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Abstract—In the era of increasing video streaming, optimizing
content delivery and finding a good trade-off with minimal effort
between quality and size is a critical task. However, varying
sensitivities to bandwidth loss across different video content
types demand a robust and customized approach to encoding
parameters within longer videos containing various scenes. This
paper presents a promising novel approach to video encoding,
leveraging machine learning to enhance content delivery effi-
ciency, and offers insights into the model’s decision rationale.
Traditional methods of estimating quality loss through multiple
test encodes and interpolation are computationally intensive.
To address this challenge, we introduce Deep Explainable
Content-Aware Per-Scene Video Encoding,” a machine learning-
based approach to video encoding quality prediction given the
video scene and encoding parameters. Moreover, we integrate
explainable artificial intelligence to enhance our understanding
of the model’s decision-making process. We have encoded various
video scenes using traditional methods and trained our model to
learn the relationship between quality loss and specific video
contents. We aimed to have our model consider how a specific
video scene changes over time; thus, we employed long short-
term memory (LSTM) neural networks for predicting quality
loss. Our preliminary results demonstrate good accuracy and
efficiency, as well as the content awareness of the model.

Index Terms—Video Encoding, Neural Networks, Explainable
Artificial Intelligence, Deep Learning, Transfer Learning, Green
Streaming

I. INTRODUCTION

The internet is ruled by videos, which make up over 60%
of the data flowing through our online world [1]. Moreover,
the video quality and careful selection of parameters like
the bitrate and resolution for efficient video delivery are
very important. Achieving optimal video quality is a complex
endeavor that demands meticulous attention and substantial
resources, including time and energy, particularly when prepar-
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ing videos for distribution with varying bitrates and resolutions
while meeting specific quality standards that can be measured,
for example, using VMAF (Video Multi-Method Assessment
Fusion), which will be discussed later. One widely adopted
solution in the realm of video encoding is the concept of per-
title encoding. This approach involves tailoring the encoding
settings for each video individually. When we compress raw
video content, we assign a specific bitrate to maintain the
desired video quality. The choice of this bitrate is influenced
by the video’s visual content. In simpler terms, the optimal
video encoding is to deliver the highest quality video at
the lowest possible bitrate. Factors such as motion, color
range, and the distribution of visual elements all play a major
role. For instance, a video rich in high-frequency details,
with dynamic movements and a constantly shifting camera
perspective, is more vulnerable to bitrate reduction than a low
frequency, slow-paced, and smoothly transitioning video.
Per-title encoding involves determining the most efficient
encoding bitrate for each individual video if possible and
encoding the entire video with this bitrate. This chosen bitrate
then becomes an important feature to construct an encoding
ladder — a set of different bitrate versions of the same video
[3]. Encoding ladders are commonly used by video streaming
providers to enable adaptive bitrate streaming, ensuring that
viewers with varying internet speeds and device capabilities
can access content seamlessly. However, a critical challenge
emerges when considering this approach: videos are not
monolithic entities but rather a collection of distinct scenes,
each with its own unique visual characteristics. This inherent
diversity makes encoding the entire video with a uniform set
of parameters less efficient. This is where the concept of per-
scene encoding comes into play. Instead of defining a single
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encoding profile for an entire video, per-scene encoding takes
into account the characteristics of each scene. By doing so, it
allows for a more precise evaluation of the visual complexity
within each scene and facilitates the application of fitting
encoding settings. Yet, this approach comes with its own set of
challenges, notably its computational intensity. The prospect
of test-encoding every scene in a video to identify the optimal
settings is a resource-intensive endeavor. This is precisely
where the integration of machine learning into the video
encoding process can prove invaluable [4]. Machine learning
algorithms can be trained to predict encoding parameters based
on the visual characteristics of a scene, offering the potential
to replace traditional per-title encoding with a more efficient
and adaptive system.

Energy efficiency and sustainability are becoming increas-
ingly important in the production, distribution, and playback
of digital media along the entire value chain. More technically
efficient video streaming forms the basis for a more energy-
efficient and thus more sustainable streaming value chain. Our
research focuses on examining major components along the
streaming supply chain in terms of their energy efficiency
potential, including proof-of-concept implementations of Al-
driven sustainable per-scene encoding, green content steering
and green streaming approaches for video players utilizing
adaptive bitrate formats like HLS and MPEG DASH. There-
fore, we see efficient video encoding as one of the key players.

II. BACKGROUND

Many big companies are working on reducing their internet
traffic while still maintaining optimal viewing experience, like
Netflix, Facebook, or Google [7]-[9]. The details of their
respective approaches differ, but they all take advantage of
machine learning to implement their solutions. Hence, this
chapter provides a short introduction into the vital components
that are often used.

A. VMAF - Video Multi-Method Assessment Fusion

In order to guide the video encoding decisions and assess
the quality of these encodings, it is necessary to have a reliable
metric of perceived video quality. VMAF is the state-of-the-
art video quality metric, developed by Netflix [2], aimed
at reflecting the viewer’s perception of video quality when
streaming content. It is a comparative measure, meaning that it
expects two different videos as inputs in order to evaluate their
quality against each other. Therefore, VMAF is not an absolute
value, rating the quality of videos from poor to excellent, but
rather a relative value indicating the quality of one video when
directly compared to another video. The goal of VMAF is to
bypass the shortcomings of previous video quality measures,
like Peak-signal-to-noise-ratio (PSNR) or Structural Similarity
Index (SSIM), which are often used during video encoding,
even though they fail to consistently reflect actual human
perception [2]. To achieve this, VMAF itself utilizes machine
learning and has been trained on a large set of videos,
including various resolutions, bitrates, and content genres. The
quality of these videos was then manually labeled using actual

human viewers. Hence, VMAF is able to learn the actual
human perception of video quality. On top of that, calculating
VMAF is fast and not computationally expensive compared
to other traditional video metrics. Because VMAF is open-
source, it has been widely adopted since its publication and
has been integrated into many third-party video analysis tools,
making it very accessible. Therefore, VMAF has proven to be
the ideal metric for improving the efficiency of video encoding
while still ensuring high perceived video quality.

B. Convolutional and Recurrent Neural Networks

Convolutional and recurrent neural networks (CNNs and
RNNG5) can be employed for various tasks ranging from object
recognition to feature extraction and time series analysis. Since
videos are just images (frames) over time, combining CNNs
with RNNs is perfectly suited for analyzing video content.

ResNet - ResNet [6] is a powerful and highly influential
convolutional neural network architecture for image recogni-
tion. It is designed to address the vanishing/exploding gra-
dient problem experienced in deep neural networks. ResNet
introduced residual blocks (or skip connections) to allow in-
formation to flow more directly through the network. Residual
connections allow data to skip multiple layers (see Figure 1),
enabling the training of deeper networks without experienc-
ing the degradation problems. As a result, ResNet is very
capable at image recognition and has become a fundamental
architecture in the field of deep learning. ResNet comes in
different flavors, e.g., ResNet-50 and ResNet-101, representing
the depth of the respective CNN.

X
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weight layer
F(x) Jrelu x
weight layer identity

Fig. 1. A residual building block (taken from [6])

LSTM - Long Short-Term Memory networks are a spe-
cialized type of recurrent neural network (RNN) designed to
address the challenges of modeling sequential data. Introduced
in 1997 by Hochreiter and Schmidhuber [11], LSTMs are
equipped with memory cells and gating mechanisms that
enable them to capture and retain long-ranging dependencies
in sequences. They excel at tasks requiring the understanding
of context and temporal relationships, such as natural language
processing and time-series analysis. LSTMs are renowned for
mitigating the vanishing/exploding gradient problem that is
often experienced when training RNNs [18], allowing for
effective training on extended sequences.
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C. Explainable Artificial Intelligence

Since neural networks can become very deep and therefore
act more like black boxes, as in the case of ResNets, it is
necessary to be able to explain their decision-making, which is
where explainable Artificial Intelligence (XAI) methods come
very handy. Many approaches have been proposed [14] and
one of the most straightforward is Grad-CAM [13], a technique
to generate “visual explanations” for the decisions of CNN-
based models, such as ResNets. Grad-CAM uses the gradients
flowing into the final convolutional layer to produce a coarse
localization map that highlights the most influential regions in
the image for the decision-making of the CNN (see Figure 5).

III. RELATED WORK
A. Green Streaming

Video streaming is a widely utilized online service that
consumes a significant amount of energy, contributing to CO2
emissions and environmental concerns. In our prior research
[5], we delved into the feasibility and advantages of eco-
friendly streaming technologies. These technologies are de-
signed to enhance the energy efficiency and reduce the carbon
footprint of streaming content throughout the entire supply
chain. Our investigation focused on three pivotal technologies:
context-aware encoding, environmentally-friendly media play-
ers, and energy-conscious content management. We carried out
initial experiments and simulations to assess the effectiveness
and influence of these technologies. Additionally, we examined
their economic feasibility and potential to generate fresh
business prospects within the streaming industry. Our approach
was founded on a comprehensive assessment of eco-friendly
streaming technologies, offering support to global endeavors
in climate action and environmental preservation.

B. Deep Encode

Deep Encode is a versatile machine learning-driven video
encoding solution that optimizes bitrate savings while main-
taining optimal video quality [23], irrespective of the video
codec in use, including H.264, H.265, VP9, and AV1. The
previous systems developed by us operated by extracting
crucial video features like resolution, frame rate, bitrate, and
scene complexity. Subsequently, a machine learning model,
trained on a diverse dataset, predicts the best encoding ladder
for each video title, determining bitrate and VMAF pairs.
Once the model generates predictions, Deep Encode utilizes a
standard video encoder to process the video content, producing
high-quality videos at significantly reduced bitrates. Notable
advantages of Deep Encode encompass consistent bitrate sav-
ings of 20-30%, especially beneficial in low-bitrate scenarios,
a remarkable reduction in encoding time of up to 50%,
and operational efficiency enhancements through automation.
Deep Encode includes a feature extractor, a machine learning
pipeline to model training and performance improvement, a
video encoder, an API for system integration, and a monitoring
system. This comprehensive system elevates video encoding
efficiency and quality while offering flexibility across codecs.

IV. PROPOSED APPROACH

In this chapter, we present a neural network model archi-
tecture that is unique in its characteristics because it combines
convolutional and recurrent neural networks with explainable
Al as well as utilizing transfer learning [10]. Our aim is
to demonstrate the feasibility of efficiently encoding a video
composed of multiple scenes, taking the video content into
account, while closely observing model decision-making for
explanations and also considering the time dimension in video
scenes. As described in Figure 2 below, our algorithm, in its
training phase, takes a video as an input and splits it into
scenes; then we generate multiple encodes from the scenes
and calculate corresponding VMAF values, then we use the
information to train the model, which will be discussed in
detail below. To encode a video, we again split this video
into scenes, and then we predict the encoding quality for the
bitrate value. After encoding every scene, we stitch the scenes
together as one video.

Training the Model
I

Split Video in Scenes \ Generate Encodes | [ 3 > | Calculate VMAF [\> ‘ Train Model ‘

1 P -

Using the Model

. N ™~ N
Split Video in Scenes > | Make Predictions | [ L > | Reencocde Scenes ! > Join Scenes as Video

1 p -

Fig. 2. High level definition of training and the usage of the model

A. Data Preparation

In today’s media world, there are various video codecs,
commonly used resolutions and many video types ranging
from slowly changing environments to extreme sports and
action. In this paper, we reduce the complexity by focusing on
videos encoded by one of the most commonly used codecs,
H.264 [19]. Also, we narrowed down the video category to
only action and nature videos with full HD resolution. This
allowed us to demonstrate the model’s capabilities and content
awareness with less complexity, after which the model could
be extended to various resolutions, codecs, and video types.

We have collected publicly available full HD videos that we
pre-processed using FFmpeg [20] and split up into different
scenes. Next, the overall 10,000 scenes were split into 80%,
10%, 10% training, test, and validation sets. We generated
various encodes for every scene using different percentages
of the initial bitrate value (the bitrate of source video without
re-encoding with a different bitrate), for example: 100% (the
initial value), 95% and so on until 20%; eleven different
bitrate encodes per scene in total. Finally, data preparation was
concluded by calculating VMAF for every encoded version
of the scenes and saving the VMAF values as well as a
predefined number of extracted frames from scenes at different
timestamps that can be used later for model training. It is
noticeable that some scenes are less lossy than the others
while re-encoding them with a lower bitrate value. Such
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videos usually tend to contain low-frequency images or slowly
moving camera and objects, as can be seen in nature videos.
On the other hand, some types of scenes are very vulnerable
to bitrate reduction, as shown in Figure 3 below. Nature scenes
tend to retain their quality in most cases when encoded at a
lower bitrate, whereas action scenes result in noticeable quality
loss.

VMAF

10,000 Kbit/s
Bitrate

==
==

Fig. 3. Bitrate and VMAF value distribution over a couple of hundred
differently encoded action and nature scenes

Frames from every scene are used to extract features from
them at different timestamps in a scene, and then these features
are used to let the neural networks learn the bitrate/ VMAF
curve for each scene since we have multiple encodes of every
scene with corresponding VMAF and bitrate values. Moreover,
since we have multiple frames per scene, the model could also
learn the temporal relationship in a scene between frames. If
we repeat this process for thousands of scenes, the model can
generalize well and be able to predict the curve for unseen
scenes in a video.

B. Model Architecture and Implementation

The proposed model comprises three major components:
feature extractor, where we employ pre-trained ResNet50, on
ImageNet Dataset [12], Long short-term memory network that
takes ResNet features and the original bitrate of a scene as
input and makes a prediction as a form of several VMAF
values (predefined number) corresponding to eleven bitrate
percentages described above. This gives us the entire bi-
trate/VMAF curve, so that we can predict the VMAF for
any given bitrate value. Moreover, we integrated Gradient-
weighted Class Activation Mapping (Grad-CAM) [13] for
explanations. As shown in Figure 4 we extract several frames
from a scene and feed them into ResNet50 for feature extrac-
tion. We obtain a set of 2048 features in a 7x7 format per frame
from ResNet. To streamline complexity before feeding these
features into the Long Short-Term Memory (LSTM) layers,
we employ a Global Average Pooling Layer to obtain 2048
data points and also add the source bitrate of the video to
it, resulting in a total input size of 2048 + 1 for LSTM.
The initial input layer is directly connected to the first hidden

layer, which comprises 2049 LSTM units. Subsequently, the
output of this first hidden layer is fed to a second hidden layer,
which mirrors the structure with 2049 LSTM units. The second
hidden layer, in turn, connects to the output layer, consisting
of eleven neurons employing Rectified Linear Unit (ReLU)
[15] activation functions. These eleven neurons correspond
to the eleven distinct bitrate steps present in our dataset. To
reduce the risk of overfitting and enhance model robustness,
we introduce dropout [16] layers between the first and second
hidden layers, as well as between the second hidden layer and
the output layer with a dropout ratio of 0.25 that randomly
deactivate some neurons during training.

We decided not to treat the neural networks as a black box
but to integrate explainability into the model. Many videos
contain logos, watermarks, etc. that can lead to incorrect
model training since neural networks sometimes try to find
shortcuts by memorizing and associating a logo with a specific
decision. But the model should focus on the video content.
To address this challenge, we integrated Grad-CAM that
leverages the gradients from the model’s output back to the
final convolutional layer to identify regions within the input
that are most influential in determining the model’s output.
The model is implemented using TensorFlow and Keras [17]
in Python.

B[ | [ e

<

B [ e | ‘
e |-~ = (=1

Prediction

- == =

Fig. 4. High level model architecture

V. MODEL PERFORMANCE

We encoded over 10,000 scenes, with an equal number
of nature and action video scenes, to avoid bias towards a
specific category. The model was trained and tested using
a Tesla V100-PCIE-32GB GPU. The predictions for scenes,
after the model is trained, take several seconds, which is almost
instantaneous compared with the standard encoding methods.
Then the predictions can be used to encode the video scene
with the desired bitrate and quality trade-off. We acquired the
model error and standard deviation after testing on videos with
higher or equal bitrate reduction than 50% since this is a more
realistic scenario in real life, as well as all bitrate reduction
variations that can be seen in Table I. During model evaluation,
we allow minimal inaccuracies in VMAF prediction since, for
example, the difference between encodes with VMAF 80 and
82 is not very noticeable. As a result, more than 70% of all
scenes meet the desired VMAF value after encoding using the
bitrate from a predicted curve.
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TABLE I
MODEL ERROR AND STANDARD DEVIATION

Std. Deviation
3.12
4.30

Median Error
1.77
2.32

Mean Error
2.96
3.67

Test Scenes
Reduction > 50%
All Scenes

We have generated explanations for the predictions and ob-
served minimally inconsistent behavior when the model takes
unexpected areas of scenes into account, some explanations
can be seen in Figure 5, but this topic requires more thorough
investigations and will be explored in the future.

Fig. 5. A heatmap generated using integrated Grad-CAM on nature and action
scenes after model training

VI. CONCLUSION

The proposed model demonstrates the feasibility of content-
aware video encoding combined with explainable Al. How-
ever, it is a proof-of-concept implementation that requires
more training and evaluation. This approach could facilitate
efficient video encoding. Therefore, we aim to construct a
larger dataset for training with multiple video categories and
introduce different resolutions to improve the model’s capabil-
ities. In addition, the explainability of the model is currently
observed based on retrained ResNet outputs. However, it is
an essential task to capture explanations through time to
answer the question of what temporal changes lead to specific
decisions. Also, exploring other explainable Al methods, such
as LIME [21], SHAP [22], etc., would give us more insight
into the model. In order to obtain a complete encoded video
from separately encoded scenes, all scenes need to be stitched
back together. It is crucial that the scenes are stitched correctly
and that the process is validated at the end so that no frames
are missing. Knowing whether the bitrates in the test encodes
are optimal is also difficult. Sometimes we can go to a lower
bitrate and still get the desired VMAF value, which leads to
better model training, but this needs further investigation. Also,
reinforcement learning could be an interesting next step, and
defining its environment could be challenging.

In summary, we have introduced an interpretable deep
learning model incorporating temporal properties. This model
exhibits the ability to forecast a VMAF/bitrate curve specific
to given video content, showcasing the practicality of content
awareness. Our findings underscore the model’s advantages in
enhancing the efficiency of video coding and its effectiveness

in addressing diverse challenges. This study raises several
inquiries, and ongoing research is actively exploring potential
solutions to these questions.
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