 = t2 − t1, and so on, defined at
different granularity depending on the application.

The threat model we consider assumes the vehicle v’s
trajectory data Cv(l, t) could be compromised, resulting in
either generating fake or malicious trajectories that could
be shared with nearby vehicles. To address this, we define
a blockchain based zero trust protocol for nearby nodes to
first verify trajectory data shared by nearby vehicles and then
endorse each others trajectories at regular time intervals, where
the frequency at which they are endorsed depending on the
application and resource consumption requirements, however,
we consider it to be less frequent in order to conserve the
computing and communication resources on vehicles.

The blockchain model we consider is a permissioned
blockchain where nodes are authenticated prior joining then
network using state of the art public/private key based authen-
tication or a similar encryption mechanism, therefore, develop-
ing such system is out of the scope of the paper. We employ the
Inter Planetary File System (IPFS) [12], a distributed storage
system for the vehicles to store the endorsement information
on an immutable distributed ledger.

B. OBSERVE Protocol Workflow

The workflow of OBSERVE is described as follows. First, at
time t0, a set of CAVs, v1, v2, v3 in each other’s communica-
tion range exchange their respective trajectories Cv1 , Cv2 , Cv3 ,
comprising the path the nodes would take from time t0 to tl.
Each node, upon receiving the neighboring vehicle trajectory
splits it temporally into two parts. Assume it receives the
trajectory data anytime between the initial time t0 and tj , it
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(a) Nodes trajectories changing over time

(b) Observe protocol workflow over time

Figure 1: OBSERVE

provides the timestamped data from say, tj to another time
instant tk (i.e. the interval ∆tk) to its machine learning model
enabling in order to predict the corresponding neighboring
vehicle’s trajectories for the time slot ∆tl between tk and the
specified time instant tl.

It then compares the predicted trajectories with the ones
shared by the neighbor in order to verify the truthfullness of
the corresponding neighbor’s trajectory between time instants
t0 and tl. In case the average difference between the neighbor
shared trajectories and the ones predicted by the vehicle
is less is than a predefined error threshold ϵ, the nodes
trajectories between time instants t0 and tl are endorsed and
this information is updated on the distributed ledger IPFS.

1

|∆t|
∑

∆t∈[t0,tl]

Cv(l, t)[shared]− Cv(l, t)[predicted] ≤ ϵ

We consider here a generic ∆t assuming variation in the
number of slots the time between the two instants [t0, tl] is
divided. We consider different ϵ can be used depending on the
accuracy of the trajectory sampled by each vehicle

Similarly, all neighboring nodes employ the above endorse-
ment process and the final consensus on the truthfullness of the
node’s trajectory from time instant t0 and tl is updated on the
blockchain in case a majority of nodes present in the vicinity of
the vehicle between time instant t0 and tl successfully endorse
its trajectory for the time duration [t0, tl].

We consider the relation below to define the majority, how-
ever blockchain architectures typically considers 51% peers
endorsing data as majority:

γu(Cv) =

1, if

∑
uv∈V

uv∑
u(l,t)∈V

u(l,t) > m

0, otherwise

where, γu(Cv) is a binary variable representing a consensus
among a set of vehicles in the sum

∑
uv∈V

uv out of the

total peers
∑

u(l,t)∈V

u(l, t) in the location l and time t (i.e.

present in the vicinity of the node v whose Cv , trajectory
data is endorsed). In the above relation, considering m = 0.5
represents the 51% majority of the vehicle in a location and
at a particular time reaching a consensus to validate the data
shared by vehicle v.

Finally, the entry on the blockchain comprises of node IDs
of the set of nodes for whom the data is endorsed through
consensus. A vehicle’s reliability or reputation for constantly
getting its trajectory data endorsed can be evaluated from the
number of times it appears in the ledger.

Figure 1 depicts a toy version of OBSERVE protocol. In
the first figure, neighboring vehicles v1, v2 and v3 trajectories
over time are shown, where the time interval [t0, tl] is divided
into consecutive time slots ∆tj ,∆tk, and ∆tl. As an example
we show only vehicle v3 changing its trajectory in the time
interval, for v1 to leave space for it.

The second figure shows the trajectory exchange among all
nodes happening during time slot ∆tj , each vehicle observes
neighbouring vehicles trajectories during time slot ∆tk to
predict the corresponding trajectories during time slot ∆tl.
Each vehicle compare the trajectory shared and predicted
during this time slot to decide whether to endorse neighboring
vehicle trajectory. In case the threshold is within ϵ, as indicated
above, all nodes update this endorsement on the distributed
ledger at time instant tl. Upon reaching a consensus where
majority of the nodes indicated by m successfully endorse
a node’s data, an block is created on the distributed ledger
comprising the node IDs of the node(s) for whom consensus
is reached.

IV. NUMERICAL EVALUATION

We describe below the numerical evaluation process for
OBSERVE using different machine learning algorithm along
discussing the results.

A. Experiment Setup

The experiment setup to evaluate the machine learning
models for trajectory prediction primarily considers factors
such as FLOPs (floating point operations per second), CPU
utilization, and model parameters. Furthermore, the investiga-
tion of evaluating OBSERVE explores various types of models
for the prediction on time series trajectory data, specifically
RNNs (Recurrent Neural Networks), GRUs (Gated Recurrent

2024 International Conference on Computing, Networking and Communications (ICNC): Communications and 
Information Security Symposium

556



Units), LSTMs (Long Short-Term Memory), and Transformers
are employed, all trained solely on trajectory data.

The considered models, including RNNs, GRUs, LSTMs,
and Transformers, are widely used in sequence modeling
tasks due to their ability to capture strong spatial-temporal
dependencies. However, the evaluation focuses on their ef-
ficiency and computational complexity rather than exploring
hybrid approaches. This approach acknowledged the potential
benefits of simpler models that could be trained and deployed
with reduced computational resources, while relying solely
on trajectory data compared to the computationally intensive
visual data based trajectory prediction.

The primary objective of this approach is to identify ma-
chine learning models that exhibit lower compute intensity
while maintaining satisfactory performance in trajectory pre-
diction tasks when comparing metrics such as Mean Absolute
Error (MAE) and Precision in correct neighbor trajectory
prediction. By analyzing FLOPs, CPU utilization, and model
parameters, the study aims to gain insights into the computa-
tional efficiency of different model architectures together with
OBSERVE, in particular exploring shallow network models
with often just one or two hidden layers. This analysis provides
a quantitative understanding of the resource requirements of
each model used with OBSERVE, enabling a more informed
comparison of the computational requirements.

Furthermore, we use FLOPs, CPU utilization, and model
parameters to identify models that strike a balance between
computational efficiency and trajectory prediction accuracy.
This analysis can inform the selection of models that are
suitable for deployment in CAVs networks, particularly in
scenarios where compute resources may be limited or where
cost-effective solutions are desired. These traits are highly
sought after in a resource-constrained environment such as
E-CAVs where minimizing resource consumption leads to a
greater range of travel and stronger selling point for vehicle
manufacturers.

B. Data and pre-processing

The training data for the sequencing models is composed of
a 3 hour 20 minute synthetic trajectory trace of Brooklyn, New
York city neighborhood. The trace is comprised of over 20, 000
unique vehicles with sensory data including GPS coordinates,
acceleration, angular measurement (with respect to steering
wheel), and speed. The Brooklyn neighborhood has four lanes
of bi-directional traffic with crosswalks and stoplights at each
intersection. The synthetic data is meant to be as representative
as possible of a real urban environment where random events
(lane changes, pedestrians, stop lights) could occur to keep a
sequencing model as robust as possible and widely applicable
for such a task.

In order to prepare the data for sequencing predictions, the
data is further processed to segregate unique vehicles that
maintained a spatial-temporal relationship of 300 feet for 60
seconds at a time, thus, defining neighboring vehicles to be
within 300 feet spatially, and temporally within 60 seconds to
be able to complete OBSERVE workflow. We selected 300 feet

as a typical short range wireless communication range, where
60 seconds is chosen to compare predictions in the one minute
time interval i.e. [t0, tl] along keeping optimal model size and
training times in perspective for short time series forecasting
predictions.

1) Experiment Hardware: All data preparation and model
runs are conducted on an Intel(R) Core(TM) i7-7700HQ CPU
@ 2.80GHz Processor with 16 GB of installed RAM. The
training and test data as well as model are optimized to train
on a single NVIDIA 1670 GPU with 8 GB of VRAM made
possible with PyTorch’s CUDA toolkit version 11.8.

2) Experiment Software: All model runs are conducted with
a Windows 10 operating system utilizing Python version 3.6.
The machine learning framework used is PyTorch 1.13.1 with
CUDA version 11.6.

C. Results

We propose to utilize light-weight machine learning models
for trajectory prediction in CAVs, aiming to achieve high
accuracy while minimizing the resource requirements. By
harnessing the potential of these light-weight models, we
demonstrate the feasibility of reducing resource consumption
without compromising prediction performance. These efforts
are particularly useful in demonstrating the effectiveness of
CAVs in blockchain networks with the absence of computer
vision, which is often resource intensive compared to the
sequencing networks considered.

Through our investigation of sequencing networks and find-
ing optimal neighborhood size we found that each model had
varying degrees of applicability given the prediction length (3
seconds up to 24 seconds) and neighborhood sizes (1 to 150
nodes). The Gated Recurrent Unit (GRU) model performed
optimally given certain constraints like training time and Mean
Absolute Error (MAE). The Informer transformer was able
to achieve near-perfect prediction accuracy based on MAE,
but the training time for the short time series forecast (STSF)
prediction was not applicable given the immediate need for
quick prediction and low resource consumption.

First and foremost, we analyzed the Mean Absolute Error
(MAE) (Table 1) as a fundamental metric to assess the
accuracy of our trajectory predictions with OBSERVE. By
comparing the predicted trajectories with the ground truth
data, we observed consistently low MAE values across var-
ious models. This indicates that our light-weight models are
fully capable of generating highly accurate predictions, thus
instilling confidence in their reliability for CAVs trajectory
prediction tasks.

Moreover, we delved into the computational efficiency of
OBSERVE using different models by examining the floating
point operations per second (FLOPs) metric (Table 2). FLOPs
serve as a measure of the number of floating-point opera-
tions required to perform the prediction task. Our findings
revealed that the light-weight models employed in OBSERVE
exhibited significantly reduced FLOPs compared to their more
complex counterparts. This reduction in computational com-
plexity translates to improved efficiency and reduced resource
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Model MAE Accuracy
LSTM 6.3 93.91
RNN 7.2 92.29
GRU 6.1 95.37

Transformer 0.7 99.53
OAD 6.2 99.75

Table I: Illustrates the Mean Absolute Error comparing dif-
ferent sequencing models and combining their accuracy for
neighboring node trajectory predictions.

Figure 2: Advantages of using object detection assisted tra-
jectory predictions but at what expense denoted in Table 2.
Accuracy increases as the time prediction decreases towards
6 seconds.

consumption, which is a crucial consideration for real-time
trajectory prediction in resource-constrained CAVs where E-
CAVs are emerging as clear winners in this domain with
limited battery constraints.

To further investigate the resource utilization of OBSERVE,
we assessed the CPU utilization (Table 2) during the prediction
process. Remarkably, our light-weight models demonstrated
efficient utilization of CPU resources, resulting in lower com-
putational demands. This implies that the models are well-
suited for deployment on hardware with limited processing ca-
pabilities. The ability to achieve accurate trajectory prediction
while utilizing fewer CPU resources highlights the practicality
and scalability of our approach.

Finally, we evaluated the overall prediction accuracy
achieved by OBSERVE with light-weight models compared to
a YOLOv5 object assisted detection (OAD) model (Figures 2
and 3). Through extensive testing and validation, we observe
that these models consistently achieved high accuracy rates,
keeping close to the performance of more resource-intensive
model such as YOLOv5. This is a significant finding as it
demonstrates that it is possible to strike a balance between
accuracy and resource consumption, favoring the adoption of
light-weight models for trajectory prediction in OBSERVE.

Model Sequence Length Params FLOPs CPU Util. %
LSTM 480 335.49K 43.34 57.7
RNN 480 83.97K 10.78 6.4
GRU 480 251.65K 32.54 50.8

Informer 96 32.3M 59.12 92.2
OAD 480 7.5M 49.40 78.79

Table II: Model parameters for each sequencing model tests.
These metrics serve as a baseline for shallow model complex-
ity to minimize resource restraints.

Figure 3: Comparing the precision for different models at
predicting their neighbors based off of coordinate data.

Further results were compiled for short time series fore-
casting predictions at the 30 second, 24 second, 18 seconds,
12 second, and 6 second intervals ahead. Results presented
above are from the standard 80/20 train/test split and as such
12 second predictions into a vehicle’s future trajectory.

With limited training data given 60 second training times,
the goal of Table 1 was to look at the input sequence length
comparing how their input size affected CPU utilization with
respect to parameters. Too few parameters runs the risk of
underfitting and too many, the opposite as well as a larger
memory footprint. The goal was to minimize model com-
plexity while still being able to accurately predict to the test
data. The floating point operations per second (FLOPs) also
serves as a benchmark to look at how the computer hardware
is being used efficiently with respect to CPU utilization which
correlates with the model’s complexity.

In summary, our results emphasize the effectiveness of
light-weight machine learning models leveraging blockchain
technology in achieving accurate trajectory prediction in au-
tonomous vehicles while minimizing resource requirements.
By attaining low mean absolute error, reduced FLOPs, efficient
CPU utilization, and high overall prediction accuracy, our
study highlights the potential of leveraging light-weight mod-
els for trajectory prediction tasks. This research contributes to
the advancement of efficient and practical solutions for CAVs.
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V. CONCLUSION

The trend towards Electric Connected and Autonomous
Vehicles (E-CAVs) brings the need for energy efficient trust
models. Vehicles in each other’s vicinity need to verify the
truthfulness of trajectories and other data shared by neighbor-
ing vehicles, in real-time, to avoid potentially malicious or
false data usage for navigation and path planning decisions.
We proposed the first zero trust protocol, OBSERVE as a
trust, but verify mechanism for nearby vehicles to predict the
trajectories shared by neighboring vehicles, and endorse their
truthfulness in case the predicted and shared trajectories are
similar. Information regarding a successful endorsement of a
vehcile trajectory from a majority of neighboring vehicles is
then stored on a distributed ledger (IPFS) as the blockchain
based solution to maintain an immutable record of the trust a
vehicle builds over time. We employed lightweight machine
learning algorithms for the prediction in OBSERVE and have
achieved higher accuracy and lower resource utilization.

Future directions includes scaling, both spatially to consider
longer and more trajectories, as well as considering longer
time duration, for a large number of vehicles. Additionally,
we are considering to implement OBSERVE as a federated
learning approach to further preserve privacy and improve ef-
ficiency of the proposed protocol in a distributed environment.
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