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Abstract—Machine learning models are often built based on
the notion that the labeled training data follows the same underly-
ing distribution of the testing dataset. Often this assumption does
not hold and the trained model’s performance becomes limited
during the deployment in the target environment. To address this
problem, we present a transfer learning-based targeted transfer
learning (TTL) approach that employs the optimal transport
distance (OTD) metric to facilitate knowledge transfer between
the source and target domains. TTL method uses a target-side
adaptation methodology by intentionally modifying the source
domain data using a small number of target domain samples
to improve transfer performance between source and target
datasets. Experimental results on the benchmark datasets show
the effectiveness of the proposed approach without re-training
the source model on the target environment, which contributes
to the selection of an appropriate source model and improves the
performance of the target model.

Index Terms—Transfer Learning, Targeted Transfer Learning,
Domain Adaptation, and Optimal Transport.

I. INTRODUCTION

Transfer learning (TL) is a technique commonly used in
artificial intelligence and machine learning to improve the
performance of related tasks by transferring knowledge from
one task to another. The basic idea is that rather than training
a model from scratch, previously learned features from one
domain can be applied with minor modifications to another
related problem domain. TL is useful when data is limited
and collecting new data is costly and difficult [1]. Transfer
learning is a popular and rapidly expanding area of machine
learning. Every day, new techniques and advancements such
as domain adaptation, multi-task learning [1], and model fine-
tuning [2] are explored and developed.

However, while transfer learning has many benefits, there
are also several limitations that should be considered when
applying this technique. Transfer learning may not be the
optimal solution when target task is more complex or signif-
icantly dissimilar from the source task. Therefore, selecting
the appropriate pre-trained model and adapting it to the
target domain requires careful consideration and expertise.
Otherwise, TL may introduce bias and overfit into the model
[3]. To overcome these challenges, we must carefully select
the source dataset and adapt the pre-trained model to minimize
the disparity between the source and target. There are several
approaches available in transfer learning to resolve the differ-
ence between two domains, such as domain adaptation [1],

data augmentation [4], curriculum learning [5], data selection,
and data shift [6].

The data shift technique modifies the source domain data
distribution to better match the target domain data distribution
to resolve the difference between the source and target do-
mains. Data transfer from the target to the source is commonly
known as target-side adaptation or target-oriented transfer
learning. Here, the source domain data is modified to better
correspond with the target domain data. Target-side adaptation
focuses on modifying the source domain data using informa-
tion from the target domain, as opposed to modifying the target
domain data directly. The alternative data shift technique is
a source-side adaptation, in which the target domain data is
modified to more closely match the source domain data [6].
The primary objective of target-side adaptation is to enhance
the performance of the model on the target task by providing
more labeled data that is specific to the target domain. This
technique is particularly useful when the pre-trained model
performs poorly on the target task due to a lack of information
about the target environment and a significant domain gap
between the source and target [6]. However, it is essential
that the additional target domain data accurately represent the
target data distribution; otherwise, non-representative data can
result in poor performance on the target task [3]. In 2020,
Romero et al. [7] used a target-side adaptation technique for
a small medical image dataset, which resulted in a significant
performance boost. Ahamed et al. [8] presented an automated
targeted transfer learning framework on the satellite image
dataset. Authors of another paper [9] proposed a deep targeted
transfer learning method for different conditional distribution
datasets and demonstrated how cross-domain data can be
aligned in target enrolment.

In this paper, we present a target-side adaptation tech-
nique, named targeted transfer learning (TTL), which transfers
knowledge between source and target to get the desired
performance while addressing the negative transfer challenge.
The primary objective is to identify a set difference set that
represents the mismatched features between the source and
target datasets. The set difference set is constructed using an
optimal transport approach, which assists in addressing the
difference between these domains. The key contributions of
our work are as follows:

• We evaluate our proposed TTL approach on five bench-
mark datasets.
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• We utilize the optimal transport distance (OTD) metric
between datasets and demonstrate how OTD can help to
identify the appropriate source set for a given target set.

• Then, we measure the label-to-label OT distances be-
tween datasets and enhance the knowledge transferability
between the source and target.

• The results demonstrate that intentionally modifying a
small number of samples in the source set can improve
the model performance in the targeted environment.

II. METHODOLOGY

A. Image Dataset

We consider five publically available image datasets:
MNIST [10], EMNIST [11], FashionMNIST [12], KMNIST
[13], and USPS [14] to demonstrate our proposed approach.
The table I contains information about those datasets. The
datasets were selected based on three main challenges: dif-
ferent sample sizes, dimensionality, and labels (e.g., MNIST
has digits images and FashionMNIST has images of clothing).
The last challenge, which relates to labeled datasets, is the
most difficult. The first two challenges are similar to unlabeled
datasets, which are simple to manage. For example, what if
we are comparing MNIST (ten categories) to ImageNet (one
thousand categories) and the label ”3” in MNIST to ”bag”
in FashionMNIST? The proposed solution is to represent each
label as a collection of points with that label and, for invariance
datasets, treat these collections as probability distributions. In
this manner, different types of datasets can be compared by
examining their associated collections, which are viewed as
probability distributions in the feature space. Therefore, the
method is capable of calculating the distance between two
distinct probability distributions. Moreover, these computa-
tions must be performed in a computationally feasible manner.
This is where optimal transport emerges as a fundamental
component of our methodology.

TABLE I
IMAGE DATASETS

Dataset Pixel #Images Class Label
MNIST 28*28 60k 10 Digits

EMNIST 28*28 60k 10 Digits
FashionMNIST 28*28 60k 10 Fashion products

KMNIST 28*28 60k 10 Japanese literature
USPS 16*16 7.29k 10 Digits

B. Targeted Transfer Learning (TTL)

In this paper, the source and target task is treated as an
image classification problem, which is to identify images with
the following label. Since both the source and target datasets
generally share similar traits, conventional transfer learning
can be utilized to classify images in the target environment.
The purpose of the transfer learning process is to use the
source model to assist the target model in performing the target
task. Let us consider that an operator has a targeted metric in a
given environment that needs to be achieved using traditional
transfer learning. Due to domain-specific constraints, in many
instances, direct implementation of transfer learning may not

be effective. The most common solution is fine-tuning, in
which the pre-trained model is re-trained using a target dataset,
which is expensive, time-consuming, and difficult if the target
data is limited. In the paper [8], we present a transfer learning-
based ’targeted transfer learning (TTL)’ process to enhance
the performance of a source model without re-training in the
target environment shown in Figure 1. Consider datasets as
a set that consists of source set S and target set T . Using
the optimal transport distance metric [II-C], we would like
to create a set difference image set y. Then, set y is added
to the source to create a source set and subtracted from the
target set. On the newly created sets, we now evaluate the
conventional transfer learning algorithm. The primary objec-
tive is to identify mismatched images between the source and
target and generate a ’set difference’ set. These set difference
images mostly contain the contexts that are responsible for
performance drop in the transfer learning process. In our prior
work [8], we utilized combinatorial coverage methodology, a
t-way coverage metric, on metadata to identify these images.
In this paper, we present optimal transport (OT) as a model-
agnostic data-driven method for detecting unlearned features
between source and target.

C. Optimal Transport (OT)

Optimal transport is a principled approach to measure the
distance between two distinct distributions. The basic idea
behind optimal transport is to establish a mapping between
each point in the source distribution and a corresponding point
in the target distribution [15]. To achieve the most efficient
and effective transportation, the goal is to minimize the total
distance between all coupled points. However, for compar-
ing two probability distributions using OT, it is essential to
establish a distance metric between the points sampled from
each distribution. For example, consider we are comparing
two datasets in which each point ’z’ consists of a feature
vector (an image) and a label. Let’s consider that we need
to compute the distance between the pair (x, ”bag”), where
x is an image of ”bag” from FashionMNIST, and the pair
(x′, ”three”), where x′ is an image of ”3” from the MNIST
dataset. Using only conventional methods to calculate the
distances between images is relatively more straightforward.
Nevertheless, measuring distance metrics for their labels is
more difficult.

In this experiment, we are considering supervised learning.
Consider data D as a set of feature and label pairs (x, y)ϵX×
Y , where X represents the feature space and Y is the label set.
Assume the feature spaces of two datasets Da and Db have the
same dimensionality, but their respective label sets Ya and Yb

are distinct. As mentioned previously, measuring the distance
between datasets becomes more complicated when the labels
are considered. Therefore, the labels Ya and Yb are represented
as conditional probability distributions Py = P (X|Y = y).
The objective is to define the distance metric d(Da, Db)
without using any external parameters. However, between the
pairs (x, y), (x′, y′), the distance metric could be computed
using optimal transport [16] by defining a metric on Z as
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Fig. 1. Targeted transfer learning overview.

dZ(z, z
′) = (dX(x, x′)p + dy(y, y

′)p)1/p, for p ≥ 1. Now, we
can compute the distance between distributions over feature-
label pairs using dZ as the ground cost. Therefore, optimal
transport can be also used to determine the distance between
datasets [16].

OT (Da, Db) = minπϵ
∏

(Pa,Pb)

∫
Z×Z

d(z, z′)dπ(z, z′) (1)

The primary objective of this distance metric is to be
applicable even if the user has different sets of labels with
no correspondence (e.g., letters to numbers). Because in this
case each label is treated as a geometric feature, like a vector,
which also provides a computational advantage.

III. RESULTS AND DISCUSSION

The initial step in implementing targeted transfer learning
(TTL) is to evaluate the optimal transport (OT) distance
metric to create an appropriate source dataset for transfer
learning in a targeted environment. In this experiment, we are
considering five publicly available datasets, namely MNIST,
EMNIST, FashionMNIST, KMNIST, and USPS. The details
of these datasets are presented in II-A. Then, we analyzed
the performance metric between targeted selection and random
selection to evaluate the TTL procedure. The primary objective
is to achieve better performance compared to the baseline score
using conventional transfer learning with minimal targeted
images.

A. Transfer Learning [Dataset Selection]

In this experiment, the optimal transport distance metric is
utilized to identify the appropriate source dataset for transfer
learning. As previously stated, we are evaluating five different
publicly available datasets in this paper. First, the pairwise
optimal transport distance between datasets is computed. Fig-
ure 2 shows the OT distance with labels between the five
datasets. The table is coloured according to their distances.
Here, the orange colour indicates they are far apart and the
green colour indicates they are close together. For example,
the FashionMNIST dataset is close to the USPS dataset (3.85)
in terms of distance but far from the KMNIST dataset (4.95).

Consider, for instance, that we want to compute the distance
between FashionMNIST and all other datasets. FashionMNIST
is already known to be close to the USPS dataset, whereas

Fig. 2. Pairwise OT distance (×10) between datasets.

other datasets are far away. In theory, we can predict transfer
learning performance if FashionMNIST is used as the source
dataset and all other datasets are used as the target datasets.
To evaluate, we first train a model on the source dataset
(FashionMNIST) and then transfer it to the target datasets
(MNIST, EMNIST, KMNIST, and USPS) to fulfil the target
task. We observe that the pre-trained model performs better on
the USPS dataset than the other dataset. We got approximately
64% accuracy in the USPS dataset by directly applying the
pre-trained model (source model) to the target. When the
model is tested on the KMNIST dataset, the accuracy drops
to around 40%. Therefore, when multiple source datasets are
available, the OT distance metric could provide the best source
model.

B. Targeted Transfer Learning

Targeted transfer learning (TTL) will be applied when a
user does not get the required performance from the zero-
shot transfer learning implementation. In this paper, optimal
transport (OT) is used to identify set difference images for
inclusion in the augmented training set. The original images
from the dataset are used to create source and target sets in
this experiment. We conducted two experiments to evaluate the
effectiveness of optimal transport to identify the set difference
images for the TTL process. The MNIST dataset has been
chosen as the source set for both experiments, while Fash-
ionMNIST and KMNIST serve as the target sets. To properly
demonstrate our methodology, we use thirty thousand (30k)
images from both datasets as the source and target and conduct
each experiment three times. As precision, recall, and F1 score
trend with accuracy, we focus our analysis on accuracy.

1) MNIST vs FashionMNIST: As described in II-C, we
compute the label-to-label Optimal Transport (OT) distances
between the MNIST and FashionMNIST datasets. Each label
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in both datasets is used to compute the OT cost and determine
the distance between them. Figure 3 shows the label-to-label
distance between datasets. The bold-collared boxes represent
a greater distance between labels, whereas the light-collared
boxes represent a smaller distance. For example, the Fash-
ionMNIST label four (’4’) is approximately [43.3] distance
apart from the MNIST label one (’1’). However, we observed
that not all labels contribute equally to the OT distance. By
utilizing the mismatched labels between the two sets, our aim
is to enhance the knowledge transfer between datasets.

Fig. 3. Label-to-label distances between MNIST vs FashionMNIST.

From Figure 3, the labels ’8’, ’4’, and ’2’ of FashionMNIST
had the highest mean, indicating that they are farther away
from the corresponding MNIST labels compared to other
labels in FashionMNIST. We use these label images to form
the set difference set. Conversely, labels ’5’, ’7’, and ’1’ of
FashionMNIST are found to be very close to the source labels.
These label images are utilized to validate the TTL process.

In this experiment, we conducted three different cases to
evaluate the process. First, the source-only [S] case, in which
a model is trained using only the source dataset (MNIST) and
then tested on the target set (FashionMNIST). In all cases, the
number of source and target images will be the same (30K). In
the second case [S+s(T )], we use 27K images from the source
set and 3K images from the set difference set to create a source
set of identical size. These 3K images are chosen randomly
from the three highest-mean sets (set difference set). Lastly,
we generate another source set [S + r(T )] similarly using 3K
random images from the three lowest-mean sets and referred
to as the random selection set. As mentioned previously, for
each set of counting methods, we select the images via random
sampling and train a model on the augmented set.

Figure 4 illustrates the performance comparison of MNIST
and FashionMNIST targeted transfer learning process. In the
context of transfer learning, three scenarios are examined.
First, we directly apply the pre-trained model to the target
dataset, also known as ”zero-shot transfer learning.” Second,
we adjust the output layer in a way that ensures its compatibil-

Fig. 4. Performance comparison of targeted transfer learning MNIST →
FashionMNIST.

ity with the target dataset. Finally, for a more comprehensive
study, the last two layers are adapted, which includes both the
output layer and the preceding dense layer, in order to better
align the pre-trained model with the target dataset. For the
result analysis, we consider the second scenario.

When we consider the source-only [S] set, the pre-trained
model gave around 71.63% accuracy on the target dataset
which will serve as the baseline accuracy. In the second case,
where we added selected targeted data (set difference set) to
the source [S+ s(T )] set, we achieved approximately 78.34%
accuracy, which is approximately 7% higher than the baseline
performance. Here, in all cases the number of samples is
identical. Finally, we have added like the previous case the
same number of samples into the source [S + r(T )] set but
here we select the samples randomly from the lowest-mean set
(random selection set) and we obtain around 74.61% accuracy.
In both cases [two and three], the source set contains the target
dataset images; however, the inclusion sets are distinct, which
has an effect on the performance of both cases. This suggests
that targeted set selection using optimal transport distance
metric over the source set increases the knowledge transfer
between datasets.

2) MNIST vs KMNIST: Similar to the preceding example,
we compute the label-to-label Optimal Transport (OT) distance
metric between the MNIST and KMNIST datasets [Figure 5].
We observed that labels ”3”, ”0”, and ”4” of KMNIST have
the highest mean and the labels ”2”, ”5”, and ”1” have the
lowest mean values. The highest mean of the OT distance
labels will contribute to creating the set difference set, while
the lowest means will be used to validate the TTL process
(random selection set).

Figure 6 illustrates the findings. In the source-only [S]
case, we get almost 62.21% accuracy, which will serve as our
baseline score. For the second case, the accuracy is increased
to 71.46% where additional targeted data is added to the
source set. Finally, the repetition of case two using the random
selection set resulted in a decrease in accuracy. Even though
the target data has been introduced into the source set in both
cases, careful selection could improve the knowledge transfer
in transfer learning.

From Figure 2, the pairwise OT distance between datasets
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Fig. 5. Label-to-label distances between MNIST vs KMNIST.

Fig. 6. Performance comparison of targeted transfer learning MNIST →
KMNIST.

indicates that KMNIST is closer to MNIST than the Fash-
ionMNIST dataset. We can also verify these findings based
on these results. In Figures 3 and 5, the standard deviation
(SD) is also calculated to measure variations in the distance
mean values. We observed that FashionMNIST has a higher
SD than KMNIST, indicating that FashionMNIST label-to-
label distances are more spread and variable. As a result, the
TTL process performs better where higher SD is present in
the datasets, which also assists us in identifying outliers or
anomalies.

IV. CONCLUSION AND FUTURE WORK

In this paper, we present a target-side adaptation transfer
learning framework and approach called TTL for improv-
ing the target model’s performance in a given environment.
The performance evaluation shows that the transfer learning
approach can be enhanced with a minimal data shift. The
performance difference between targeted selection and random
selection validates our hypothesis. In addition, we demonstrate
that the optimal transport distance (OTD) metric is adapt-

able and scalable enough to be used in conventional trans-
fer learning circumstances. In future research, the standard
deviation of the label-to-label distance will play a crucial
role in constructing the set difference set. However, more
research work is required to establish OTD as a model-agnostic
approach across multiple domains. Our long-term goal is to
implement an automated process for obtaining source-target
correlation information prior to the transfer learning process.
Before target deployment, the operator can resolve and control
the transferability between domains.
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