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Abstract—With the ever-increasing population of Internet-of-
Things (IoT) and Cyber-Physical systems (CPS), cyber attacks
can result in significantly more severe consequences. In this
paper, we introduce a novel data modeling technique using a
heterogeneous graph with Express Edges to enhance the attack
detection capabilities of machine learning models. Addition-
ally, we present the first-of-its-kind performance benchmark
of representative heterogeneous graph neural network (HGNN)
algorithm variants using multiple network intrusion detection
system (NIDS) datasets. Our primary aim is to assist CPS
defenders in achieving optimal attack detection efficacy against
cyber threats.

Index Terms—Cyber-Physical Systems, machine learning, in-
trusion detection, graph, neural networks, GNN.

I. INTRODUCTION

Cyber-Physical systems (CPS) are expected to play a pivotal
role in enabling Industry 4.0 [1]. This reliance on CPS was
demonstrated in a recent survey conducted by the authors
using the Shodan platform (www.shodan.io). The survey re-
vealed the presence of over 300,000 MODBUS devices (a CPS
communication protocol [2]) accessible on the public internet.
Safeguarding these increasingly critical assets becomes that
much more essential, as the consequences are not limited to
mere inconvenience, but can be potentially fatal. This concern
is exemplified by incidents like the 2017 Triton malware attack
[3] on an oil and gas facilities in Saudi Arabia and the 2021
cyber attack on a North American gas pipeline company [4].

To protect CPS against cyber attacks, Machine Learning
(ML) has been proven to be an effective detection tool [5],
[6], [7], [8], even for covert attacks designed to evade typical
network intrusion detection systems (NIDS). However, the
conventional machine learning-based approach not only heav-
ily relies on meticulous feature engineering but also demands
deep domain expertise from model designers. Additionally, it
is time-consuming due to the iterative nature of the develop-
ment process.

Another, potentially more fundamental, limitation of tradi-
tional machine learning-based NIDS that employs classical
ML and Deep Learning (DL) algorithms is the isolation of
each packet or network flow from the broader context of the
CPS. This shortcoming is particularly evident when dealing
with multi-flow formats of attacks, shown in Figure 1, such

as those observed in the reconnaissance, Distributed Denial-
of-Service (DDoS), and lateral movement stages described in
the Mitre ATT&CK [9] framework.

A new breed of deep learning machine learning algorithms,
known as Graph Neural Networks (GNN) [10], holds the
potential to streamline the feature engineering process. These
GNN algorithms have shown promising results that can com-
bine the underlying system topology (graph relationship struc-
ture) and other pertinent attributes of CPS components and
their interactions, including multi-flow attack patterns [11],
[12]. In these GNN-based NIDS systems, network endpoints
such as servers or CPS devices are modeled as graph nodes;
while network communications, such as packets or flows are
modeled as graph edges [13]. Some studies transform the
graph into a line graph during data processing, where nodes
represent original edges and edges represent original nodes
[14], [15]. However, the overall graph is generally treated as
a homogeneous graph, where all nodes are required to be of
the same type.

In this research, we aim to explore the advantages of an
innovative graph modeling approach where a CPS system is
modeled as a heterogeneous graph, accommodating multiple
types of nodes. This approach allows for diverse source nodes,
destination nodes, and network flow nodes. Such an approach
empowers CPS defenders with the flexibility to model various
device types and relationship types. For example, in a typical
CPS system, Master Terminal Units (MTUs) and Remote Ter-
minal Units (RTUs) undertake distinct communication roles,
serving as either the source or destination of a network flow.
If an RTU, which typically acts as a destination for network
flows, suddenly becomes a source of numerous network flows,
this anomalous pattern often serves as an indicator of potential
intrusion. Moreover, this novel graph data modeling technique
is particularly well-suited for representing multi-flow cyber
attacks with specific sub-graph typologies, as depicted in
Figure 1.

Beyond the innovative graph modeling technique for CPS,
we also aim to address a gap in the existing body of published
NIDS literature concerning the benefits of different variations
of Heterogeneous Graph Neural Networks (HGNN). These
variations include neighbor attention, relationship attention,
and meta-path attention, which can enhance HGNN-based
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Fig. 1: Sub-graphs illustrating examples of multi-flow attacks.
Nodes labeled sn represent source devices, nodes labeled dn
represent destination devices, and nodes labeled fn represent
different network flows.

NIDS applications. We aim to present the first published
performance benchmark of HGNN algorithm variants, with
the goal of providing practical guidance to real-world CPS
defenders regarding algorithm selection and data processing
techniques.

The remainder of this paper is organized as follows: Section
II delves into related work. In Section III, we detail the
proposed methodology and GNN architecture. Section IV
describes the experimental design. Section V presents the
evaluation results of the proposed techniques. Finally, Section
VI summarizes and concludes the paper.

II. RELATED WORK

The seminal work on Graph Convolutional Networks (GCN)
by Kipf and Welling [10] marked a significant advancement
in the field of Graph Neural Network (GNN) research. In their
work, the authors introduced the concept of applying spectral
convolution to non-Euclidean graph data, drawing inspiration
from Convolutional Neural Networks (CNNs).

To provide a more general understanding of GNN, a neural
message passing framework is employed to exchange vector
messages among nodes. These messages are then updated
using neural networks. For an input graph G = (V,E), where
V represents the vertices or nodes, and E represent the edges,
along with a set of node features X ∈ Rd∗|V |, the message
passing operation from hidden message hk

u at each layer k for
node u to the message at the next layer hk+1

u can be expressed
in Equations (1) and (2):

hk+1
u = UPDATEk(hk

u,AGGk(hk
v , v ∈ N(u))), (1)

= UPDATEk(hk
u,messagekN(u)), (2)

where UPDATE and AGG (AGGREGATION) are ar-
bitrary differentiable functions used in the neural network.
The messageN(u) represents the messages aggregated from
neighboring nodes of u.

For the GCN algorithm as described by Kipf and Welling,
symmetric normalization is applied in the aggregation function

with self-loops, as shown in Equation (3):

hk+1
u = σ(Wk

∑
v∈N(u)

⋃
{u}

hk
v√

|N(u)||N(v)|
). (3)

To manage memory and facilitate training for large graphs,
Hamilton et al. [16] introduced the GraphSAGE algorithm
with node neighbor sub-sampling, as shown in Equation (4).
Often, the UPDATE function in Equation (2) is substituted
with a concatenation component as demonstrated in Equation
(5).

Ns(u) = SAMPLE(N(u), SampleSize), (4)

hk+1
u = σ(W k ·CONCAT(hk

u,messagekNs(u)
)). (5)

Lo et al. [13] extended the GraphSAGE algorithm to include
edge features for classifying network source and destination
devices as nodes, and network flows as edges with flow
features in a homogeneous graph, as illustrated in Figure
2a. Source IP addresses are randomly mapped to one of
16 addresses. With this E-GraphSAGE modification, Lo et
al. reported generally improved performance compared to
ensemble tree-based ML models.

Chang and Branco [14] further improved the E-GraphSAGE
model and demonstrated the benefits of applying attention to
GNN for enhanced NIDS performance. In order to leverage
existing body of techniques in node classification, this work
transformed the graph into a homogeneous line-graph coun-
terpart, where nodes correspond to original edges and vice
versa, as depicted in Figure 2b. Source IP addresses are also
randomly mapped to one of 16 addresses. Friji et al. [15]
also applied the same line-graph technique along with graph
attention mechanism. When it comes to model performance
validation, Friji et al. highlighted a crucial concern regarding
potential target leakage resulting from randomized splits of
train-test samples in most published NIDS dataset performance
tests. The primary reason for this issue is the limited size of
the testbed in most CPS NIDS datasets, where only a small
number of source IP addresses initiate simulated cyber attacks.
However, as shown in Figure 3, some simulated attacks in
the ToN-IoT dataset include only 2 or 3 source IP addresses,
making the IP Address based train-test split solution proposed
by Friji et al. unsuitable for all NIDS datasets.

Pujol-Perich et al. [17] conducted experiments to show-
case the robustness of GNN against simulated adversarial
attacks, such as variations in packet size or inter-arrival times.
They demonstrated that by leveraging relationship informa-
tion within the graph structure, their implementation of the
GNN model exhibited more stable performance compared
to ensemble tree-based and MLP models. For graph data
modeling, Pujol-Perich et al. represented both network devices
and network flows as nodes in a heterogeneous graph, shown
in Figure 2c.

Many previous studies have focused on utilizing homoge-
neous graphs for data modeling, resulting in the restriction of
all nodes to a single type. However, within real-life enterprise

524



IT networks, a diverse range of device types or roles is present,
encompassing servers, user computers, mobile devices, IoT
devices, and CPS devices. Communication patterns for CPS
devices, especially those deployed in critical infrastructures
such as power or transportation systems, exhibit even greater
diversity. This diversity underscores the need for a heteroge-
neous graph approach that can comprehensively capture the
intricacies of real-world networks, thereby forming a more
robust foundation for GNN graph representation learning.
Moreover, this innovative graph data modeling technique is
well-suited to depicting multi-flow cyber attacks in distinct
sub-graph typologies, as illustrated in Figure 1.

In addition, the concerns raised by Friji et al. [15] and
Engelen et al. [18] regarding model evaluation highlight the
potential for target leakage arising from randomized data
and train-test sample splits. While splitting based on time is
a common strategy to mitigate this issue in real-life NIDS
data, it may not effectively address the challenge posed by
simulated datasets. These datasets frequently lack a normal
distribution of traffic types over time due to bursty simulation
behavior or may divide a single actual network flow into
multiple flow records. To address these limitations, we propose
a modified temporal train-test split of the dataset coupled
with the diversification of source IP addresses. This approach
aims to yield evaluation results that better reflect real-world
scenarios, as discussed in Section V.

III. PROPOSED METHODOLOGY

A. Hetergeneous Graph Data Modeling with Express Edges

To accurately model the complexity of actual CPS networks,
which encompass various device types with distinct network
behavior attributes, we propose a heterogeneous graph data
model. This data model is designed for its extensibility to
accommodate the evolving landscape of CPS technology and
applications.

A heterogeneous graph, denoted as G = (V,E), consists
of a set of vertices or nodes V and a set of edges E. Each
node v ∈ V is associated with its mapping function ϕ(v) :
V → A, where A denotes the node type set. Similarly, each
edge e ∈ E is associated with it’s mapping function ϕ(e) :
E → R, where R denotes the edge type set. When |A| = 1
and |R| = 1, the graph degenerate into a homogeneous graph.
An example heterogeneous graph is an academic bibliographic
graph, where node types could be defined as paper, author,
venue, and term, while edge types could be write, contain,
publish, and so on.

In the context of CPS networks, node types can correspond
to CPS device roles, such as MTU, RTU, HMI, Engineering
Station, and more. In this study, since the roles of the CPS
devices are not known to the authors, Source IP address (src)
and Destination (dst) IP address are used as a proxy for what
might be represented in real-life scenarios. To facilitate the
representation of multi-flow attack typologies illustrated in
Figure 1, we also introduce Netflow flows to the node type set,
representing each network flow as a node. Undirected edges

are employed to connect src/dst nodes with flow nodes, as
depicted in Figure 2d.

Fig. 2: Different graph data modeling techniques: (a) homo-
geneous graph used by Lo et al. in [13]; (b) homogeneous
line-graph used by Chang and Branco [14]; (c) heterogeneous
graph used by Pujol-Perich et al. [17]; (d) Proposed heteroge-
neous graph with Express Edges.

To expedite message passing within the Heterogeneous
Graph Neural Network (HGNN), we introduce Express Edges
between Source (src) and Destination (dst) nodes, as depicted
in Figure 2d. The forthcoming results in Section V will
showcase the advantages of incorporating Express Edges into
the graph.

B. Relational Graph Convolutional Networks (RGCN) and
Relational GraphSage (Rsage)

Schlichtkrull et al. [19] extended the work of Kipf and
Welling [10] to heterogeneous graphs by accounting for edge
type relationship set R in the GCN Equation (3) as shown in
Equation (6):

hk+1
u = σ(

∑
r∈R

∑
v∈Nr

u

1

Cu,r
W k

r h
k
v +W k

0 h
k
u), (6)

where Nr
u denotes the set of neighbor indices of node u under

relation r ∈ R. cu,r is a normalization constant that can either
be learned or chosen in advance (such as cu,r = |Nr

u|).
Similarly, the GraphSAGE [16] algorithm was extended to

heterogeneous graphs (Rsage) by accounting for edge type
relationship in the GraphSage Equation (5).

C. Relational Graph Attention Networks (RGAT, and HAN)

Graph Attention Networks (GAT) [20] introduced an at-
tention mechanism initially applied to enhance Natural Lan-
guage Processing capabilities [21]. By learning individual
attention weights for each neighbor of a given node, GAT aims
to achieve improved information aggregation. The attention
weight αuv is defined as:

αuv =
exp(σ(aT [Whu,Whv]))∑

k∈Nu

exp(σ(aT [Whu,Whk]))
, (7)
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Subsequently, the node representation h′
u is obtained by

combining neighboring node embeddings using the attention
weights:

h′
u = σ(

∑
v∈N(u)

αuvWhv). (8)

Finally, similar to Equation (6) used for RGCN, the intro-
duction of edge type relations leads to the development of
Relationship GAT (RGAT).

Wang et al. [22] published Heterogeneous Graph Attention
Network (HAN) algorithm by adding another layer of attention
that learns the different attention weights amongst different
meta-paths. Meta-paths are human curated information of
meaningful path vectors within the graph, such as ”Paper-
Author-Paper”, or ”Paper-Term-Paper” in an academic biblio-
graphic graph.

D. Modified Temporal Data Split and Diversification of
Source IP Addresses

In real-life NIDS datasets, a common approach to prevent
target leakage issues is to perform train-test splitting based
on time. This involves reserving the most recent data, such
as the last 3 weeks, for testing, and utilizing earlier data
for training and validation purposes. However, to address
the unique characteristics of simulated NIDS datasets and
to mitigate potential target leakage problems, we propose a
modified temporal split strategy that is particularly suitable
for most simulated NIDS datasets.

1) Strategy 1: Temporal Data Split: In order to address the
bursty nature of simulation data, especially in attack traffic
scenarios typical of simulation datasets, we suggest a data
splitting approach that considers both attack types and the tem-
poral dimension of the simulation. For instance, in the ToN-
IoT dataset, we divide the last 30% of flows for each traffic
type during each simulation day. For example, for XSS attacks,
we sort the flows by timestamp, using source IP address and
source port number as secondary sorting criteria to resolve
ties. The final 30% of flows are then reserved for testing. For
datasets lacking explicit timestamps, the chronological order
of the data can be used in conjunction with sub-experiment
types.

2) Strategy 2: Diversification of Source IP Address: To
mitigate target leakage issues arising from a limited number
of source devices during attack and normal traffic simulations,
we propose concatenating the original source IP addresses with
the timestamp of the flow (including Year, Month, Day, Hour,
Minute, and Second). This approach creates the illusion of a
new set of source devices every second. Since raw IP addresses
are typically not used as features in GNN models, this strategy
prevents the models from making inferences based solely on
source IP address relationships. When combined with the
modified temporal train-test sample splitting, this strategy
helps minimize target leakage issues. This fine-grained time
resolution is particularly crucial for the ToN-IoT dataset,
where the shortest burst of XSS attack simulation lasted for

93 seconds. For other simulated datasets, the time resolution
can be adjusted to achieve the desired diversification effect.

For datasets lacking timestamps, such as NF-BoT-IoT [23],
concatenating the source IP addresses with the source port
can serve as a suitable workaround, given that most new TCP
flows tend to choose a different port number at the source.

An important advantage of the proposed Diversification
and Temporal Data Split is the deterministic nature of the
resulting data splits. This feature enables easy reproduction
across different research teams, facilitating direct comparison
of study results.

IV. EVALUATION DATA AND EXPERIMENTAL DESIGN

A. CPS Evaluation Data: ToN-IoT dataset

The ToN-IoT [24] network dataset, frequently referenced
in related GNN-NIDS studies, is chosen for evaluating the
proposed CPS NIDS methodology and for facilitating compar-
ative analyses. This relatively recent intrusion detection dataset
models a substantial number of CPS and IoT devices, at the
Cyber Range and IoT Labs at UNSW Canberra, Australia.
Alongside real devices like smartphones and smart TVs, the
dataset includes simulated CPS devices such as Fridges, GPS,
and Thermostat sensors. The dataset encompasses various
types of cyber-attacks, including scanning, DoS, DDoS, ran-
somware, backdoor, data injection, cross-site scripting (XSS),
password cracking, and Man-in-The-Middle (MITM) attacks.
In the Train Test version of the dataset, there are 161,043
Attack flows compared to 300,000 Normal flows. A detailed
dataset analysis is presented in Figure 3.

B. Additional Evaluation Data

In order to assess the broader applicability of the proposed 
methodology, we extend our analysis to include additional 
datasets widely utilized in state-of-the-art NIDS studies. These 
datasets consist of CIC-IDS2017 [25], CIC-Darknet [26], 
and NF-BoT-IoT [27]. An overview of the key statistics for 
these datasets is summarized in Table I.

TABLE I: Statistics of Dataset Used in This Study

Dataset Normal Flows Attack Flows Normal:Attack Ratio
ToN-IoT 300,000 161,043 65.1% : 34.9%
CIC-IDS2017 1,657,693 443,121 78.9% : 21.9%
CIC-Darknet 117,219 24,311 82.8% : 17.2%
NF-BoT-IoT 13,859 586,241 2.3% : 97.7%

Most datasets exhibit an expected class imbalance, reflecting
real-world scenarios where the majority of data points belong
to the ”Normal” class. Notably, NF-BoT-IoT displays a pro-
nounced skew towards the ”Attack” class, with only 2.3% of
data representing the ”Normal” class.

C. Performance Metrics and Hyper-parameters

Given the imbalanced nature of the dataset, the F1 Score
is chosen as the performance metric for comparisons. The F1
Score provides a balanced view between predicted and actual
positives, independent of potentially high numbers of true

526



Fig. 3: Daily distribution of Source IP Addresses (unique
addresses) in the ToN-IoT dataset. The first number above each
bar represents the count of distinct source IP Addresses, while
the second number represents the total number of network
flows observed on that day.

negatives (TN) or normal samples. The F1 Score is calculated
using the formula:

F1Score =
2× TP

2× TP + FP + FN
(9)

To ensure fair comparison of model results, the hyper-
parameters for most GNN algorithms in this study are set as 
follows: Number of GNN layers is 2; mini-batch size is 2048; 
hidden dimension is 64 for ToN-Iot and NF-BoT-Iot is 64, 
and 128 for CIC-IDS2017 and CIC-Darknet to accommodate 
more features in these two datasets; the models are trained for 
3 epochs each with dropout ratio of 0.3 and a learning rate of 
5e-3.

For computational time evaluation, all experiments were 
conducted on a computer equipped with an Intel i7-11700 
CPU with 16 cores, 64 GB memory, and an NVIDIA 
GeForce RTX3070 GPU with 8GB video memory. Software 
libraries mainly consist of PyTorch, DGL, and OpenHGNN 
[28].

V. RESULTS AND DISCUSSIONS

A. Comparison of Model Results with State-of-the-Art Studies

Binary classification results are employed in this study
to enable comparisons with other published State-of-the-Art
(SOTA) studies on ML-based NIDS. Table II presents results
from publications that utilized data splitting methods aimed
at mitigating the target leakage effects from random data
splitting.

Among methods with similar experimental setups, the
RSAGE and RGCN algorithms utilizing the Express Edge
technique achieved the most promising results.

Figure 4 illustrates the computational time for different
GNN algorithms. Notably, RGCN and RSAGE exhibit favor-
able performance in terms of both prediction accuracy and
computational efficiency.

TABLE II: Comparison of Performance with State-of-the-Art
Studies

ML Algorithm Study F1-Score
MLP NN Friji et al.[15] 0.33438
XG-Boost Friji et al.[15] 0.4807

E-graphsage Lo et al. [13]
Friji et al. [15] 0.88

Dual-Relation GNN Friji et al. [15]
Pujol-Perich et al. [17] 0.902

GNN with Residuals Friji et al.[15] 0.937
RGCN with Express Edges This study 0.9735
RSAGE with Express Edges This study 0.9778
RGAT without Express Edges This study 0.9423
HAN without Express Edges This study 0.9688

Fig. 4: Compute time study in seconds per epoch.

B. Performance Benchmark across Multiple Datasets

To assess the broader applicability of the proposed Express
Edge methodology, systematic experimental results for three
additional datasets are presented in Table III. Each perfor-
mance data point is an average of five independent runs
(n = 5), except for the Rsage algorithm, where (n = 10)
compensates for the inherent randomness in the neighbor
sampling process.

We observe that models with Express Edges exhibit supe-
rior performance for most datasets, except for the NF-BoT-IoT
dataset, which is heavily skewed toward attack data.
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TABLE III: Performance Benchmark across Multiple Datasets

Dateset Algorithm Graphs with
Express Edges

Graphs without
Express Edges

ToN-IoT RSAGE 0.9778 0.9739
RGCN 0.9735 0.9732
RGAT 0.9312 0.9423
HAN 0.9687 0.9688

CIC-IDS2017 RSAGE 0.9871 0.9865
RGCN 0.8829 0.9411
RGAT 0.9212 0.9212
HAN 0.9832 0.9832

CIC-Darknet RSAGE 0.9031 0.9155
RGCN 0.9041 0.8832
RGAT 0.9186 0.9132
HAN 0.9146 0.9123

NF-BOT-IOT RSAGE 0.6977 0.6943
RGCN 0.7124 0.7243
RGAT 0.7309 0.7440
HAN 0.7024 0.7025

Another notable observation from Table III is that while
Rsage with Express Edge methods produced optimal results
for two datasets, RGAT and HAN occasionally outperformed
other models in different contexts. Until a consistently superior
HGNN algorithm emerges, it is advisable to compare the
performance of representative HGNN algorithms to select the
most suitable one for the specific problem, similar to the
comparative study illustrated in Table III.

VI. CONCLUSION

In this paper, we introduce a novel approach to intrusion
detection in cyber-physical systems, harnessing the power of
Heterogeneous Graph Neural Networks with Express Edges
during the graph construction phase. The incorporation of
Express Edges, which establish direct connections between
communicating network device nodes, accelerates the GNN
message passing process and yields superior model perfor-
mance when compared to other graph modeling techniques
from prior studies.

Furthermore, our study stands out as the first NIDS investi-
gation to propose a refined temporal data splitting method and
source IP address diversification strategy. These innovations
aim to foster more realistic evaluation of model performance
results, mitigating potential target leakage issues inherent
in conventional random split approaches. By introducing a
deterministic approach, we also facilitate comparative analyses
across different research teams.

Through the utilization of the novel Express Edge method-
ology and an improved evaluation process, this work estab-
lishes a pioneering benchmark by systematically evaluating
a range of representative HGNN algorithms across multiple
NIDS datasets. The results underscore the necessity of em-
ploying a rigorous comparative study methodology to attain
optimal attack detection outcomes. It becomes evident that
there is currently no universally superior HGNN algorithm
that excels across all tasks and NIDS datasets. Thus, our study
sheds light on the importance of tailoring algorithmic choices
to specific problem contexts for achieving optimal cyber attack
detection performance.

In future studies, we plan to review performance of addi-
tional published HGNN algorithms by leveraging the proposed
evaluation methodology and aim to improve HGNN algorithm
performance based on insights gained through performance
bench-marking of various HGNN algorithms.
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