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Abstract—Signed graphs are well-suited for modeling social
networks as they capture both positive and negative relationships.
Signed graph neural networks (SGNNs) are commonly employed
to predict link signs (i.e., positive and negative) in such graphs
due to their ability to handle the unique structure of signed
graphs. However, real-world signed graphs are vulnerable to
malicious attacks by manipulating edge relationships, and ex-
isting adversarial graph attack methods do not consider the
specific structure of signed graphs. SGNNs often incorporate
balance theory to effectively model the positive and negative
links. Surprisingly, we find that the balance theory that they
rely on can ironically be exploited as a black-box attack. In this
paper, we propose a novel black-box attack called balance-attack
that aims to decrease the balance degree of the signed graphs.
We present an efficient heuristic algorithm to solve this NP-
hard optimization problem. We conduct extensive experiments
on five popular SGNN models and four real-world datasets
to demonstrate the effectiveness and wide applicability of our
proposed attack method. By addressing these challenges, our
research contributes to a better understanding of the limitations
and resilience of robust models when facing attacks on SGNNs.
This work contributes to enhancing the security and reliability of
signed graph analysis in social network modeling. Our PyTorch
implementation of the attack is publicly available on GitHub:
https://github.com/JialongZhou666/Balance-Attack.git.

Index Terms—signed graph, signed graph neural networks,
adversarial attacks, balance theory

I. INTRODUCTION

In social interactions, relationships can encompass both
positive aspects, such as trust, and negative aspects, such as
hate. Signed graphs provide a suitable network structure for
capturing these diverse relationships. By incorporating positive
and negative signs, signed graphs effectively represent both
friendly and hostile connections, making them well-suited for
modeling various social networks. An example of such a
scenario is the Bitcoin-Alpha platform, where users can rate
others using positive or negative scores. This natural setting
can be effectively modeled using a signed graph. Machine
learning techniques have played a significant role in analyzing
signed graph data, addressing tasks such as link sign prediction
[1], [2] and node ranking [3], [4].

This paper primarily focuses on the task of link sign
prediction, which involves inferring the signs of edges in
the unexplored portion of a signed graph based on a known
subgraph with its structure and edge signs. Numerous existing
approaches for link sign prediction rely on signed graph neural
networks (SGNNs) [5]–[9]. SGNNs are constructed based

on graph neural networks (GNNs) [10] and are specifically
designed to accommodate the unique graph structure of signed
graphs. Since the presence of negative edges invalidates the
standard message-passing mechanism, the development of
SGNN models becomes necessary to effectively handle both
positive and negative edges.

To effectively address the challenges associated with nega-
tive edges in the design of SGNNs, a common approach is to
incorporate balance theory from social psychology. This the-
ory provides valuable insights into managing and integrating
positive and negative links, thereby establishing a cohesive
framework for learning node representations. Balance theory
suggests the existence of an expected “balanced structure”
in which signed triangles, composed of three interconnected
nodes, should have an even number of negative edges [11].
Empirical studies have confirmed that most triangles in real-
world signed social graph datasets adhere to these conditions
[1]. Existing SGNN models, such as SGCN [5] and SNEA
[8], have leveraged balance theory in the design of their
aggregation strategies.

However, real-world signed graphs are vulnerable to ma-
licious attacks. For instance, in bitcoin trading platforms,
users may engage in manipulative behavior by providing false
ratings, while in e-commerce sites, attackers can disrupt the
integrity of the award system by assigning low scores. These
attacks typically involve altering a small portion of the edge
relationships within the signed network. Such manipulations
can have a significant impact on the results of link sign pre-
diction using SGNNs, potentially leading to the deterioration
of social relationships.

To understand the vulnerability of SGNNs, it is necessary to
develop attack methods for signed graphs. Existing adversarial
graph attack methods like Nettack [12] and Metattack [13]
are not suitable, as they primarily require node labels and
features for node classification tasks. Therefore, a new attack
method tailored for signed graphs is required. Currently, there
is a noticeable lack of black-box attacks for signed graphs.
The only existing method that somewhat resembles a black-
box attack is the random attack, where the signs of some
edges are randomly altered. However, this method proves to
be ineffective.

Given that most SGNN models rely on balance theory to
aggregate information, either directly or implicitly, we propose
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a novel black-box attack for SGNNs by reducing the balance
degree, which we termed as balance-attack. It has been
proved that a SGNN is incapable of learning accurate node
representations from unbalanced triangles [14]. By developing
an algorithm to manipulate the degree of balance, our proposed
balance-attack shows to be effective. The major contributions
of our research are as follows:

• We introduce a novel black-box attack for signed graph
neural networks by corrupting the balance degree.

• We propose an effective and efficient algorithm to reduce
the balance degree of signed graphs, a problem that has
been proven to be NP-hard [15].

• We conduct extensive experiments on four datasets using
five popular SGNN models to demonstrate the effective-
ness and generality of our proposed attack.

By addressing these issues, our aim is to advance the un-
derstanding of the limitations and resilience of robust models
when faced with attacks on signed graph neural networks.

II. RELATED WORK

Extensive research has been conducted in the machine learn-
ing and security communities to explore adversarial attacks
across different types of models. While naturally occurring
outliers in graphs present certain challenges, adversarial ex-
amples are intentionally crafted to deceive machine learning
models with unnoticeable perturbations. GNNs are particularly
susceptible to these small adversarial perturbations in the data.
As a result, numerous studies have focused on investigat-
ing adversarial attacks specifically targeted at graph learning
tasks. Bojchevski et al. [12] propose poisoning attacks on
unsupervised node representation learning or node embedding,
leveraging perturbation theory to maximize the loss incurred
after training DeepWalk. Zugner et al. [13], on the other hand,
tackle the inherent bi-level problem in training-time attacks by
employing meta-gradients, effectively treating the graph as a
hyper-parameter to optimize.

However, it is important to highlight that aforementioned
studies primarily focus on unsigned graphs. When it comes
to signed graphs, there is limited research in the context of
adversarial attacks. Godziszewski et al. [16] introduce the
concept of attacking sign prediction, where an attacker aims
to conceal the signs of a specific set of target links from a
network analyst by eliminating the signs of non-target links.
However, this method is not specifically designed for SGNN
models, and it does not function as a black-box attack. To the
best of our knowledge, there have been no reported instances
of adversarial attacks specifically tailored to signed graphs in
a black-box manner thus far.

III. PRELIMINARIES

A. Balance Theory

In balance theory, balanced triads in a graph are defined
as triads that contain an even number of negative edges. For
instance, in Fig. 1, where positive and negative edges are
represented by red solid and green dashed lines, respectively,

Fig. 1. Four types of triangles.

the first two triads, where all three users are friends or only
one pair of them are friends, are considered balanced. Based
on previous works, this theory posits that individuals within a
social network have a propensity to form structures that adhere
to balance [1]. To quantify the degree of balance in a signed
graph, a measurement called balance degree (D3(G)) was
introduced [17]. It calculates the fraction of balanced triads
in the graph using the following formula:

D3(G) =
Tr(A3) + Tr(|A|3)

2Tr(|A|3)
, (1)

where Tr(·) represents the trace of a matrix, A is the signed
adjacency matrix of the signed graph G. The elements in
matrix A can take values of {−1, 1, 0} to represent negative
edges, positive edges, or the absence of an edge in the signed
graphs.

B. Signed Graph Analysis

Link sign prediction is a crucial task of analyzing signed
graphs, as it entails deducing the signs of edges in the un-
charted section of the graph. This prediction relies on a known
subgraph, encompassing both its structure and edge signs. In
the realm of signed graph analysis, link sign prediction takes
precedence over other tasks such as node ranking.

SGCN [5], the pioneering SGNN model, extends GCN
to handle signed graphs by incorporating balance theory to
determine positive and negative relationships between nodes.
To provide further clarity, the representation of a node vi at a
given layer l is defined as:

h
(l)
i = [h

pos(l)
i , h

neg(l)
i ], (2)

where h
pos(l)
i and h

neg(l)
i respectively denote the positive and

negative representation vectors of node vi ∈ V at the lth layer,
and [·, ·] denotes the concatenation operation. The updating
process for l > 1 layer could be written as:

t
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i , t
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(3)

where AGG and COM refers to the aggregation and combina-
tion processes, respectively. ti represents the temporary node
representation vectors after the aggregation step. The set N
corresponds to the neighbors of node vi. SGNNs handle posi-
tive and negative edges by employing a two-part representation
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and a unique aggregation scheme. In other SGNN models, they
hold similar mechanism. SGCL [9] and UGCL [18] utilize
graph contrastive learning for signed graphs.. SGDNN [7]
combines balance theory and status theory along with the in-
troduction of four weight matrices. RSGNN [14] incorporates
structure-based regularizers to enhance performance.

IV. PROBLEM STATEMENTS

We focus on the task of link sign prediction, which involves
predicting the signs of edges in the complementary part of a
given subgraph of a signed graph with known structure and
edge signs. To begin, we introduce the necessary notations and
formulate the attack model accordingly.

A. Notations

Formally, let G = (V,E+, E−) be a signed-directed graph
where V = {v1, v2, · · · , vn} represents the set of n nodes. The
positive edges are denoted by E+ ⊆ V ×V , while the negative
edges are E− ⊆ V × V , and E+ ∩ E− = ∅. Let I{·} be the
indicator function, and sign(·) be the sign function. We denote
the sign of edge eij as sign(eij) ∈ {+,−}. The structure of
G is captured by the adjacency matrix A ∈ R|V |×|V |, where
each entry Aij ∈ {1,−1, 0} represent negative edges, positive
edges, or the absence of an edge in the signed graphs. We
denote the training edges and testing edges by Dtrain and
Dtest, respectively, and each edge e ∈ Dtrain ∪ Dtest has its
sign label sign(e). Let Ltrain be the training loss of the target
model based on Dtrain, and θ denote the model parameter.
The model predictions for the sign of edges are denoted as
fθ∗(G), and fθ∗(G)e ∈ {+,−} is the prediction for the given
edge e ∈ E+ ∩ E−. Ltrain is the training loss of the target
model and Latk represents the objective that the attacker seeks
to optimize.

B. Threat Model

1) Attacker’s goal: Our study aims to investigate the vul-
nerability of link sign prediction models by developing a
black-box attack that aims to assess the extent to which the
predictions of the algorithm can be disturbed. Following [13],
we focus on global attacks, aiming to decrease the overall
prediction performance of the model. We leverage an attack
method to manipulate the graph effectively. The modified
graph is then utilized to train SGNNs, intentionally aiming
to degrade their performance.

2) Attacker’s knowledge: We assume that the attackers have
access to the training data, enabling them to observe both the
graph structure and edge signs, but they do not know the model
structure and parameters.

3) Attacker’s capability: To ensure effective and inconspic-
uous adversarial attacks, we impose a budget constraint de-
noted as ∆, limiting the number of changes made to the graph.
Specifically, the constraint restricts the number of altered edges
∥A− Â∥0 to stay within ∆. In our case, we disregard changes
in edge signs and assume graph symmetry, resulting in a
budget constraint of 2∆. We also take precautions to prevent
node disconnection during the attack process. Unnoticeability

of changes is maintained by imposing a constraint on the
degree distribution. Although our current focus is altering
edge signs, our algorithm can be easily adapted to modify
the overall graph structure. These constraints are consolidated
as the set of permissible perturbations on the given graph G,
denoted as Φ(G; ∆).

C. Problem of Attack

In the case of global and unspecific attacks, the primary
aim of the attacker is to reduce the model’s generalization
performance on the testing nodes. Poisoning attacks can be
mathematically formulated as a bi-level optimization problem:

min
Ĝ∈Φ(G;∆)

Latk =
∑

e∈Dtest

I{fθ∗(Ĝ)e = sign(e)}, (4)

s.t. θ∗ = argmin
θ

Ltrain(fθ(Ĝ)),

where the attacker aims to reduce the number of testing edges
to be correctly classified by manipulating the graph, and the
model itself is trained on the manipulated graph.

V. PROPOSED BLACK-BOX ATTACK

A. Formulation of black-box attack

Since the model structure and labels of the testing data are
always unavailable, directly optimizing (4) becomes infeasible.
To address this challenge, we adopt an alternative approach
by minimizing the balance degree of the graph. According to
the analysis conducted in a previous study [14], it has been
determined that SGNNs lack the ability to effectively learn
precise node representations from unbalanced triangles. From
this finding, we can infer that targeting the balance attribute of
graphs has the potential to degrade the performance of SGNNs.
Consequently, if the target model θ is trained on a poisoned
graph that has a low balance degree, it is expected to exhibit
an also low Latk value. Therefore, we replace the optimization
problem (4) with the optimization problem as follows:

min
Ĝ∈Φ(G;∆)

D3(Ĝ). (5)

B. Attack Method

In the training phase, our objective is to minimize the
balance degree of the subgraph Ĝ within a specified budget
∆. This problem, however, is challenging due to the discrete
nature of the signs. As mentioned in [15], optimizing this prob-
lem is known to be NP-hard. To approximate the optimization
problem, we propose an algorithm based on gradient descent
and greedy edge selection.

Our solution revolves around the core concept of computing
the gradient of the objective function D3(Ĝ) with respect
to the adjacency matrix A. The primary approach employed
is an iterative and greedy strategy that involves flipping the
sign of an existing edge with the highest absolute gradient
value and the correct sign, while ensuring compliance with the
budget constraint. In the given scenario, if the candidate edge
possesses a positive sign and its gradient value is negative,
updating the adjacency value through gradient descent would
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TABLE I
DATASET STATISTICS

Dataset #Nodes #Pos-Edges #Neg-Edges %Pos-Ratio %Density
Bitcoin-Alpha 3,784 22,650 1,536 93.65 0.3379%
Bitcoin-OTC 5,901 32,029 3,563 89.99 0.2045%

Slashdot 33,586 295,201 100,802 74.55 0.0702%
Epinions 16,992 276,309 50,918 84.43 0.2266%

result in a value exceeding 1, thereby violating the constraints
inherent in an adjacency matrix. The modification options
available encompass the selection of positive edges with the
maximum positive gradient values or negative edges with the
maximum negative gradient values. Consequently, during each
epoch, one edge is chosen from these options for updating.
This iterative process continues until the budget is exhausted.
During each iteration, we update an element in the adjacency
matrix using the following procedure:

i∗, j∗ = argmax
{i,j|aij ̸=0∧sign(aij)=

sign(∇ijD3(Ĝ))}

|∇ijD3(Ĝ)|,

aij = −ai∗j∗ ,
(6)

where aij represents an element located at row i and column
j of the adjacency matrix. The variable ∇ijD3(Ĝ) denotes the
gradient of each edge computed through back-propagation. To
provide a clearer understanding of our approach, we outline
the steps of our greedy flips method in Alg. V-B.

Algorithm 1 Algorithm of balance-attack via Greedy Flips
Input: Adjacency matrix A of G, perturbation budget ∆.
Output: Attacked adjacency matrix S (s is the element in S).

1: Initialize S ← A.
2: while Number of changed edges ≤ ∆ do
3: Calculate D3(S).
4: Calculate gradient matrix ∇(D3(S)).
5: Filter candidate edges Ce = {i, j|sij ̸= 0∧sign(sij) =

sign(∇ijD3(S))}.
6: if i∗, j∗ = argmax{i,j∈Ce} |∇ij(D3(S))| then
7: Update si∗j∗ = −si∗j∗ .
8: Number of changed edges + = 1.
9: end if

10: end while
11: Return S.

VI. EXPERIMENTS

In this section, we perform experiments on 4 real-world
datasets to showcase the efficacy of the proposed balance-
attack in diminishing the performance of SGNNs compared
to random attacks in link sign prediction. Additionally, we
apply balance-attack to 5 state-of-the-art methods in signed
graph representation. We will answer the following questions:

• Q1: Can balance-attack decrease the balance degree of
signed graphs significantly?

• Q2: How does balance-attack perform on existing
SGNN models compared with random attack?
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Fig. 2. Balance degree of 4 datasets under 2 attacks.

• Q3: How applicable is balance-attack on various SGNN
models?

A. Baseline

To establish a baseline for comparison, we employ a random
attack strategy since there is currently no established black-
box attack model specifically designed for signed graphs. The
applicability of unsigned graph methods [13], [19] to signed
graphs is limited due to their strong dependence on node labels
and node features, rendering them unsuitable for the present
scenario. In the case of the random attack, we randomly select
a set of edges from the input signed graph and flip their signs.

B. Setup

We conduct experiments on four public real-world datasets:
Bitcoin-Alpha, Bitcoin-OTC [20], Epinions [21], and Slashdot
[22]. The Bitcoin-Alpha and Bitcoin-OTC datasets are publicly
available and collected from Bitcoin trading platforms. These
datasets are obtained from platforms where users have the
ability to label other users as either trust (positive) or distrust
(negative) users. This labeling system serves as a means to pre-
vent transactions with fraudulent and risky users from trading
or perform transactions, given the anonymity of these trading
platforms. Slashdot is a renowned technology-related news
website that boasts a distinctive user community. Within this
community, users have the option to tag each other as friends
or foes based on their interactions and relationships. Similarly,
Epinions represents an online social network centered around a
general consumer review site called Epinions.com. The users
of this site have the autonomy to decide whether they trust
other members or not, forming a network based on mutual trust
relationships. In the experiments, we randomly select 80%
links as training set and the remaining 20% as testing set. Since
these datasets have no attributes, we randomly generate a 64-
dimensional vector for each node as the initial node attribute.
More detailed dataset statistics are shown in Table I.

With the above benchmark datasets, we evaluate balance-
attack on five popular SGNN models, as follows:

• SGCN [5] aims to bridge the gap between unsigned GCN
and the analysis of signed graphs. It strives to develop
a novel information aggregator by leveraging balance
theory, thereby extending the applicability of GCN to
signed graphs.
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• SGCL [9] is the first work to generalize graph contrastive
learning to signed graphs, which employs graph aug-
mentations to reduce the harm of noisy interactions and
enhances the model robustness.

• SDGNN [7] combines both balance theory and status
theory, and introduces four weight matrices to aggregate
neighbor features based on edge types.

• RSGNN [14] incorporates structure-based regularizers to
enhance the performance of SGNNs by emphasizing the
intrinsic properties of a signed graph and mitigating their
vulnerability to potential edge noise in the input graph.

• UGCL [18] introduces a novel contrastive learning
framework that incorporates Laplacian perturbation, of-
fering a unique advantage through the utilization of an
indirect perturbation method that ensures stability and
maintains effective perturbation effects.

TABLE II
LINK SIGN PREDICTION PERFORMANCE OF RSGNN UNDER

RANDOM ATTACK AND Balance-ATTACK

Dataset Ptb Attack Micro f1 Binary f1 Macro f1

Bitcoin-Alpha

0 - 0.8820 0.9341 0.6841

5% random 0.8299 0.9018 0.6317
balance 0.7563 0.8534 0.5648

10% ranodm 0.7726 0.8642 0.5831
balance 0.6802 0.7984 0.5123

15% random 0.7360 0.8393 0.5499
balance 0.6605 0.7862 0.4814

20% random 0.6839 0.8010 0.5165
balance 0.6308 0.7631 0.4635

Bitcoin-OTC

0 - 0.8919 0.9382 0.7553

5% random 0.8654 0.9216 0.7227
balance 0.7970 0.8761 0.6574

10% random 0.8242 0.8950 0.6782
balance 0.7134 0.8158 0.5849

15% random 0.8180 0.8911 0.6694
balance 0.6787 0.7909 0.5486

20% random 0.7828 0.8673 0.6341
balance 0.6424 0.7625 0.5194

Slashdot

0 - 0.7823 0.8574 0.6988

5% random 0.7384 0.8321 0.6629
balance 0.7344 0.8225 0.6484

10% random 0.7092 0.7982 0.639
balance 0.6719 0.7761 0.5813

15% random 0.6707 0.7637 0.6104
balance 0.6378 0.7466 0.5557

20% random 0.6637 0.7576 0.6044
balance 0.6009 0.7165 0.5215

Epinions

0 - 0.8280 0.8932 0.7261

5% random 0.8155 0.8841 0.7160
balance 0.7736 0.8542 0.6739

10% random 0.7711 0.8516 0.6754
balance 0.7342 0.8234 0.6432

15% random 0.7376 0.8257 0.6475
balance 0.7068 0.8016 0.6201

20% random 0.7409 0.8285 0.6492
balance 0.6832 0.7836 0.5962

We follow the hyper-parameter setting suggestions by those
papers and set the embedding dimension to 64 for all SGNN
models to achieve a fair comparison. To speed up the attack

process, we opt to modify 10 edges per epoch. Specifically, we
target the 10 elements in the adjacency matrix that possess the
highest absolute gradient values and the correct signs, when
doing back-propagation. In the experiment, the perturbation
rate varies from 5% to 20% of total edges. To evaluate our
method, we employ three metrics: micro-average F1 score
(Micro-F1), binary-average F1 score (Binary-F1), and macro-
average F1 score (Macro-F1). These metrics have been widely
used in previous studies and provide valuable insights into the
performance of SGNN models. Lower values of these metrics
indicate poorer model performance and greater effectiveness
of attack methods. However, we find that the area under the
curve (AUC) metric may not be suitable for assessing the
performance of models on signed graph datasets. AUC tends
to yield misleading results on imbalanced datasets, which is
the case for signed graph datasets that predominantly contain
positive edges. Therefore, we exclude the AUC metric from
our evaluation.

TABLE III
LINK SIGN PREDICTION PERFORMANCE OF SGNNS UNDER RANDOM

ATTACK AND Balance-ATTACK WITH PERTURBATION RATE = 20%

Model Dataset Attack Micro F1 Binary F1 Macro F1

UGCL

Bitcoin-Alpha random 0.9199 0.9576 0.6192
balance 0.8044 0.8883 0.5526

Bitcoin-OTC random 0.8988 0.9442 0.6983
balance 0.7752 0.8643 0.6044

Slashdot random 0.8538 0.9173 0.6318
balance 0.7826 0.8704 0.5971

Epinions random 0.8635 0.9237 0.6390
balance 0.8328 0.9018 0.6665

SGCL

Bitcoin-Alpha random 0.9305 0.9636 0.6007
balance 0.8108 0.8931 0.5312

Bitcoin-OTC random 0.9026 0.9480 0.6131
balance 0.7931 0.8785 0.5919

Slashdot random 0.8338 0.9072 0.5578
balance 0.7002 0.8163 0.5001

Epinions random 0.8482 0.9160 0.5673
balance 0.7385 0.8371 0.5872

SDGNN

Bitcoin-Alpha random 0.8616 0.9234 0.6062
balance 0.7775 0.8698 0.5528

Bitcoin-OTC random 0.8333 0.9028 0.6593
balance 0.7388 0.8371 0.5893

Slashdot random 0.8405 0.8981 0.6966
balance 0.7326 0.8286 0.6106

Epinions random 0.8336 0.9023 0.6714
balance 0.7696 0.8550 0.6467

SGCN

Bitcoin-Alpha random 0.6614 0.7842 0.4991
balance 0.6022 0.7346 0.4704

Bitcoin-OTC random 0.6833 0.7925 0.5620
balance 0.6265 0.7434 0.5288

Slashdot random 0.6835 0.7752 0.6204
balance 0.5939 0.7029 0.5307

Epinions random 0.6725 0.7712 0.5977
balance 0.6453 0.7497 0.5706

C. Balance Degree of Signed Graphs after Attack (Q1)

To validate the effectiveness of our method, we first apply
our approach and obtain conclusive results: the balance degree
of signed graphs is significantly reduced compared to the
balance degree under the random attack. We present the
comparison results of the balance-attack and random attack
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in Fig. 2. Initially, in each dataset, the balance degree ranges
from 0.85 to 0.9. When subjected to random attacks with a
perturbation rate of 20%, the minimum balance degree drops
to approximately 0.65. However, by utilizing our designed
balance-attack method with a perturbation rate of 5%, the
balance degree becomes more lower, ranging between 0.35 and
0.55. Furthermore, at a perturbation rate of 20%, the balance
degree can be further reduced to about 0.1, which is signif-
icantly lower than what is achieved through random attacks.
These results unequivocally demonstrate the effectiveness of
our proposed method in significantly reducing the balance
degree of the graph.

D. Attack Performance of Balance-Attack (Q2)

We conduct a comparative analysis between random attack
and balance-attack on five existing SGNN models. To eval-
uate their performance, we tested the models at perturbation
rates from 0% to 20% based on the three metrics mentioned
before to evaluate the attack performance. RSGNN is a model
known for its resilience against random attacks. While its
original design may not have explicitly focused on adversarial
attacks, we can infer that it possesses greater robustness
against various attack scenarios compared to other SGNN
models. Based on the results in Table II, it is evident that
RSGNN can maintain satisfactory performance even when
subjected to random attacks. However, when exposed to our
balance-attack, the performance of RSGNN experiences a
significant decline. Similar results are observed in the other
four SGNN models as presented in Table III.

E. Applicability of Balance-Attack on various SGNNs (Q3)

In addition to assessing balance-theory-based models, we
also evaluate the performance of our proposed attack on non-
balance-based models (i.e. UGCL). Even though our attack
method is designed based on the intuition that many SGNNs
rely on balance theory, we surprisingly find that it also
proves to be effective against non-balance-based SGNNs. This
showcases the versatility and efficacy of balance-attack across
different SGNNs.

VII. CONCLUSION

In this paper, we introduce balance-attack, a novel black-
box attack for signed graphs, which reduces the balance de-
gree. We propose an efficient heuristic algorithm to solve this
NP-hard problem. Extensive experiments are conducted using
popular SGNN models to validate the attack’s effectiveness
and generality. Our research aims to enhance the understanding
of the limitations and resilience of robust models when faced
with attacks on SGNNs.
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