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Abstract—With 5G and beyond promises to realize massive
machine-type communications, a wide range of applications
have driven interest in complex heterogeneous networked sys-
tems, including multi-agent optimization, large-scale distributed
learning, 5G service provisioning, etc. This trend highlights
the essence of seamless control, management, and security
mechanisms to be in place for the next-generation networked
cyber-physical systems (CPS). In this paper, we interpret trust as
a relation among networked collaborating entities that can set
forth a measure for evaluating the status of network components
and secure the execution of the collaborative protocol. In this
paper, we will first elaborate on the importance of trust as a
metric and then present a mathematical framework for trust
computation and aggregation within a network. We consider two
use-case examples where trust can be incorporated into the next-
generation networked CPS and improve the security of decision-
making, i.e. i) federated learning (FL), and ii) network resource
provisioning. Finally, we explain the challenges associated with
aggregating the trust evidence and briefly explain our ideas to
tackle them.

Index Terms—Cyber-physical systems, trust model, trusted
federated learning, trusted network service placement.

I. INTRODUCTION

Given the escalating intricacy characterizing modern
cyber-physical systems (CPS), the imperative to formulate an
innovative framework for modeling, analyzing, and predict-
ing their behaviors has become increasingly evident. This en-
deavor assumes heightened significance in light of recent ad-
vancements in the Internet of Things (IoT), coupled with the
promises of 5G to facilitate extensive machine-to-machine
(M2M) communications. In this evolving landscape, tightly
coupled next-generation CPS devices are poised to engage in
collaborative efforts, leveraging sophisticated sensing, com-
puting, and communication capabilities on an amplified scale
enabling them to realize a wide range of applications and
use cases, involving data collection, processing, and decision-
making, from healthcare, vehicular networks, and smart man-
ufacturing, to 5G service provisioning, and content delivery.
All these applications heavily rely on the constant exchange
of collected raw data and processed information between
the collaborating agents, as opposed to the traditional case
where data were collected and processed at a centralized
entity. Therefore, with the heterogeneity and the large scale
of the CPS, as well as the paramount importance of devising
a seamless management and control scheme dealing with
privacy and security threats becomes a pivotal concern.
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The fact that the information is crowd-sourced by the CPS
agents, to a large extent, eliminates the risk of the existence
of a single point of failure and contributes to the resilience of
the network, but at the same time demonstrates the need to
establish trust relationships between the agents that are ex-
changing information. More specifically, apart from ensuring
the security of communications between the network agents,
it is essential to answer the following questions: (i) whether
an agent refuses to share its information with other agents
due to privacy concerns or conflict of interest. (ii) whether
an agent manipulates the received data before processing.
(iii) whether an agent intentionally or unintentionally, shares
incorrect information with the rest of the network? etc. [1]
[2]; In other words, it is essential to establish to what extent
each agent of the network can be trusted. Such mechanisms
of trust contribute essentially to the resilience of networked
cyber-physical systems (Net-CPS).

Within the context of Net-CPS, we interpret trust as a rela-
tion between network entities that may interact or collaborate
in groups toward achieving various goals. These relations are
set up and updated based on the evidence generated from
the previous collaboration of the agents within a protocol.
Suppose the collaboration has been contributive towards the
achievement of a specific goal (positive evidence). In that
case, the parties accumulate their trust perspective towards
one another, and otherwise (negative evidence), trust will
decrease between them. Trust estimates have input to de-
cisions such as access control, resource allocation, agent
participation, and so on. The method by which trust is
computed and aggregated within the network may depend on
the specific application, however similar to [2], we enumerate
the central differences in the terminology of how the trust
computation and aggregation are employed:

Centralized vs. Decentralized: Under centralized regime,
all the network entities rely on a central trusted party that
estimates the trustworthiness level of each entity and updates
all the network nodes. In this sense, all the nodes are forced to
agree on the degree to which each entity is trusted as dictated
by the central provider. On the other hand, under the decen-
tralized approach, each user is responsible for calculating its
opinion on the level of trustworthiness for each entity it might
be interested in. This distinction however is irrelevant to the
fashion trust is computed and only relates to the semantics
of trust. For instance, under a decentralized regime, a user
may utilize a distributed approach for computing the trust of
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Fig. 1. Trust aggregation framework in (a) decentralized and (b) centralized regimes

its target.

Global vs. Local: Local trust is the opinion that a trustor
node has towards a trustee generated depending on the first-
hand evidence gathered based on local interactions, however,
global trust is formed by combining the first-hand evidence
and the opinions of other nodes about the specific trustee
and is usually more accurate. The local exchange of the local
observations is used towards obtaining global trust [3].

Proactive vs. Reactive: Under a proactive regime, the
entities manage to keep the trust estimates updated, while
under a reactive regime, the trust estimates are computed
only when they are required. The proactive scheme is not
communication efficient as a large bandwidth needs to be
consumed to keep the trust values updated; therefore a
reactive scheme is usually preferred unless the frequency
by which trust decisions are made is comparable to the
frequency of the local trust updates.

Direct vs. Indirect: Directed trust is obtained via inter-
action through direct communication with another agent.
However, indirect trust is a trust relationship between two
entities that have not interacted in the past. Establishing an
indirect trust relationship heavily relies on the assumption
that trust has the transitivity property which is not necessarily
the case in any application.

The remainder of the paper is organized as follows.
Section III describes the trust aggregation model, including
the aggregation framework, the local, and the global trust
models. In sections IV and V, we present two example
use cases of the trust aggregation model in securing the
next-generation multi-agent systems protocols. Finally, in
section VI we present the challenges encountered while
attempting to design realistic trust aggregation frameworks.

II. RELATED WORK

Trust management, aggregation, and inference are multi-
faceted concepts with widespread implications in networked
systems. Within the context of ad-hoc networks, distributed
trust models are envisioned that enable nodes to evaluate the
trustworthiness of their peers based on observed behavior
and interactions [4] [5] [6]. These models employ metrics
like reputation, historical data, and network statistics to
compute trust scores, allowing nodes to make informed
decisions. Reputation systems are widely used in online
communities, e-commerce, and peer-to-peer networks [7].
They allow users to assess the reliability of other participants
by aggregating feedback and ratings. Trust is often correlated
with reputation, making it a central element in decision-
making processes [8]. In blockchain and distributed ledger
technologies, consensus algorithms such as Proof of Work
(PoW) and Proof of Stake (PoS) play a role in trust manage-
ment. These algorithms facilitate agreement among nodes to
validate transactions and maintain the integrity of the ledger.
The application of social network analysis methods provides
insights into trust relationships among individuals and entities
in online and offline social networks [9]. Machine learning
techniques are leveraged to improve trust management and
inference. They allow for the development of predictive
models based on historical data, aiding in trust evaluation
and anomaly detection [10].

III. TRUST AGGREGATION MODEL

A. Trust Aggregation Framework

In this section, we present two schemes for propagating
and aggregating the trust estimates within a network of CPS
devices as depicted in fig. 1. The first scheme corresponds
to the case where there is no central entity involved in
estimating the trustworthiness of the network agents, and
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the nodes participate in direct computation of trust to obtain
local trust estimates on the other peers, using the locally-
available first-hand evidence they have gathered, the recorded
history they have stored from the past observations, and the
knowledge they obtain by sensing the environment. Once all
agents form their local views, they will participate in the local
exchange of their local trust estimates to form more accurate
global values for the trustworthiness of the networked agents.
Then, the obtained global trust model can be used in the
corresponding trust-aware applications.

Within the second scheme, however, the global trust values
are obtained indirectly. There exists a central trusted party
that is constantly monitoring the network and communicating
with the CPS agents to gather evidence on their state. The
CPS agents may share their local view on their neighbors
with the central entity which may be used in computing
the trust estimates by the central entity. Once the central
party calculates the trust values of the CPS agents using
the information it has gathered, it will push the relevant
information to each agent. The calculated trust values can be
used by the central entity to perform centralized trust-aware
decision-making or can be used by each agent to participate
in local or distributed trust-aware protocols.

In what follows, we will formalize the above discussion
to mathematically model the processing, propagating, and
aggregation of the trust values. The components of our
model mostly rely on the discussion in [3]. We model the
network of agents at time instance k, as an undirected graph
G(k) = (N (k),L(k)) where N is the set of nodes and for
n,m ∈ N (k), L(k) contains all links (m,n)(k) where agents
m, and n can communicate with one another at time instance
k. We denote this graph as the communication graph at time
instance k. Let N (k)

i be the set of neighbors of node i at
time step k. Apart from the communication relationship, we
define local trust relationships between nodes i, j ∈ N (k).
Let τ

(k)
ij , and t

(k)
ij be the local and global view of node

i on trustworthiness of the node j at time instance k in
respective order. We may ignore the index k in the following
discussion for simplicity whenever doing so does not lead to
any confusion.

B. Local Trust Model

To formalize the definition of local trust, let us define X
(k)
ij

to be a random variable denoting the reputation that node j

has in the perspective of node i in time instance k. X
(k)
ij

follows a Beta distribution with parameters α
(k)
ij , and β

(k)
ij .

Moreover, define r
(k)
ij = α

(k)
ij − 1, and s

(k)
ij = β

(k)
ij − 1 that

determine the number of times up to round k, that node j’s
behavior is benign and malicious in perspective of node i, in
respective order. The method for obtaining r

(k)
ij and s

(k)
ij relies

on the particular scenario and will be explicitly outlined in the
upcoming section. We let τ (k)ij to be precisely the expected
value of the reputation random variable in the Beta system
X

(k)
ij . Formally, we have:

f
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ij

]
=
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ij + 1

r
(k)
ij + s

(k)
ij + 2

(2)

Intuitively, the evolution of r, and s parameters need to be in
a way that the more recent information receives more relative
importance compared to the older ones. Therefore, we define
0 < ρ1 < ρ2 as forgetting factors to control the balance
between old and new terms.

r
(k+1)
ij = ρ1r

(k)
ij + I

(k+1)
ij (3)

s
(k+1)
ij = ρ2s

(k)
ij + 1− I

(k+1)
ij , (4)

Function I
(k+1)
ij ∈ [0, 1] models the instantaneous perspec-

tive of node i on the behavior of node j in (k+1)th round.

C. Global Trust Model

At each instance, k, within the local trust model, each
node i computes its local trust for all nodes j ∈ Ni in
the communication graph. To make more accurate estimates,
node i will need to take into account the opinions of other
network nodes who have first-hand evidence of node j’s
behavior. Following the approach in [3], node i computes
iteratively its global trust estimate for node j, i.e. t(k)ij using
the opinions of its neighbors as:

tmij =

{
1 if i = j∑

l∈Ni,l ̸=j wilt
m−1
lj if i ̸= j

(5)

where wil =
τil∑

l∈Ni,l̸=j τil
. In other words, node i pays more

attention to the opinions of those of its neighbors whom it
trusts more. We note again that the global trust computation
is an iterative process that is going to be embedded in each
iteration of the trust-aware protocol. Therefore, to avoid any
confusion we have used the iteration counter m for this
process. Here, we have dropped the superscript k as we
assume the value of local trust remains constant within the
loop of computing the global trust.

In the upcoming section, we will demonstrate two ex-
amples of the practical application of the trust framework
mentioned earlier in bolstering the security of the next-
generation CPS-based protocols. We will select as the use
cases two challenging problems in the domain of collabora-
tive multi-agent systems and network resource provisioning
where either it is inherently challenging to ensure the security
of the procedure, or security is a service requirement.

IV. USE CASE I: TRUSTED FEDERATED LEARNING

The recent advancements in AI/ML technologies have led
to an increasing demand for the deployment of AI/ML-
based solutions in a wide range of real-life applications such
as AR/VR/XR, intelligent transportation, monitoring, and
industry automation. Traditional AI/ML approaches involving
a single machine that accesses all training data and performs
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Fig. 2. Impact of trust on centralized FL

Fig. 3. Impact of trust on decentralized FL

model training in a central manner have been explored
extensively in the literature. On the other hand, leveraging the
computational power of multiple machines to accelerate train-
ing, handle large datasets, and address privacy has become
a highly promising strategy. Nonetheless, ensuring security
and privacy in the collaborative procedures of inference and
training ML models across distributed devices or servers
poses a complex challenge.

Federated learning (FL) is a recent learning paradigm that
enables training a common model across multiple machines
(agents), each performing the training process locally fol-
lowed by an aggregation phase that combines the learned
model parameters [11]. The model aggregation can be or-
chestrated at a central server (centralized FL) or performed
in a decentralized manner (decentralized FL), e.g. through
a consensus mechanism among participating machines to
estimate the global model. The main steps of a FL algorithm
are as follows:

• Local training over local data in the participating agents
to obtain model updates (gradients),

• Sharing model updates with the central server in central-
ized FL or with the neighboring agents in decentralized
FL,

• Model aggregation at the central server followed by
broadcasting the updated global model in centralized
FL, or model aggregation at agents using consensus
method given the received messages from their neigh-
bors in decentralized FL.

The above steps are repeated for a specified number of
communication rounds, until convergence, or until the desired
accuracy level is reached. It is important to note that while
each agent in a decentralized FL system acts as a model ag-
gregator, only the central server in a centralized FL performs
model aggregation.

By distributing the local model training across multiple
agents and using additional privacy-preserving mechanisms
such as differential privacy, the privacy issue of traditional
ML methods is alleviated. However, this approach remains
susceptible to different security risks including data and
model poisoning attacks. In these attacks, malicious agent(s)
attempt to poison the global model parameters by sharing the
poisoned local model with the central server in centralized FL
or with the neighbor agents in decentralized FL. Trust-aware
aggregation is a promising strategy to tackle the poisoning
attacks in FL [12]. In this method, the received models
of different agents are aggregated according to their trust-
worthiness. Particularly, at each round of the algorithm, the
aggregator agent(s) uses the current message (model updates)
received from the participating agents and the previous trust
values to compute an updated trust vector for the agents
following the steps explained in Section III. The new trust
vector is incorporated in the aggregation process such that the
messages received from agents with higher trustworthiness
levels contribute more to the aggregated model.

We present the effectiveness of trust-aware mechanisms
for both centralized and decentralized FL algorithms that
utilize the centralized and decentralized trust aggregation
frameworks respectively. Figure 2 illustrates the validation
loss of the centralized FL setting in normal (unattacked) oper-
ation, under attack conditions without trust, and under attack
conditions with a trust mechanism. We use the federated aver-
aging (FedAvg) algorithm, a leading algorithm in centralized
FL. The experiment involves training a convolutional neural
network (CNN) across 100 agents using the MNIST dataset.
At each round of communications, we assume that 20 agents
are participating in the training. We also assume that in the
system under attack, 20% of all agents are compromised and
attempt to poison the learned model. We observe that while
the global model of the attacked system without trust results
in a learned model with degraded performance (increased
validation loss), the trust-aware centralized FL algorithm
closes the validation loss gap to the ideal unattacked system.

Moreover, we show the impact of trust on the decen-
tralized FL mechanism. For this experiment, we use the
trust-aware decentralized FL setting proposed in [12]. The
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deployment setting is adopted from [13] that involves an
actual CPS, where a number of radar devices employ Fre-
quency Modulated Continuous Wave (FMCW) technology to
survey their environment. This technology is used to monitor
a collaborative workspace where both humans and robots
operate together. The primary purpose of this system is to
identify and trace the location of human operators as they
move around a fenceless area in close proximity to a robotic
manipulator, ensuring a safe separation between humans and
robots. Figure 3 shows the validation loss averaged over all
agents and the validation loss of a single agent for 120
communication rounds. We observe that the performance
of the learned model by the trust-based decentralized FL
converges to the normal unattacked system. This is in contrast
to the attacked system without a trust mechanism which
results in significantly higher validation loss compared to the
trust-based and normal settings. Similarly, compared to the
attacked system without trust, the performance of an example
agent (agent 9) is enhanced significantly in the trust-based
decentralized FL.

V. USE CASE II: TRUSTED NETWORK EMBEDDING

The ability to virtualize the functionalities required by
network services has revolutionized the field of computer
networks. Network function virtualization (NFV) allows for
decoupling the network functions from the traditionally
complex dedicated hardware and realizing them through
software. These virtualized network functions (VNFs) can
be implemented on cheap off-the-shelf hardware instead of
expensive proprietary servers. This not only reduces the
cost of operation and shortens the time-to-market cycle for
network providers but also allows for allocating the required
infrastructure resources on demand at a much larger scale.

Each network service is a chain of network functions (e.g.
routing, load balancing, firewall, intrusion detection, etc. )
that are stitched together with logical links that determine the
sequence in which the network packets need to be processed.
Once virtualized, the network functions will have to be
hosted by the servers of an NFV infrastructure (NFVI) that
is controlled by a network controller and the traffic flowing
between the VNFs will be mapped onto the infrastructure
paths between the NFVI physical servers. This problem is
termed service chain embedding [14] and is an instance of the
more general virtual network embedding problem. To ensure
the secure delivery of the network service, it is of paramount
importance that the constituting VNFs are hosted by network
servers that are trustworthy enough. More precisely, the
notions of security, availability, and reliability are integrated
into a single composite metric termed trust. In particular,
each VNF requires a certain level of trust that is enforced by
the network service template [15] and is incorporated into
the service chain embedding problem formulation as a hard
constraint.

Within the trust aggregation framework, each NFVI physi-
cal server is a network agent that communicates the evidence
it has obtained to the central entity i.e. the central network
controller (or the orchestrator). The controller computes the

Fig. 4. Example of trust-aware network service placement

Fig. 5. Server utilization rate versus trust level

trust values according to the mathematical framework carried
out in section III and updates the global trustworthiness of
the physical servers. Each time the service chain embedding
problem is solved, the new trust estimates of the physical
servers are used in the corresponding constraints of the
model. Fig. 5 shows how the trust-aware solution correctly
allocates more load to more trusted servers when compared
with the plain model. For a detailed analysis of the role of
trust in SFC embedding the interested reader is referred to
[15], and [14].

VI. DISCUSSION & CHALLENGES

Several challenges arise in practice when designing a trust
aggregation framework. We enumerate the existing obstacles
in the way of incorporating trust into the decision-making
process for the next-generation networked systems and then
propose our ideas for tackling these challenges.

A. Private Communication-efficient Trust Aggregation

In next-generation NetCPS, the information is crowd-
sourced by the CPS devices. Further, we justified the im-
portance of the existence of a framework for inferring and
aggregating the trustworthiness of the networked agents and
described two such centralized and decentralized structures.
However, there are two major drawbacks to these schemes
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concerning their communication efficiency and privacy. In
the centralized scheme, the agents have to share their data
with the central entity which is in charge of making the trust
assignment decisions. However, on one hand, as the number
of CPS devices increases and the data grows in size it will
soon become bandwidth-inefficient to transmit the data to the
central entity (especially, in proactive settings). On the other
hand, it very well may be the case that the data gathered
by or generated by a CPS agent contains sensitive or private
information that the agent is not willing to share with another
party. Especially, in wireless networks where it might take
several hops for each agent to reach the central server; This
not only increases the chance of privacy violation but also
may increase the delay of communication between the agent
and the central server. For the decentralized architecture,
these issues are not resolved completely. Under these circum-
stances, the parties will have to communicate with one an-
other and exchange their views regarding the trustworthiness
of their fellow peers, rather than directly communicating with
a centralized server. Although this may have the advantage
of reducing the communication delays and lead to partial
bandwidth efficiency, but may increase the net volume of
information communication required to reach the same level
of accuracy as in the centralized scheme. Moreover, the
fact that the decentralized approach will have the devices
share their opinions on the trustworthiness of other fellows,
may make the privacy issue even worse. Additionally, as
discussed in section I, due to potential competition between
the networked agents, the parties might not be willing at all
to respond to any queries by their fellow peers.

B. Trust Update Freshness

Trust is a metric that may evolve dynamically. Therefore,
the resolution of updating the trust estimates in the network
has to be adjusted carefully and tailored to the frequency
of the trust-based decision-making; i.e. the most up-to-date
trust estimates need to be available whenever required by
the corresponding entities. In other words, it is of paramount
importance that the trust information at the evaluating entities
is fresh and an indicator of the current state of the network.
We note that this argument is different from minimizing the
latency of the trust estimates in the network and captures a
separate requirement. Age of information (AoI), is a recently-
introduced metric that aims at maximizing the freshness
of data in multi-server systems and has received a lot of
attention in academia, due to its effectiveness in guaranteeing
the freshness of status updates. We believe the path to an
effective solution to the last challenge, crosses the AoI metric.

C. Quantifiable Trust

Another bottleneck in designing trust-aware mechanisms
is the restrictiveness of quantifiable trust. Although there
exists a large number of works in the literature concerning
the notion of trust with various approaches, most of them
maintain the qualitative perspective, so there are few works
that study the quantification of trust. Among those few, most
of them take the quantitative values for trust for granted

without providing a detailed analysis of how to obtain such
values. We believe this shortcoming stems from the abstract-
ness of the notion of trust, the complexity of trust evaluation,
and its application-specificity. Trust may be a composite
of several metrics such as reliability, availability, resilience,
adaptability, reputation, etc., and taking into account all
these factors for all functions performed within the network
will add to the complexity of trust evaluation. Moreover, it
is impossible to define trustworthiness against all types of
intrusions and security threats. Therefore, trust has to be
viewed at the system level rather than a specific low-level
preventive measure against specific attacks.
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