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Abstract—We propose an end-to-end video streaming solution 

for telerobotics aimed to improve the user experience despite 

variations in the underlying network. It uses a synergized smart 

spatio-temporal bitrate adaptation technique, tightly coupled with 

an adaptive exchange protocol semantics and smart open-loop 

jitter buffer adaptation. It shifts paradigm from existing GOP- 

based encoding and bitrate adaptation. Efficacy is proven by 

comparing performance against a similar telerobot system using 

WebRTC. Comparisons are done in terms of both objective QoE 

metrics, and subjective user experience study through live remote 

operation on the robot over the different long-haul Internet paths 

as well as for practical last mile channel degradation.      

Keywords—video streaming, QoE, QoS, telerobotics. 

I. INTRODUCTION, MOTIVATION AND GAP ANALYSIS 

The quality of experience (QoE) for a human operator, 

operating a remote telerobot over the public Internet, depends 

heavily on the live video feed received from the robot’s camera. 

Such applications are very sensitive to poor visual quality, 

overshoot in end-to-end motion-to-photon or scene-to-screen 

delay and freezing of the received video as those phenomena 

drastically reduce the confidence of the operator on sanity of 

inference on the remote affairs and confidence on the outcome 

of the commands being delivered to the robot.  

Video streaming application is a combination of encoding at 

acquisition-end, packetization & exchange semantics for 

application data segments in flight, jitter-buffer management & 

decoding at the rendering-end. The low-level network quality of 

service (QoS), which is beyond the control of the end-

applications, largely affects performance of such systems. But, 

if the application-level QoE is modelled around judicious choice 

of techniques for each component of the collective process for 

the end-to-end stream, then that may improve the perceived QoS 

despite low-level fluctuations. This in turn affects the QoE of 

the entire system [1]. So, contextual application-level adaptation 

and loss-management techniques have been proposed [2][3][4] 

on reliable (HTTP on TCP) or best-effort (RTP on UDP) 

transports. However, all such techniques try to adapt to network 

degradation through adaptive bitrate (ABR) techniques which 

undermine the user experience [5]. Such systems were originally 

designed for video-on-demand applications and later adapted for 

teleconferencing. But,they lack the desired performance for 

telerobotics kind of applications under challenged network 

conditions [6][7]. The reasons are: (1) The backward error 

correction mechanism (BEC) or application layer FEC (AL-

FEC) both undermine real-time performance while trying to 

regain PSNR under lossy conditions [5]. (2) All predominant 

techniques use encoders with group of pictures (GOP) structure 

which suffer from freezing under loss or corruption of I-frame. 

These are inherently slow reactive to network context. Even if 

network QoS is improved, inability to synch to next I-frame 

causes the rendering unit to freeze the video [6]. [8] proposes 

tuning of a hardware-accelerated H.264 encoder for latency 

reduction but such encoder has high dependency on the available 

hardware. [8] also inherits all the shortcomings of GOP based 

encoding. Hence it fails to stand out as a democratized approach. 

Historically, video encoding and streaming protocols have 

been two independent lines of development causing a lack of 

synergy between them [9]. Though [9] tries to synergize the 

encoding with transport through a frame-by-frame modification 

deep inside VP8/VP9 structure, the modifications are intended 

to satisfy the applications like video on demand and not tested 

for telerobotics-like applications. [9] does not pose any 

alternative to conventional bitrate adaptation scheme that 

undermines QoE. Though [9] claims to perform better than 

WebRTC [10], [11] questions some of the performance claims. 

[12] has highlighted the supremacy of JPEG for latency sensitive 

applications. But simple JPEG is bandwidth inefficient. [13] 

attempted to improve BW efficiency of MJPEG through 

background subtraction while proving the bitrate at par with 

H.264 in limited cases. But it works only on grayscale images 

and does not take care of the adversities of transmission over 

Internet backhaul. Especially, it is silent on protecting the frame-

to-frame delta in lossy conditions. Also, it encodes the deltas as 

full JPEG frame which loses the expected BW savings. 

Literatures like [14] propose QoE-aware ABR scheme on GOP 

based encoders that adaptively uses the encoding layers. That is 

inherently not suitable for systems like telerobotics for the 

reasons explained above. Such literatures are completely silent 

on the underlying protocol and are not tested in real Internet-

backhaul. At present, WebRTC is used in practical telerobotic 

products and lab prototypes [15][16]. Even widely used services 

like Amazon Kinesis also uses WebRTC [17]. The default 

browser implementation uses VP8/VP9 codecs and selective 

retransmissions on RTP [18]. It also inherits the problems we 

referred. Some of the impracticalities of such retransmissions 

and recoveries, especially for I-frames, are highlighted in [19]. 

[20] provided a base-line partial approach to address the 

problems stated earlier. Instead of GOP based encoding and 

conventional protocols it used a more efficient frame-by-frame 

encoding using background subtraction on JPEG frames than 

[13]. It also proposed an adaptive packetization and protocol 

semantics that ensures to protect the delta in flight in between 

two frames in a tightly coupled manner. But it has no bitrate 
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adaptation or jitter buffer management. It shows an improved 

performance compared to WebRTC under last-mile degradation 

for stored frame sequences of much smaller resolution than even 

standard 640 X 480 resolution and are tested in local set up with 

negligible temporal variation. When we tried [20] in a real peer-

to-peer (P2P) deployment over long-haul live streaming on the 

public Internet with 640X480 resolution, the system could not 

maintain even 5fps framerate and failed to cope with delay-

variations in the channel.  

Starting from the baseline of [20][21], this paper proposes a 

holistic frugal end-to-end solution, typically designed for 

telerobotics kind of applications. We propose a smart QoE 

aware Spatio-Temporal Bitrate adaptation theorized around a 

QoE model tailored around the concerned class of applications. 

Firstly, we introduce a paradigm shift from GOP based 

encoding/decoding by proposing a frame-by-frame temporal 

encoding approach inspired by [20]. Secondly, we introduce 

novel median-based matrix scaling & foveal Breathing 

techniques to achieve Fixed Foveated rendering enabled spatial 

bitrate adaptation.  Thirdly, the protocol state machine of [20] 

has been modified for making it practical in the context of time-

varying long-haul channels. It uses the non-blocking semantics 

of Constrained Application Protocol (CoAP) [22], along with 

the no-response option [23] and introduces an intelligent time-

out and retransmission adaptation option that tightly couples the 

encoder states with not only the lossy-ness of the channel, but 

also the delay variations. Lastly, on the reception side, the 

protocol state machine is closely tied to a smart jitter-buffer 

adaptation that tracks the historical reception trend at frame-

level and predictively adapts the play-out interval minimizing 

frame-loss, while maintaining the real-time responsiveness.  

We term the system QuOVADIS (Quality Optimized Visual 

Anatomy-driven Dynamic & Intrinsically adaptive Streaming). 

It is deployed on a practical telerobot system. Efficacy is proven 

by comparing performance against a similar telerobot system 

using WebRTC [10] which is the de facto streaming technology 

used in telerobotics at present under real challenged conditions 

with both last-mile channel degradation and also in long-haul 

communication over the public Internet without any service-

quality guarantee.  Comparisons are done in terms of both 

objective visual QoE metrics like SSIM, VMAF, VQM, and by 

subjective mean opinion score (MOS) derived from user 

experience study through live remote operation on the robot. 

The overall system performance also shows improved latency 

and bandwidth consumption. 

 

Section II briefly describes the theoretical model behind the 

QoE centric adaptation. Section III describes the entire 

processing chain and adaptation algorithms at different stages. 

Section IV describes the development efforts and actual 

deployments followed by the experiments, results, and analysis. 

Section V concludes the paper describing ongoing endeavours. 

II. THEORIZING THE PROPOSED QOE MANAGEMENT 

 We consider QoE as a composite function of the visual 
quality (Q), and perceived delay between actuation and viewing 

the outcome (d). The latter is a result of the achievable framerate 
(R) and variation in inter-frame distance (δ). Again, these are 
related to the amount of bits being pumped into the 
communication pipe. We also observe that visual quality cannot 
be sacrificed beyond a certain limit to ensure meaningful 
engagement by the operator. So, following the study in [24] we 
first define a foveal region in the frame which will have the 
highest priority in terms of maintaining the quality (Fig. 1). The 
foveal region in our application is defined as a circle centered in 
the middle of the frame with a radius Ȓ for a given percentage µ 

such that: Ȓ = 𝑀𝑎𝑥(𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡, 𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ). µ 100⁄ .  
So, the peripheral region (beyond the foveal boundary) first 

compromises quality to maintain the bitrate while still 
maintaining the desired inter-frame distance. Once peripheral 
region quality reaches minimum, then the foveal region 
shrinking happens to a maximum lower limit under degrading 
channel conditions. Similarly, when channel conditions 
improve, foveal region is expanded back. We call this 
phenomenon foveal breathing. When no further foveal region 
expansion is possible, then peripheral region quality 
enhancement is performed to take advantage of channel 
condition improvement.  

The framerate is intrinsically adapted when the system 

switches between delta-frames and full frames (because of 

drastic variation in data to be pumped) limited by a given 

maximum desired rate. The desired rate may be explicitly 

changed given how much the system is able to cope up through 

the bitrate adaptation of the peripheral region and foveal 

breathing. So, QoE  𝑄 = 𝑓(𝑉𝑞𝑓𝑜𝑣 , 𝑉𝑞𝑝𝑒𝑟 , 𝐺, 𝑅), where  𝑉𝑞𝑓𝑜𝑣
 = 

quality within the foveal region, 𝑉𝑞𝑝𝑒𝑟  = quality at the peripheral 

region, 𝐺 =
𝐴

𝐴′
  ( 𝐴 = area under foveal region, 𝐴′ = peripheral 

area). G controls the foveal breathing. Fig. 2 shows how the 

system states switch according to the proposed model. 

 

Fig. 1. Illustrating foveation-based realization of intra-frame quality variation. 

 

Fig. 2. Overall state-machine for spatial bitrate adaptation at frame level. 

III. QUOVADIS : ARCHITECTURE AND ALGORITHMS 

Fig. 3 shows the end-to-end process chain for QuOVADIS. 
We further explain the different key components and algorithms. 
Tx also maintains a periodic timer to receive feedback from Rx 
indicating reception QoS similar to that in [20]. Bitrate 
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adaptation in temporal domain is achieved by adaptively 
switching the encoder state between basic mode and delta mode 
based on the value of Cumulative Error Rate contained in the 
Periodic Timer feedback. In basic mode the frames transmitted 
are normal JPEG encoded frames. In delta mode it produces 
delta frames which uses ViBE background subtraction [25] to 
extract the foreground information from a frame based on scene 
changes from the previous frame. The proposed background 
subtraction based temporal encoding over MJPEG allows our 
system to enjoy the simplicity and low latency of MJPEG based 
streaming, while being bandwidth efficient. The frame-by-frame 
approach reduces delay in adaptation to channel variability and 
in synchronization at the receiver. The temporal encoding 
technique involving adaptive switching between basic & delta 
mode based on periodic feedbacks is inspired from [20].  

The Decoder at the receiver in QuOVADIS employs the 

reassembly, reconstruction & loss concealment algorithms of 

[20] using the metadata information contained in packet headers 

shown in Fig. 4. The reconstructed & corrected frames are JPEG 

decoded and fed to the rendering unit for display.  

  Section II already described the basic approach for 

adaptation in spatial domain. In spatial domain the encoder can 

either be in peripheral phase trying to adapt the bitrate by 

altering the peripheral quality, or it can be in foveal phase where 

the area of the foveal region is adapted by tuning G. Encoder 

initially is in peripheral phase where neither the area nor the 

quality of foveal region is adapted. Therefore, the foveal region 

area is maximum and is encoded at maximum desired quality 

(Qmax) in this phase. But bitrate adaptation is accomplished in 

peripheral region using adaptive median-based matrix scaling 

(MMS). In this novel technique, initially the pixels in each MCU 

in the peripheral region are quantized using normal quantization 

tables to form quantized matrix MQNR, where MQNR is the 

original Quantized DCT-coefficient matrix for an arbitrary 

MCU in peripheral region.  MQNR is then made sparser or denser 

depending on the channel condition using a scaling factor S to 

form MSQNR (scaled version of MQNR) as per Eqn. 1. 

    𝑀𝑆𝑄𝑁𝑅   =  𝑐𝑒𝑖𝑙 (
𝑀𝑄𝑁𝑅

𝑆
) 𝑋 𝑆                                        (1) 

Thus, the quantized DCT coefficients, which are zero-forced 

because of scaling down (division by S), are not recovered back, 

but the non-zero values are restored back, with subtle   

inexactness compared to the original value, after multiplication 

by S. The beauty of the algorithm is such that, the scaling is 

performed in such a back-to-back reciprocal operation, that the 

receiver need not know S unlike existing region of interest (ROI) 

based literatures. Because of this restoration operation, S need 

not be shared with the decoder and the decoder can follow the 

normal flow of JPEG decoding. The bitrate adaptation is 

accomplished by choosing the value of S adaptively in response 

to variations in the channel condition. S is adaptively chosen 

from the quantized DCT coefficients in MQNR. Tx computes the 

change in predominant error ∆𝑃  by tracking the periodic 

feedback. The encoder determines ∆𝑃  over a period of k as 

Δ𝑃  =   (
𝑃𝑡 − 𝑃𝑡−𝑘

𝑃𝑡−𝑘 ). Instantaneous value of ∆𝑃 drives the spatial 

bitrate adaptation depending on whether it crosses a threshold. 

We maintain a sorted list L containing absolute value of all non-

zero and non-repeating quantized DCT coefficients for each 

MQNR. S is adaptively chosen from L depending on the value of 

∆𝑃. Let, 𝛹 be the position of median in L. Let IS be index of S 

in L. At each step, IS is computed using 𝐼𝑆 = 𝛹 + ∆𝛹, where 

∆𝛹 is the median position increment/decrement factor. Under 

degrading channel conditions, i.e. when Δ𝑃 crosses a threshold, 

∆𝛹 is incremented using ∆𝛹𝑡 = ∆𝛹𝑡−𝑛 + (|∆𝛹𝑡−𝑛| ∗

𝑐𝑒𝑖𝑙(∆𝑃)). Whereas ∆𝛹 is decremented using ∆𝛹𝑡 = ∆𝛹𝑡−𝑛 −

1 under improving channel conditions. This dynamic 

determination of  ∆𝛹𝑡 is referred to as Median Position Update 

(MPU) algorithm. S is determined as L[IS]. The value of ∆𝛹𝑡 is 

not allowed to cross the bound   [∆𝛹𝑚𝑖𝑛 , ∆𝛹𝑚𝑎𝑥]. S cannot be 

increased to the maximum value in MQNR. As it would lead to 

reducing the entire MSQNR to 0 after scaling thereby causing 

complete loss of information in peripheral MCUs.  Under 

improving channel conditions, if S is reduced to the minimum 

value in MQNR then no scaling is performed and peripheral 

region is encoded at same maximum quality as foveal region. 

Hence, depending on current value of Δ𝑃 indicating 

instantaneous channel condition, S is adaptively shifted towards 

right(higher values) & left(lower values) making MQNR sparser 

or denser respectively, thereby achieving peripheral region 

bitrate adaptation. Fig. 5 demonstrates an exemplary step by step 

matrix operation. If S has assumed its maximum possible value,  

and if channel conditions further degrade depending on whether 

∆𝑃 crosses a threshold, then spatial encoder switches to foveal 

phase. In this phase, peripheral region quality is not modified 

anymore as it is already encoded at minimum possible quality, 

but bitrate reduction is achieved by foveal shrinking. During 

shrinking phase the foveal radius is reduced by scaling down  µ 

by a factor fr up to a limit µmin. Whereas, under improving 

channel conditions, foveal expansion is performed. Foveal 

expansion is performed by additively increasing µ by a factor Ɛ 

till a limit µmax. Hence, foveal Breathing adapts the number of 

pixels in foveal region that are encoded at maximum desired 

quality, thereby adapting the effective bitrate. The QoE aware 

Spatial Encoding algorithm therefore achieves bitrate adaptation 

without compromising with the quality of the Foveal region to 

satisfy instantaneous channel bit budget (Fig. 6). 
 

 

Fig. 3. The end-to-end flow for QuOVADIS. 

A. The Protocol and Packet Semantics 

 Packetization happens such that an integral number of 
MCUs are placed in a single packet with necessary padding bits 
as MCUs are not byte aligned. The MCU Payload in each packet 
is preceded by a payload specific header. The payload specific 
header comprises of metadata information required for 
reconstruction of frame and loss concealment on the decoder 
side and is inherited from [20]. Our system follows the protocol 
semantics & state machine of CoAP [22] with ‘No Response’
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Fig. 4. (a) Reassembly of received Foreground information in delta encoded frames and filling background MCUs with 0 valued pixel information. (b) Loss 

compensation in full frames in basic state. (c) Loss compensation in delta frame.

[23] option. It follows the essence of [26], that tries to maintain 

balance between reliability and latency by adding an abstraction 

layer over CoAP for streaming. Critical packets like first packet 

of basic frame and the frame sent on Periodic Timer expiry are 

sent reliably via the (Confirmable)CON semantics. Whereas the 

rest of the packets are sent via Best Effort delivery using the 

(Non-confirmable) NON semantics with No Response option.  

Reliable transmissions are carried out in non-blocking fashion 

i.e., Tx after sending a packet reliably, continues with 

transmission of packets next in line in best effort mode while 

simultaneously waiting for the ACK of the sent reliable packet. 

The non-blocking mode helps maintain a desired system frame 

rate unaffected by the channel RTT.  The waiting for ACK is 

done for an adaptively determined Timeout period. We are also 

proposing a new header option named Number of 

Retransmissions (NRTx) to the CoAP protocol options set to 

control the maximum number of retransmissions allowed for an 

individual data packet. This provides additional functionality to 

the MAX_RETRANSMIT field in CoAP. But, the maximum 

value of NRTx field is limited by the value of 

MAX_RETRANSMIT parameter. If ACK is not received 

within Timeout period, then depending on the value of 

associated NRTx field, Tx decides whether to retransmit the 

lost packet or not. If NRTx field is nonzero, then Tx performs 

retransmission of the lost CON packet maximum NRTx number 

of times. Whereas for zero value of NRTx field, Tx does not 

perform any retransmission. In our system, we have set the 

value of NRTx field for each packet sent reliably as zero. This 

allows us to prevent unnecessary retransmission of lost packet 

to cater to the real time performance of the system. If NRTx 

field is not present, MAX_RETRANSMIT prevails as usual. 

Currently we are using an arbitary option number for NRTx 

which will be replaced appropriately with a valid option 

number from IANA after standardization. The Tx, Rx protocol 

semantics illustrating the close synergy between encoder and 

transport are shown for different situations through timing 

diagrams in Fig. 7. Depending on the reception status of ACK, 

the ACK Timeout period is adapted to minimize the ACK 

misses. If ACK is lost, might indicate channel congestion, then 

TO value is increased till a maximum limit using the following 

formula: 𝑇𝑂𝑛𝑒𝑤   =  1.5 𝑋 𝑇𝑂𝑝𝑟𝑒𝑣 . Whereas if n consecutive 

ACKs are received, might indicate improvement in channel 

conditions, then TO value is reduced  till a minimum limit using 

the following formula: 𝑇𝑂𝑛𝑒𝑤   =   (
𝑇𝑂𝑐𝑢𝑟𝑟  + 𝑇𝑂𝑝𝑟𝑒𝑣

2
) where  

𝑇𝑂𝑐𝑢𝑟𝑟and 𝑇𝑂𝑝𝑟𝑒𝑣  are the Timeout values for current and 

previous CON packets. 

B. Calculation Of Errors Statistics At the Receiver 

At each playout interval t, Rx determines the total number of 

expected packets for each frame by parsing the offset field of 

first packet which contains the position indicator for the last 

expected packet in the frame. Rx computes  𝐸𝑡   =  
𝑁𝑙𝑜𝑠𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
𝑋 100.  

Here, Et = instantaneous Error rate at time t; Nlost = estimated 
total no. of packets lost for a frame; Ntotal = total no. of expected 
packets for a frame. Using 𝐸𝑡 , Rx computes the cumulative error 
at play out-interval ending at t, starting from time t-k when Rx 
last received a CON packet that drives the temporal encoding 
mechanism. Along with this, Rx maintains a log of  𝐸𝑡 for each 
t. Whenever Rx receives a packet sent via Reliable mode on 

expiry of periodic timer at time j, it computes 𝑃𝑗   =
 𝑚𝑜𝑑𝑒(𝐸𝑖 , 𝐸𝑗−1, … … … , 𝐸𝑗−𝑘).  Where 𝑃𝑗  indicates the most 
frequent Error Rate within the interval between j and j-k. Rx 

piggybacks 𝐶𝑚𝑘
𝑡  and 𝑃𝑗  with Acknowledgment of the Reliable 

packet as periodic feedbacks to Tx. 𝐶𝑚𝑘
𝑡 and 𝑃𝑗  are indicative of 

end-user QoE and assist Tx in adaptively parameterizing spatio-
temporal encoding functions. 

C. Kalman Filter Based Jitter Buffer Adaptation 

 The optimum settings for jitter buffer ensure smooth 
rendering following the delay variation in the channel. Too low 
jitter buffer might lead to frame losses and too high jitter buffer 
may cause increased rendering latency. In case of QuOVADIS, 
the Rx does not get any feedback from the Tx-side. So, we have 
to estimate the future delay by observing the delay incurred for 
the past received frames. The Rx determines the delay for each 
data packet i using the arrival 𝐴𝑖(𝑡) and transmission 𝑇𝑖(𝑡) time 
of the data packet using 𝑑𝑖(𝑡)  =  𝐴𝑖(𝑡)  −  𝑇𝑖(𝑡). Using the 
delay of each packet, the delay of the corresponding frame is 
determined based on average of the delay values for each packet 

as 𝑑(𝑡)  =   ∑
𝑑𝑖(𝑡)

𝑁

𝑁
𝑖 = 1 . One way delay gradient for a frame is 

calculated using the delay values of the current and previous 
frames as  𝑑𝑔(𝑡)  = 𝑑(𝑡)  −  𝑑(𝑡 − 1). This value is fed to the 

Kalman Filter model to predict the value of one-way delay 
gradient 𝑑𝑔(𝑡 + 1) for the incoming frame. Eqn. 2 & 3 depict 

the state and output equations respectively for the proposed 
Kalman Filter model. where, 𝑚(𝑡) is the only state variable, 
which is model of the one-way delay. gradient. 𝜔(𝑡) and 𝜂(𝑡) 
represents state and measurement noise respectively modelled 
as stationary Gaussian processes.  
𝑚(𝑡 + 1) = 𝑚(𝑡) +  𝜔(𝑡)                                        (2) 
𝑑𝑔(𝑡) = 𝑚(𝑡) +  𝜂(𝑡)                                                       (3) 

Iterative tuning of certain noise parameters of the KF model 

such as Kalman Gain (𝐾(𝑡)), Process Noise variance (𝑃(𝑡)), 
State Noise variance (𝑄(𝑡)), and measurement noise variance 
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(𝜎2(𝑡)) with each measurement update of  𝑑𝑔(𝑡) is performed. 

The next state of the KF model is determined based on the 

current measurement 𝑑𝑔(𝑡) and current state of KF model using 

updated value of Kalman Gain as per Eqn. 4. The updated state 

of KF model serves as the one-way delay gradient 𝑑𝑔(𝑡 + 1) 

for the incoming frame.  Then, we can adjust the jitter buffer 

for the next frame as (𝑑𝑔(𝑡 + 1)+ certain sleep time). The sleep 

time is determined using the maximum desired frame rate of the 

system. QuOVADIS Kalman Filter model follows that of 

Google Congestion Control [27]. Interested readers can refer to 

[27] for detailed explanation of the KF model.  

𝑚(𝑡 + 1) = 𝑚(𝑡) + 𝐾(𝑡)(𝑑𝑔(𝑡) − 𝑚(𝑡))                         (4) 

IV. EXPERIMENT, RESULTS & ANALYSES  

 QuOVADIS is implemented in C++ using OpenCV and 

Boost libraries. It captures the raw frames and entire encoding 

happens in our own S/W without using any special H/W 

accelerator or encoding in camera firmware. The system was 

built on Ubuntu 20.04 on a standard Intel Core i5 machine. The 

transmitter side of QuOVadis is ported to R-Pi3 which is housed 

in a telerobotic car designed for remote teleoperation. 

QuOVADIS was designed to live stream both stored videos and 

live camera feed. A parallel WebRTC implementation on JS is 

created with media channel for video streaming and data channel 

for exchanging kinematic controls and feedbacks. The WebRTC 

system was also designed to transmit both stored video and live 

camera feed. The implementation is done with 640 x 480 

resolution frames. We set the maximum desired frame-rate for 

QuOVADIS as 15fps. By design, it relies heavily on the delta-

frames to achieve this. This can be realized owing to the 

frugalness of our system as the encoding and decoding processes 

were completed within 60ms without any hardware acceleration. 

For full frames, the system conservatively auto-reduces the 

frame rate to 5fps. Based on our studies and visual experiences, 

we have set the minimum value of μ to 25% as reducing the 

foveal region beyond this will undermine the end-user QoE. 

Similarly, the initial and maximum values of μ were set to 50% 

and 75% respectively. To ensure very good visual quality with 

retention of colour information, we set the quality of foveal 

region to 90%. Initially we compare the performance of 

QuOVADIS with WebRTC in terms of both full referential and 

subjective quality metrics for stored video sequences taken from 

[28]. To ensure to cover different test cases comprising of static 

FoV, dynamic FoV, high motion, low motion, etc. we chose 

Akiyo, Hall, Foreman and Tennis sequences and rescaled all to 

640 × 480 resolution. In this experiment we were interested to 

observe the effect of only the last-mile impairment.   So, both 

Tx and Rx were kept in the same Network and the access point 

was moved ‘far from - and- near to’ the test set up in a U-shaped 

trajectory. This resulted in the RSSI response shown in Fig. 8 

(a). To enable full referential comparison (SSIM, PSNR, VQM, 

VMAF) we created a stream recording mechanism in the receiver 

and transmitter pages in the WebRTC system. For QuOVADIS 

we get the individual transmitted and received frames. For 

WebRTC the samples were all WebM encoded, and for 

QuOVADIS raw frames were supplied. Besides performing full 

referential measurements, the experiments were also conducted 

in the front of 50 subjects who could see both the transmission 

and reception and they were requested to scale the reception 

quality for each video for both WebRTC and QuOVADIS. The 

full referential quality measures and MOS from user study are 

shown in Fig. 8 (b) & (c) respectively.  The reason was loss of 

GoP synchronization and failure to agile reaction to the channel 

variations. But QuOVADIS continued decent performance and 

tried to regain lost frames through its zero overhead error 

concealment described earlier. There was momentary freeze 

around deep loss of RSSI. But due to its agile frame-by-frame 

operation, it regained quickly as soon as RSSI started to rise just 

above -70 dB.  The efficacy is reflected in subjective and full 

referential results. We then deployed the system over a long-

haul P2P setting. The transmitter on the Pi-car was put in 

Kolkata, India. The operator console was in Bangalore, India. 

Both units were put in private networks behind restrictive NATs 

which do not allow hole punching. This ensured that WebRTC 

will always have to route through TURN server. We also created 

a UDP-based relay service, co-located with the TURN server, 

for QuOVADIS. The TURN and the relay servers were 

replicated in three different AWS instances in Mumbai (India), 

Tokyo (Japan), and Ohio (US-east).  

 
(a)                                                                                                                     (b) 

 
  (c)                                                                                                                         (d) 

Fig. 5. Median-based Matrix Sparsification for: (a) first frame; (b) frame with ∆𝑃 < 𝑃𝑡ℎ making MQNR less sparse; (c) frame with ∆𝑃 < 𝑃𝑡ℎ and 𝐼𝑆 becomes 0 

making MQNR equal to MSQNR (d) For frame with ∆𝑃 ≥ 𝑃𝑡ℎ performing sparsification using MQNR. 
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Fig. 6. QoE centric Adaptive Bitrate Spatial Encoding 

This way we could track performance under communication 

over Internet backbones running through different parts of the 

world. A person in Kolkata threw a ball on the floor in a given 

trajectory, and the person in Bangalore had to track the ball by 

moving the Pi-car remotely (Fig. 9). While WebRTC system 

was equipped with data channel for this purpose, we created a 

special control console for operating while observing feeds 

using QuOVADIS. The control commands were also relayed 

through the same relay server. We experimented on 50 users 

aged between 25 – 45 years. Each user was told to do the ‘ball-

tracking’ exercise for 15 times in each sitting. Out of the 15 

times the traffic was routed through Mumbai, Tokyo and Ohio 

for 5 times each. The experiment was repeated for the same 

subjects over a span of 5 days at different time of the day 

(morning, afternoon, evening). Each time the stream was 

recorded for full referential measures of the videos and the 

operators in Bangalore were told to mark the experience in a 

scale of 5.  Fig. 10 (a) and (b) shows the full referential and MOS 

results respectively. The MOS results had the additional 

consideration for ease of operation by only looking at the video 

feed from Kolkata. We also measured the motion-to-photon 

latency for traffic routed through the said routes. For this we 

time synchronized two smart phones with milliseconds clock in 

Bangalore and Kolkata. The view of clock was streamed from 

Kolkata. In Bangalore the mobile clock was set by the console 

and reception was recorded showing the time in both the screen 

and on the clock. Then we paused the recorded video at different 

instances for each recording and measured the time difference 

between the clock and screen-view for each paused screen. Fig. 

10(c) shows the average latency observed in the three different 

routes. As expected, we found larger latency variation in Ohio, 

followed by Tokyo and then Mumbai. Mumbai was the least as 

both peers were located in India. Ohio was the farthest. 

WebRTC experienced regular freezing with several cycles of 

Ball throw being missed especially for Ohio-routed traffic. At-

times the quality of the reception also extremely deteriorated due 

to extensive compression of VP8 encoded stream in WebRTC 

leading to inability to do any kind of teleoperation. So was not 

the case for QuOVADIS where there was momentary reduction 

in reception rate during overshoot of end-to-end latency but it 

did not interfere with the teleoperation owing to its per-frame 

based operation. The tightly coupled QoE centric spatio-

temporal encoder & protocol, along with robust loss 

concealment & Predictive Jitter Buffer at Rx altogether could 

cater to end-user QoE requirements for teleoperation.  

  

 We used Wireshark to measure the live BW consumption for 

each experiment. QuOVADIS is also bandwidth efficient as 

shown in Fig. 11. Considering the figures of Bandwidth 

consumption at source, the bandwidth consumption consistently 

reduces from Mumbai-routed traffic to Ohio -routed traffic as 

the transmission rate reduces with degrading channel from 

Mumbai to Ohio. QuOVADIS outperforms WebRTC for both 

Mumbai & Tokyo. But for Ohio, WebRTC pauses transmission 

for several seconds causing an extreme low bandwidth 

consumption at expense of visual quality. The BW consumption 

at Rx results clearly shows that QuOVADIS beats WebRTC 

under all the three scenarios. The BW consumed at Rx 

represents the feedback sent to Tx and it increases from the case 

we route the traffic via Mumbai to when we route it via Ohio 

due to degrading channel conditions. 

V. CONCLUSION 

We have presented an end-to-end QoE-aware streaming 

solution for delay and freezing sensitive telerobotics solutions. 

The proposed solution can be extended to many such distributed 

real-time interactive systems like gaming, etc. In the presented 

solution the foveal region is fixed as per usual usage pattern. We 

are currently working on inferring the gaze of the operator from 

analyzing operator’s self-view and adapt the foveal location 

accordingly, thus enhancing user experience without any 

dedicated head-mounted sensory-system. 

 

Fig. 7. Timing Diagram in different situation (a)Tx receives ACK with Periodic Feedback from Rx signifying no loss at the Rx and encoder performs bitrate 

enhancement.(b) ) Tx receives ACK with Periodic Feedback from Rx signifying loss at Rx above threshold and encoder performs bitrate reduction in response. (c) 
ACK belonging to a full frame lost making Tx send next frame as full frame.(d) ACK belonging to a frame sent at Periodic Timer Expiry lost making Tx send next 

frame with ‘Periodic Timer status’ flag set.
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Fig. 8. (a) RSSI along test trajectory (b) Full referential quality measurements 

(c) MOS results under practical last mile impairments 

 
Fig. 9. Setup for long-haul telerobotic experiment 

 
Fig. 10. Average results under long-haul : (a) full referential QoE. (b) 

Teleoperation MOS. (c) Avg. latency. 

 

Fig. 11. Bandwidth consumption at Tx & Rx for live streaming in WebRTC & 

QuOVADIS via Relay servers at Mumbai,Ohio & Tokyo 
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