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Abstract— Future network infrastructures will support 
multiple heterogeneous networks to facilitate 6G and network 
disaggregation. This will require the verification of various 
types of devices and components. Consequently, the efficiency of 
performance verification needs to be enhanced for the 
combinations of numerous network nodes and components, 
considering unknown network conditions. This study focuses on 
improving the inference accuracy of network node performance 
in the extrapolation. To address this issue, we propose a trend 
encoder for non-time-series datasets, which collaborates with an 
Attentive Neural Process. Preliminary extrapolation results 
show that the coefficient of determination of router throughput 
is improved by paying more attention to the trend information, 
including the relationship between both router configurations 
and input traffic influencing router performance for non-time-
series datasets. 

Keywords— Trend encoder for non-time-series datasets, 
Attentive Neural Process, Node modeling  

I. INTRODUCTION 

The sixth generation of mobile communications networks 
(6G) is expected to realize an Intelligent Internet of Intelligent 
Things (IIoIT). This evolution will provide ultra-fast mobile 
broadband services, low-latency applications such as remote 
surgery and autonomous vehicles, as well as support a wide 
range of connected devices for building a virtual digital world 
[1]. This necessitates 6G to offer significantly faster speeds, 
lower latency, and wider coverage than 5G. Hence, 6G 
networks will be able to seamlessly connect multiple 
heterogeneous networks based on a mix of different types of 
technologies, such as wireless, satellite, and optical networks, 
allowing for faster and more reliable communication between 
other technologies.  

One candidate to support multiple heterogeneous 
networks for 6G is network disaggregation technology [2]. 
Network disaggregation involves disassembling previously 
integrated components into their individual network 
components. In the current network, network components 
often come with proprietary interfaces, software, and 
hardware, which need more flexibility and cost-efficiency, 
failing to meet the growing demands of telecommunication 
carriers. By breaking free from vendor lock-in constraints, 
telecommunication carriers will embrace network 
disaggregation technologies, allowing them to leverage the 
most suitable and advanced technology from various suppliers 
to meet their service requirements. However, implementing 
this technology will result in a surge in the number of network 
components, necessitating efficient management and 

verification of the performance of numerous combinations of 
network elements.  

Hence, ensuring network quality and reliability across 
diverse network equipment and optimal combinations of 
numerous network components to support network 
disaggregation will become essential. In response to this 
challenge, we present a network digital replica (NDR) [3]. The 
NDR acts as a digital counterpart to the physical network, 
facilitating the verification of network node performance in 
the digital domain. To achieve this, network node modeling 
plays a crucial role as it replicates the performance of actual 
network nodes within the digital domain. In the NDR, the 
network node modeling is performed using machine learning 
(ML) based modeling for actual network node performance, 
such as the router throughput. However, the application of 
network node modeling has been considered only for known 
environments, i.e., where interpolation between the training 
datasets is possible. Neural networks (NNs), which are 
commonly used in ML, are not particularly effective at 
extrapolation [4]. Therefore, the issue of the NDR is to 
extrapolate the node performance in the digital domain.  

Given the above background, this paper presents a novel 
trend encoder to improve the inference accuracy of network 
node performance in extrapolation. The main contribution of 
this study is a trend encoder for non-time-series datasets with 
a meta-learner: attention-based NP combined with trend 
information as follows: 

1) Trend encoder for non-time-series datasets: We 
propose the trend encoder to enrich information for non-
time-series datasets to extrapolate node performance. 
This encoder captures the trend information representing 
the relationship between both node configurations 
(including hardware specifications) and input traffic 
influencing node performance. To achieve this, the 
proposed trend encoder reorders the datasets, uses feature 
importance [5] to assess the importance of each dataset 
for node performance, and uses wavelet transform [6] to 
identify the trend with high-ranked feature importance. 

 2) Attention-based NP combined with trend information 
to extrapolate node performance: As the basic method to 
extrapolate the router performance, we improve an 
Attentive NP (ANP) [7], a kind of meta learner, to enable 
each node performance to focus on the extracted trend 
information.  

To the best of our knowledge, few or no existing reports 
on node modeling utilize regression prediction to extrapolate 

2024 International Conference on Computing, Networking and Communications (ICNC): AI and Machine Learning for Communications 
and Networking

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 518



 

 

actual node performance by using trend information for non-
time-series datasets. 

II. RELATED WORK 

Several studies have evaluated the performance of ML 
techniques in extrapolation [8-9]. Decugis et al. [8] 
investigated the potential of implicitly defined NNs to 
extrapolate on mathematical tasks. In addition, a Gaussian 
process (GP) framework has been proposed  [9]. The GP is 
used for modeling a distribution over regression functions. 
The GP would be better at extrapolation if the kernel were 
better defined for extrapolation. However, an appropriate prior 
for the GP is difficult to design. 

As an alternative model to GP, a neural process (NP) has 
been introduced, which allows to learn a stochastic process 
from data using the flexibility of NNs [10]. NP is a kind of 
meta-learner applied to situations where each task has only a 
few examples. However, NP has not yet been applied to the 
inference of node performance for actual equipment. Also, the 
accuracy of extrapolation needs to be improved for applying 
only vanilla NP to the inference of network node performance 
that is not covered by training datasets, as evaluated in this 
paper.  

Approaches similar to ours have been proposed in several 
studies that propose the integration of wavelet transform and 
deep learning techniques [11]. However, this analysis is for 
time series datasets, and correlations between the before and 
after time periods are relatively straightforward. Since the 
dataset assumed in this research is non-time-series, there is no 
correlation between adjacent data points. Therefore, we aim to 
extract trends from non-time-series datasets and incorporate 
them to improve the accuracy of extrapolating node 
performance. 

III. BACKGROUND 

A. Interpolation and Extrapolation for Node Performance 

The purpose of this study is to address extrapolation for 
network node performance in regression problems. In 
regression problems covered in this study, non-time-series 
datasets are used to generalize a function that maps a set of 
input variables X to node performance Y. Here, the input 

variables include node configurations and input traffic. When 
the input variables fall within the range of the training datasets, 
this process is defined as interpolation. Conversely, if the 
inferred point lies outside this range, it is defined as 
extrapolation. Extrapolating the node performance beyond its 
training domain is generally challenging due to its sensitivity 
to the training data and model parameters. This results in 
unpredictable behavior unless the model formulation 
incorporates implicit or explicit assumptions about the 
extrapolation process.  

B. Neural Process 

The primary objective of NP is to acquire knowledge of 
distributions over functions by learning from distributions 
over datasets [10]. First, to enable NP to learn distributions 
over functions, we consider a set of datasets, D ={ (𝑥  , 𝑦 )}  
of n inputs 𝑥  and outputs  𝑦 . NP splits D  into two disjoint 
subsets: a set of m context points C ={ (𝑥  , 𝑦 )}  and a set 
of targets T =  (𝑥  , 𝑦 )

 
 . The NP model is then 

presented with C to estimate the corresponding function 
values for T. Basic NP is characterized by an encoder-decoder 
network structure that models a stochastic process. NP 
encoder consists of two paths: the deterministic path and the 
latent path. For the deterministic path, the encoder produces 
representations 𝑟  for each of the context pairs C  using a 
multi-layer perceptron ( MLP ) based on the formula: 
𝑟  =MLP (𝐶). The individual representations 𝑟  are combined 
into a unified representation 𝑟  using a permutation invariant 
operator (e.g., addition). On the other hand, the latent path of 
the NP encoder calculates a representation 𝑠   =MLP (𝐶) 
similar to the deterministic path. Unlike the deterministic path, 
however, the latent path uses stochastic layers to obtain a 
distribution of the latent variable Z, which is calculated 
using 𝑠 . Z is assumed to be a normal distribution, so Z is 
calculated on the basis of the formula: 𝑍  = N(μ(s), σ (s)) , 
where µ and σ are the mean and standard deviation, and 𝑠 is a 
single representation obtained by combining 𝑟 . Finally, by 
concatenating these aggregated 𝑟 , Z with the target inputs 𝑋 , 
the decoder MLP  produces the predictions 𝑦  based on the 
formula: 𝑦  =MLP  (𝑋 , rC, 𝑍). 

C. Attentive Neural Process 

Attention mechanisms in deep learning are designed to 
extract crucial information from data. This is especially 
important in computer vision and natural language processing 
[12]. At their core, attention mechanisms operate on the 
premise that outputs are influenced by particular input 
segments that hold relevance. By identifying these relevant 
parts, attention allows the model to focus on critical aspects 
and make more informed decisions. Recently, NP has been 
enhanced with attention mechanisms, resulting in ANP [7]. 
ANP incorporates attention mechanisms to address the 
underfitting issues observed in standard NP. Unlike NP, which 
produces an aggregated variable  𝑟  from the deterministic 
path, ANP utilizes an attention mechanism to summarize the 
information in the context set most relevant to the target sets. 

D. Wavelet Decomposition  

Wavelet transform is a method used to decompose signals 
using a system of wavelets, where each wavelet is a function 
that represents a shifted and scaled copy of a base function. 
Specifically, Empirical Wavelet Transform (EWT) is an 
adaptive wavelet transform technique [6]. The EWT has been 
recognized as a valuable tool for dealing with non-stationary 

 

Fig. 1. Proposed trend encoder for non-time-series datasets with meta 
learner to extrapolate the router performance. 
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signals [13]. The EWT enables the adjustment of the 
decomposition layers of the signal, which is represented as N. 
The output of the EWT undergoes filtration using both the 
scaling function and N different wavelet functions. 
Specifically, any signal f(t) is decomposed into different 
frequency bands based on the empirical scale function 𝜙 and 
the empirical wavelet function 𝜓 , and then the appropriate 
filter bank is selected. The formula for the reconstructed 
original signal is 𝑓(𝑡) = 𝑊 (0, 𝑡)𝜙 (𝑡) +
∑ 𝑊 (𝑛, 𝑡)𝜓 (𝑡) , where 𝑊 (0, 𝑡)  is the scaling 
coefficients and 𝑊 (𝑛, 𝑡) is the wavelet coefficients. At each 
stage of the process, the high-frequency component is derived 
from the wavelet coefficients, while the low-frequency 
component is obtained from the scaling coefficients.  

IV. PROPOSED NODE MODELING 

A. Concept of Network Digital Replica 

An NDR digitally evaluates the performance of a network 
node for unknown external network conditions without 
touching the actual network for network designing [3]. To 
achieve this, the NDR creates a network node model to 
digitally evaluate how well the current node configuration can 
ensure performance against future traffic increases. In this 
work, we primarily focus on studying router modeling for 
fixed networks, which is a crucial component of carrier 
networks as an initial investigation. 

B. Proposed Node Modeling Algorithm for Extrapolation 

Our research aims to improve the inference accuracy of 
router performance (specifically, router throughput) for 
extrapolation to support unknown traffic conditions. To 
address this issue, the basic idea is to capture the trend of 
changing router performance in extrapolation for non-time-
series datasets. Therefore, the proposed method extracts and 
learns the relationship between both router configurations and 
input traffic influencing router performance; we call this 
relationship "trend information". 

Fig.1 shows the architecture of the proposed method. The 
proposed method consists of two elements: (1) a trend encoder 
for non-time-series datasets and (2) ANP combined with trend 
information to extrapolate router performance. The proposed 
trend encoder extracts rough relationships between the 
targeted router performance and the other datasets. It employs 
feature importance [5] to prioritize data for extraction. The 

feature importance is a technique to estimate the relationship 
between input features and model outcomes. The proposed 
trend encoder assumes that the increasing trend of router 
performance in extrapolation correlates with a similar trend of 
the training dataset with high-ranked feature importance. 
Meanwhile, ANP, equipped with an attention mechanism, 
focuses on the trend information between router 
configurations and input traffic volume on router performance, 
enhancing the extrapolation of router performance. 

Fig. 2 shows the procedure of the proposed trend encoder 
with ANP. This procedure consists of four steps: 

Step 1: Acquisition of training datasets from routers 

The initial step involves obtaining training datasets for 
router performance from a router. To acquire the measured 
router throughput Pth, a traffic generator is employed. This 
traffic generator measures the router throughput while 
changing the input traffic conditions and the router 
configurations. 

Step 2: Extracting the trend information from non-time-
series datasets for router performance via trend encoder 

To acquire the trend of the relationship between training 
datasets and router performance, the proposed method deploys 
a trend encoder, which consists of dataset reordering, feature 
importance extraction, and a wavelet filter. First, the proposed 
method reorders the datasets with “router throughput” as the 
key in ascending order. The proposed algorithm calculates the 
feature importance [5] to extract the main trends contributing 
to router throughput. For example, the virtual router 
throughput tends to increase as the router configuration, such 
as the number of allocated virtual CPUs and memory 
allocation size, increases. Consequently, the feature 
importance of these two factors attains a higher value. 
Considering these data trends with high-ranked feature 
importance, the proposed method extrapolates the router 
throughput. We apply the EWT [6] to capture the trend 
information for the data selected by the feature importance. 
The proposed algorithm uses the scaling coefficients extracted 
by the EWT, which is a low-frequency feature that reflects the 
overall trend of the data. Here, we define 𝑆 (𝑋) as the lowest 
frequency decomposed from data X by the EWT. The 
extracted trend information (TR) is calculated by multiplying 
this extracted low-frequency information by each feature 
importance to consider the contribution to router throughput, 
and each extracted TR is added in descending order of ranked 
feature importance as follows;  

TR  = ∑ 𝑆 (𝑋 ) ∙ FI , 

where i is the position index of datasets, FI  is j-th ranked 
feature importance normalized such that they sum up to 1, 𝑋  
is datasets X with j-th ranked FI, and L is the number of 
datasets considering the trends. L is a hyperparameter.  

Step 3: Training the model with the trend information 
based on ANP 

To incorporate the router throughput with the trend 
information TR, we add the extracted TR to the attention layer 
of ANP. The attention mechanism can explicitly express the 
distance between context and target points via attention 
weights. The attention mechanism uses three vectors: Query 
(𝑄), Key (𝐾), and Value (𝑉). 𝑄 and 𝐾 are used to compute a 
score that indicates the importance of a given 𝑉. The higher 
the score, the more important 𝑉 is considered to be. 𝑉 is then 

 
Fig. 2. Procedure of proposed trend encoder with ANP. 
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used to construct the output of the attention mechanism. The 
representations through the attention layer in the proposed 
algorithm, denoted as 𝑟 , can be defined like [12] as follows: 

 
𝑟 = Attention(𝑄, 𝐾, 𝑉) =  softmax 𝑉,

𝑄 = [𝑄 , TR ] , 𝐾 = [𝐾 , TR ] , 𝑉 = 𝑟 ,
            

where [·,·] represents the concatenation of two vectors, 𝑑  is 
the dimension of the input features, and 𝑟  is the encoded 
representation of 𝑋 . 𝑄  and 𝐾  are vectors of 𝑋  and 𝑋 , 
respectively. Note that this trend information is not exclusive 
to ANP and can also be integrated with NP. For NP, the 
representations 𝑟  produced by the encoder are added as 
follows: 𝑟  ← [ 𝑟  , TR ] . By adding TR  to each feature, the 
model can learn rough relationships between the targeted 
router throughput and the other datasets in extrapolation. 

Step 4: Inference for the accuracy of the router 
performance with ANP 

The router throughput is inferred with the trend 
information for the datasets, including router configurations R 
and input traffic conditions T using ANP. The accuracy of the 
router throughput model was evaluated using the coefficient 
of determination (𝑅 ). 𝑅 represents a statistical measure used 
to examine the correlation between the actual observed values 
and the predicted output by a model. 𝑅  is described in 𝑅  =1-
∑(𝑦 − 𝑦) ∑(𝑦 − 𝑦)⁄ , where 𝑦  and 𝑦  are the predicted 
value and the average measured value of the router throughput 
𝑦 , respectively. When 𝑅  = 1, it signifies that the model 
provides an ideal fit to the datasets, achieving a perfect match 
between the predicted and actual values. If the predicted 
values deviate too much from the measured values, then 𝑅  
could be negative. 

V. EVALUATION & RESULTS 

We evaluated the accuracy of the inferred router 
throughput by applying the proposed method. In this study, we 
evaluated how router performance could be extrapolated, 
assuming an increase in traffic volume. Fig. 3 presents the 
experimental configurations. We applied the proposed trend 
encoder, combined with either ANP or NP, to the measured 
results of the performance on four kinds of virtual routers, 

including Cisco CSR 1000V [14] and Juniper vMX [15] using 
a x86-based server: two Xeon E5-2697 18-cores 2.30 GHz 
CPUs and 192 GB RAM with 8 SFP+ ports. First, we 
measured the performance of these routers in the packet 
forwarding process in a laboratory environment to acquire 
training datasets under the conditions shown in Table I. These 
conditions were established to assess the impact of the 
relationship between router configurations and traffic 
conditions on router throughput, including conditions of 
overloaded traffic. The Keysight Ixia platform with 8 SFP+ 
ports generated the traffic in the experiments. In total, 930 
samples were acquired from these routers. In this scenario, we 
measured Pth (bits per second) for each T and R. The training 
datasets consist of R (number of physical ports: Nport, number 
of flow entries: Nentries, number of allocated virtual CPU cores: 
NCPUs, and size of memory allocation: SMem) and T (Ethernet 
frame size: SEth, number of traffic flows: NFlow, and average 
rate of input traffic: RInput). To evaluate the accuracy of the 
extrapolation, we define the splitting ratio ( 𝛾 ∈ [0,1] ) to 
categorize our datasets. The smallest 100 × 𝛾 % of datasets, 
sorted by "router throughput" in ascending order, are used for 
training. The remaining 100 × (1 − 𝛾) % of the datasets are 
reserved for testing in the extrapolation. This indicates that a 
smaller 𝛾 value results in a narrower training domain, making 
extrapolation predictions more challenging due to limited 
training datasets. On the other hand, for interpolation, 
100×γ % of datasets are used for training with random 
sampling, while the remaining is used for testing. We utilized 
the Python package 'ewtpy' [16] to implement the EWT. We 
chose a length of 10 for the EWT filter (: N). The detailed 
implementation of the EWT used in this paper is given in [13]. 
We carried out our work using PyTorch [17], which is widely 
used as an open-source deep-learning library. Both the 
encoder and decoder of NP and ANP are constructed with 10 
hidden layers, and each layer consists of 128 hidden units. The 
dimensionality of Z and the context points C were set to 128 
and 50, respectively. 𝑄  and 𝐾  are each generated by 2 
layers of multi-layer perceptron. The Adam optimizer [18] is 
used with a learning rate of 1e-4. To build the model, 10,000 
epochs were run. Then, we evaluated 𝑅  for interpolation 
(𝑅 )and that for extrapolation (𝑅 ) to clarify how well the 
proposed model inferred Pth. 

Fig. 4 shows the feature importance with the top 5 features 
for Pth. In this evaluation condition, Nport and NCPUs were the 
major contributions to the Pth model. As the Nport increases, the 
amount of traffic to transfer the packets also increases, and as 
a result, the chances of an increase in the Pth itself also increase. 
In addition, the NCPUs were the main factor for the performance 

TABLE I.  EXPERIMENTAL CONDITIONS 

Router  
configur
ations 
(R) 

Number of physical ports (Nport) 2 to 8 
Number of flow entries (Nentries) 0.4 k to 770 k 
Number of allocated virtual CPU cores (NCPUs) 4 to 36 
Size of memory allocation (SMem) (GB)  12 to 64 

Input 
traffic 
(T)  

Ethernet frame size (SEth) (Bytes) 64 to 1518 
Number of traffic flows (NFlow) 0.4 k to 770 k  
Input traffic rate per flow (RInput) (bps) 64 k to 80 M 

 

 
Fig. 3 Experimental configurations. 
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to store and process the packets in the virtual routers. This 
indicates a potential for enhanced accuracy in extrapolating 
Pth by extracting the 𝑇𝑅 of Nport and NCPUs, and incorporating 
it into the datasets.  

Fig.5 shows the results of TR, which represent the low-
frequency signals extracted by EWT from the datasets with 
the higher ranked feature importance for Pth: (a) Nport (L=1) 
and (b) Nport and NCPUs (L=2). Since Pth are sorted in ascending 
order, TR exhibits an upward trend. Fig. 5(b) shows that the 
increase in Pth is proportional to Nport and NCPUs. This result 
suggests that the proposed method has successfully extracted 
the trend for the relationship between router configurations 
and Pth. By using the superposition of  TR  in the feature 
importance order for the targeted router throughput, the 
proposed method captures the trend information related to the 
router throughput. 

We then evaluated the robustness of the proposed method 
for extrapolating Pth by changing the splitting ratio 𝛾 using the 
TR in Fig.5(b). Fig. 6 shows the results of 𝑅  and 𝑅  for the 
inferred Pth against 𝛾  with/without applying the proposed 
method to ANP and NP. The proposed method improved 𝑅  
compared to the conventional method, including vanilla ANP 
and NP, even for smaller values of 𝛾. In particular, 𝑅  with 
the proposed method using ANP improved and remained 
close to 0.5, while that with the conventional method fell to 
negative values for γ between 0.5 and 0.7. 𝑅  with the 
proposed method using NP also improved, although not as 
significantly as with ANP, reaching about 0.15. This indicates 
that the proposed method has the capability to extrapolate the 
router throughput until the training and test data ratio is about 
half (γ = 0.5). Furthermore, although it is not the main focus 
of this study, for 𝑅 , which demonstrates the performance of 
interpolation, the proposed methods achieved 0.95 or higher 
(with an average improvement of 3%) for the measured range 
of γ. These improvements are attributed to the successful 
extraction of TR using the proposed trend encoder for non-
time series datasets and the attention mechanism's focus on 
these trends. As a result, we found that the proposed method 
provides superior accuracy in extrapolating router throughput 
compared to the conventional ANP or NP for the given 
scenario. 

VI. CONCLUSION 

We proposed a trend encoder for non-time-series datasets 
with an Attentive Neural Process (ANP) to improve the 
accuracy of extrapolating router performance. The proposed 
method improved the coefficient of determination for 
extrapolating router throughput from negative values to about 
0.5 compared to the vanilla ANP until the training and test 
data ratio is about half on the given dataset.  
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Fig. 6. Evaluation results of 𝑅 and 𝑅  for Pth. 

 
Fig. 4. Feature importance with the top 5 features. 

 

 
Fig. 5. TR for (a) Nport and (b) Nport and NCPUs. 
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