
Synergized QoE-centric Streaming for Telerobotics

Madhurima Ganguly, Abhijan Bhattacharyya, Ashis Sau, Suraj Mahato

TCS Research, Tata Consultancy Services

Kolkata, India

{ganguly.madhurima, abhijan.bhattacharyya, ashis.sau, surajkumar.mahato}@tcs.com

Abstract—We propose an end-to-end video streaming solution

for telerobotics aimed to improve the user experience despite

variations in the underlying network. It uses a synergized smart

spatio-temporal bitrate adaptation technique, tightly coupled with

an adaptive exchange protocol semantics and smart open-loop

jitter buffer adaptation. It shifts paradigm from existing GOP-

based encoding and bitrate adaptation. Efficacy is proven by

comparing performance against a similar telerobot system using

WebRTC. Comparisons are done in terms of both objective QoE

metrics, and subjective user experience study through live remote

operation on the robot over the different long-haul Internet paths

as well as for practical last mile channel degradation.

Keywords—video streaming, QoE, QoS, telerobotics.

I. INTRODUCTION, MOTIVATION AND GAP ANALYSIS

The quality of experience (QoE) for a human operator,

operating a remote telerobot over the public Internet, depends

heavily on the live video feed received from the robot’s camera.

Such applications are very sensitive to poor visual quality,

overshoot in end-to-end motion-to-photon or scene-to-screen

delay and freezing of the received video as those phenomena

drastically reduce the confidence of the operator on sanity of

inference on the remote affairs and confidence on the outcome

of the commands being delivered to the robot.

Video streaming application is a combination of encoding at

acquisition-end, packetization & exchange semantics for

application data segments in flight, jitter-buffer management &

decoding at the rendering-end. The low-level network quality of

service (QoS), which is beyond the control of the end-

applications, largely affects performance of such systems. But,

if the application-level QoE is modelled around judicious choice

of techniques for each component of the collective process for

the end-to-end stream, then that may improve the perceived QoS

despite low-level fluctuations. This in turn affects the QoE of

the entire system [1]. So, contextual application-level adaptation

and loss-management techniques have been proposed [2][3][4]

on reliable (HTTP on TCP) or best-effort (RTP on UDP)

transports. However, all such techniques try to adapt to network

degradation through adaptive bitrate (ABR) techniques which

undermine the user experience [5]. Such systems were originally

designed for video-on-demand applications and later adapted for

teleconferencing. But,they lack the desired performance for

telerobotics kind of applications under challenged network

conditions [6][7]. The reasons are: (1) The backward error

correction mechanism (BEC) or application layer FEC (AL-

FEC) both undermine real-time performance while trying to

regain PSNR under lossy conditions [5]. (2) All predominant

techniques use encoders with group of pictures (GOP) structure

which suffer from freezing under loss or corruption of I-frame.

These are inherently slow reactive to network context. Even if

network QoS is improved, inability to synch to next I-frame

causes the rendering unit to freeze the video [6]. [8] proposes

tuning of a hardware-accelerated H.264 encoder for latency

reduction but such encoder has high dependency on the available

hardware. [8] also inherits all the shortcomings of GOP based

encoding. Hence it fails to stand out as a democratized approach.

Historically, video encoding and streaming protocols have

been two independent lines of development causing a lack of

synergy between them [9]. Though [9] tries to synergize the

encoding with transport through a frame-by-frame modification

deep inside VP8/VP9 structure, the modifications are intended

to satisfy the applications like video on demand and not tested

for telerobotics-like applications. [9] does not pose any

alternative to conventional bitrate adaptation scheme that

undermines QoE. Though [9] claims to perform better than

WebRTC [10], [11] questions some of the performance claims.

[12] has highlighted the supremacy of JPEG for latency sensitive

applications. But simple JPEG is bandwidth inefficient. [13]

attempted to improve BW efficiency of MJPEG through

background subtraction while proving the bitrate at par with

H.264 in limited cases. But it works only on grayscale images

and does not take care of the adversities of transmission over

Internet backhaul. Especially, it is silent on protecting the frame-

to-frame delta in lossy conditions. Also, it encodes the deltas as

full JPEG frame which loses the expected BW savings.

Literatures like [14] propose QoE-aware ABR scheme on GOP

based encoders that adaptively uses the encoding layers. That is

inherently not suitable for systems like telerobotics for the

reasons explained above. Such literatures are completely silent

on the underlying protocol and are not tested in real Internet-

backhaul. At present, WebRTC is used in practical telerobotic

products and lab prototypes [15][16]. Even widely used services

like Amazon Kinesis also uses WebRTC [17]. The default

browser implementation uses VP8/VP9 codecs and selective

retransmissions on RTP [18]. It also inherits the problems we

referred. Some of the impracticalities of such retransmissions

and recoveries, especially for I-frames, are highlighted in [19].

[20] provided a base-line partial approach to address the

problems stated earlier. Instead of GOP based encoding and

conventional protocols it used a more efficient frame-by-frame

encoding using background subtraction on JPEG frames than

[13]. It also proposed an adaptive packetization and protocol

semantics that ensures to protect the delta in flight in between

two frames in a tightly coupled manner. But it has no bitrate

2024 Workshop on Computing, Networking and Communications (CNC)

979-8-3503-7099-7/24/$31.00 ©2024 IEEE 48

adaptation or jitter buffer management. It shows an improved

performance compared to WebRTC under last-mile degradation

for stored frame sequences of much smaller resolution than even

standard 640 X 480 resolution and are tested in local set up with

negligible temporal variation. When we tried [20] in a real peer-

to-peer (P2P) deployment over long-haul live streaming on the

public Internet with 640X480 resolution, the system could not

maintain even 5fps framerate and failed to cope with delay-

variations in the channel.

Starting from the baseline of [20][21], this paper proposes a

holistic frugal end-to-end solution, typically designed for

telerobotics kind of applications. We propose a smart QoE

aware Spatio-Temporal Bitrate adaptation theorized around a

QoE model tailored around the concerned class of applications.

Firstly, we introduce a paradigm shift from GOP based

encoding/decoding by proposing a frame-by-frame temporal

encoding approach inspired by [20]. Secondly, we introduce

novel median-based matrix scaling & foveal Breathing

techniques to achieve Fixed Foveated rendering enabled spatial

bitrate adaptation. Thirdly, the protocol state machine of [20]

has been modified for making it practical in the context of time-

varying long-haul channels. It uses the non-blocking semantics

of Constrained Application Protocol (CoAP) [22], along with

the no-response option [23] and introduces an intelligent time-

out and retransmission adaptation option that tightly couples the

encoder states with not only the lossy-ness of the channel, but

also the delay variations. Lastly, on the reception side, the

protocol state machine is closely tied to a smart jitter-buffer

adaptation that tracks the historical reception trend at frame-

level and predictively adapts the play-out interval minimizing

frame-loss, while maintaining the real-time responsiveness.

We term the system QuOVADIS (Quality Optimized Visual

Anatomy-driven Dynamic & Intrinsically adaptive Streaming).

It is deployed on a practical telerobot system. Efficacy is proven

by comparing performance against a similar telerobot system

using WebRTC [10] which is the de facto streaming technology

used in telerobotics at present under real challenged conditions

with both last-mile channel degradation and also in long-haul

communication over the public Internet without any service-

quality guarantee. Comparisons are done in terms of both

objective visual QoE metrics like SSIM, VMAF, VQM, and by

subjective mean opinion score (MOS) derived from user

experience study through live remote operation on the robot.

The overall system performance also shows improved latency

and bandwidth consumption.

Section II briefly describes the theoretical model behind the

QoE centric adaptation. Section III describes the entire

processing chain and adaptation algorithms at different stages.

Section IV describes the development efforts and actual

deployments followed by the experiments, results, and analysis.

Section V concludes the paper describing ongoing endeavours.

II. THEORIZING THE PROPOSED QOE MANAGEMENT

 We consider QoE as a composite function of the visual
quality (Q), and perceived delay between actuation and viewing

the outcome (d). The latter is a result of the achievable framerate
(R) and variation in inter-frame distance (δ). Again, these are
related to the amount of bits being pumped into the
communication pipe. We also observe that visual quality cannot
be sacrificed beyond a certain limit to ensure meaningful
engagement by the operator. So, following the study in [24] we
first define a foveal region in the frame which will have the
highest priority in terms of maintaining the quality (Fig. 1). The
foveal region in our application is defined as a circle centered in
the middle of the frame with a radius Ȓ for a given percentage µ

such that: Ȓ = 𝑀𝑎𝑥(𝐼𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡, 𝐼𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ). µ 100⁄ .
So, the peripheral region (beyond the foveal boundary) first

compromises quality to maintain the bitrate while still
maintaining the desired inter-frame distance. Once peripheral
region quality reaches minimum, then the foveal region
shrinking happens to a maximum lower limit under degrading
channel conditions. Similarly, when channel conditions
improve, foveal region is expanded back. We call this
phenomenon foveal breathing. When no further foveal region
expansion is possible, then peripheral region quality
enhancement is performed to take advantage of channel
condition improvement.

The framerate is intrinsically adapted when the system

switches between delta-frames and full frames (because of

drastic variation in data to be pumped) limited by a given

maximum desired rate. The desired rate may be explicitly

changed given how much the system is able to cope up through

the bitrate adaptation of the peripheral region and foveal

breathing. So, QoE 𝑄 = 𝑓(𝑉𝑞𝑓𝑜𝑣 , 𝑉𝑞𝑝𝑒𝑟 , 𝐺, 𝑅), where 𝑉𝑞𝑓𝑜𝑣
 =

quality within the foveal region, 𝑉𝑞𝑝𝑒𝑟 = quality at the peripheral

region, 𝐺 =
𝐴

𝐴′
 (𝐴 = area under foveal region, 𝐴′ = peripheral

area). G controls the foveal breathing. Fig. 2 shows how the

system states switch according to the proposed model.

Fig. 1. Illustrating foveation-based realization of intra-frame quality variation.

Fig. 2. Overall state-machine for spatial bitrate adaptation at frame level.

III. QUOVADIS : ARCHITECTURE AND ALGORITHMS

Fig. 3 shows the end-to-end process chain for QuOVADIS.
We further explain the different key components and algorithms.
Tx also maintains a periodic timer to receive feedback from Rx
indicating reception QoS similar to that in [20]. Bitrate

2024 Workshop on Computing, Networking and Communications (CNC)

49

adaptation in temporal domain is achieved by adaptively
switching the encoder state between basic mode and delta mode
based on the value of Cumulative Error Rate contained in the
Periodic Timer feedback. In basic mode the frames transmitted
are normal JPEG encoded frames. In delta mode it produces
delta frames which uses ViBE background subtraction [25] to
extract the foreground information from a frame based on scene
changes from the previous frame. The proposed background
subtraction based temporal encoding over MJPEG allows our
system to enjoy the simplicity and low latency of MJPEG based
streaming, while being bandwidth efficient. The frame-by-frame
approach reduces delay in adaptation to channel variability and
in synchronization at the receiver. The temporal encoding
technique involving adaptive switching between basic & delta
mode based on periodic feedbacks is inspired from [20].

The Decoder at the receiver in QuOVADIS employs the

reassembly, reconstruction & loss concealment algorithms of

[20] using the metadata information contained in packet headers

shown in Fig. 4. The reconstructed & corrected frames are JPEG

decoded and fed to the rendering unit for display.

 Section II already described the basic approach for

adaptation in spatial domain. In spatial domain the encoder can

either be in peripheral phase trying to adapt the bitrate by

altering the peripheral quality, or it can be in foveal phase where

the area of the foveal region is adapted by tuning G. Encoder

initially is in peripheral phase where neither the area nor the

quality of foveal region is adapted. Therefore, the foveal region

area is maximum and is encoded at maximum desired quality

(Qmax) in this phase. But bitrate adaptation is accomplished in

peripheral region using adaptive median-based matrix scaling

(MMS). In this novel technique, initially the pixels in each MCU

in the peripheral region are quantized using normal quantization

tables to form quantized matrix MQNR, where MQNR is the

original Quantized DCT-coefficient matrix for an arbitrary

MCU in peripheral region. MQNR is then made sparser or denser

depending on the channel condition using a scaling factor S to

form MSQNR (scaled version of MQNR) as per Eqn. 1.

 𝑀𝑆𝑄𝑁𝑅   =  𝑐𝑒𝑖𝑙 (
𝑀𝑄𝑁𝑅

𝑆
) 𝑋 𝑆 (1)

Thus, the quantized DCT coefficients, which are zero-forced

because of scaling down (division by S), are not recovered back,

but the non-zero values are restored back, with subtle

inexactness compared to the original value, after multiplication

by S. The beauty of the algorithm is such that, the scaling is

performed in such a back-to-back reciprocal operation, that the

receiver need not know S unlike existing region of interest (ROI)

based literatures. Because of this restoration operation, S need

not be shared with the decoder and the decoder can follow the

normal flow of JPEG decoding. The bitrate adaptation is

accomplished by choosing the value of S adaptively in response

to variations in the channel condition. S is adaptively chosen

from the quantized DCT coefficients in MQNR. Tx computes the

change in predominant error ∆𝑃 by tracking the periodic

feedback. The encoder determines ∆𝑃 over a period of k as

Δ𝑃  =   (
𝑃𝑡 − 𝑃𝑡−𝑘

𝑃𝑡−𝑘). Instantaneous value of ∆𝑃 drives the spatial

bitrate adaptation depending on whether it crosses a threshold.

We maintain a sorted list L containing absolute value of all non-

zero and non-repeating quantized DCT coefficients for each

MQNR. S is adaptively chosen from L depending on the value of

∆𝑃. Let, 𝛹 be the position of median in L. Let IS be index of S

in L. At each step, IS is computed using 𝐼𝑆 = 𝛹 + ∆𝛹, where

∆𝛹 is the median position increment/decrement factor. Under

degrading channel conditions, i.e. when Δ𝑃 crosses a threshold,

∆𝛹 is incremented using ∆𝛹𝑡 = ∆𝛹𝑡−𝑛 + (|∆𝛹𝑡−𝑛| ∗

𝑐𝑒𝑖𝑙(∆𝑃)). Whereas ∆𝛹 is decremented using ∆𝛹𝑡 = ∆𝛹𝑡−𝑛 −

1 under improving channel conditions. This dynamic

determination of ∆𝛹𝑡 is referred to as Median Position Update

(MPU) algorithm. S is determined as L[IS]. The value of ∆𝛹𝑡 is

not allowed to cross the bound [∆𝛹𝑚𝑖𝑛 , ∆𝛹𝑚𝑎𝑥]. S cannot be

increased to the maximum value in MQNR. As it would lead to

reducing the entire MSQNR to 0 after scaling thereby causing

complete loss of information in peripheral MCUs. Under

improving channel conditions, if S is reduced to the minimum

value in MQNR then no scaling is performed and peripheral

region is encoded at same maximum quality as foveal region.

Hence, depending on current value of Δ𝑃 indicating

instantaneous channel condition, S is adaptively shifted towards

right(higher values) & left(lower values) making MQNR sparser

or denser respectively, thereby achieving peripheral region

bitrate adaptation. Fig. 5 demonstrates an exemplary step by step

matrix operation. If S has assumed its maximum possible value,

and if channel conditions further degrade depending on whether

∆𝑃 crosses a threshold, then spatial encoder switches to foveal

phase. In this phase, peripheral region quality is not modified

anymore as it is already encoded at minimum possible quality,

but bitrate reduction is achieved by foveal shrinking. During

shrinking phase the foveal radius is reduced by scaling down µ

by a factor fr up to a limit µmin. Whereas, under improving

channel conditions, foveal expansion is performed. Foveal

expansion is performed by additively increasing µ by a factor Ɛ

till a limit µmax. Hence, foveal Breathing adapts the number of

pixels in foveal region that are encoded at maximum desired

quality, thereby adapting the effective bitrate. The QoE aware

Spatial Encoding algorithm therefore achieves bitrate adaptation

without compromising with the quality of the Foveal region to

satisfy instantaneous channel bit budget (Fig. 6).

Fig. 3. The end-to-end flow for QuOVADIS.

A. The Protocol and Packet Semantics

 Packetization happens such that an integral number of
MCUs are placed in a single packet with necessary padding bits
as MCUs are not byte aligned. The MCU Payload in each packet
is preceded by a payload specific header. The payload specific
header comprises of metadata information required for
reconstruction of frame and loss concealment on the decoder
side and is inherited from [20]. Our system follows the protocol
semantics & state machine of CoAP [22] with ‘No Response’

2024 Workshop on Computing, Networking and Communications (CNC)

50

Fig. 4. (a) Reassembly of received Foreground information in delta encoded frames and filling background MCUs with 0 valued pixel information. (b) Loss

compensation in full frames in basic state. (c) Loss compensation in delta frame.

[23] option. It follows the essence of [26], that tries to maintain

balance between reliability and latency by adding an abstraction

layer over CoAP for streaming. Critical packets like first packet

of basic frame and the frame sent on Periodic Timer expiry are

sent reliably via the (Confirmable)CON semantics. Whereas the

rest of the packets are sent via Best Effort delivery using the

(Non-confirmable) NON semantics with No Response option.

Reliable transmissions are carried out in non-blocking fashion

i.e., Tx after sending a packet reliably, continues with

transmission of packets next in line in best effort mode while

simultaneously waiting for the ACK of the sent reliable packet.

The non-blocking mode helps maintain a desired system frame

rate unaffected by the channel RTT. The waiting for ACK is

done for an adaptively determined Timeout period. We are also

proposing a new header option named Number of

Retransmissions (NRTx) to the CoAP protocol options set to

control the maximum number of retransmissions allowed for an

individual data packet. This provides additional functionality to

the MAX_RETRANSMIT field in CoAP. But, the maximum

value of NRTx field is limited by the value of

MAX_RETRANSMIT parameter. If ACK is not received

within Timeout period, then depending on the value of

associated NRTx field, Tx decides whether to retransmit the

lost packet or not. If NRTx field is nonzero, then Tx performs

retransmission of the lost CON packet maximum NRTx number

of times. Whereas for zero value of NRTx field, Tx does not

perform any retransmission. In our system, we have set the

value of NRTx field for each packet sent reliably as zero. This

allows us to prevent unnecessary retransmission of lost packet

to cater to the real time performance of the system. If NRTx

field is not present, MAX_RETRANSMIT prevails as usual.

Currently we are using an arbitary option number for NRTx

which will be replaced appropriately with a valid option

number from IANA after standardization. The Tx, Rx protocol

semantics illustrating the close synergy between encoder and

transport are shown for different situations through timing

diagrams in Fig. 7. Depending on the reception status of ACK,

the ACK Timeout period is adapted to minimize the ACK

misses. If ACK is lost, might indicate channel congestion, then

TO value is increased till a maximum limit using the following

formula: 𝑇𝑂𝑛𝑒𝑤   =  1.5 𝑋 𝑇𝑂𝑝𝑟𝑒𝑣 . Whereas if n consecutive

ACKs are received, might indicate improvement in channel

conditions, then TO value is reduced till a minimum limit using

the following formula: 𝑇𝑂𝑛𝑒𝑤   =   (
𝑇𝑂𝑐𝑢𝑟𝑟  + 𝑇𝑂𝑝𝑟𝑒𝑣

2
) where

𝑇𝑂𝑐𝑢𝑟𝑟and 𝑇𝑂𝑝𝑟𝑒𝑣 are the Timeout values for current and

previous CON packets.

B. Calculation Of Errors Statistics At the Receiver

At each playout interval t, Rx determines the total number of

expected packets for each frame by parsing the offset field of

first packet which contains the position indicator for the last

expected packet in the frame. Rx computes 𝐸𝑡   =  
𝑁𝑙𝑜𝑠𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
𝑋 100.

Here, Et = instantaneous Error rate at time t; Nlost = estimated
total no. of packets lost for a frame; Ntotal = total no. of expected
packets for a frame. Using 𝐸𝑡 , Rx computes the cumulative error
at play out-interval ending at t, starting from time t-k when Rx
last received a CON packet that drives the temporal encoding
mechanism. Along with this, Rx maintains a log of 𝐸𝑡 for each
t. Whenever Rx receives a packet sent via Reliable mode on

expiry of periodic timer at time j, it computes 𝑃𝑗   =
 𝑚𝑜𝑑𝑒(𝐸𝑖 , 𝐸𝑗−1, … … … , 𝐸𝑗−𝑘). Where 𝑃𝑗 indicates the most
frequent Error Rate within the interval between j and j-k. Rx

piggybacks 𝐶𝑚𝑘
𝑡 and 𝑃𝑗 with Acknowledgment of the Reliable

packet as periodic feedbacks to Tx. 𝐶𝑚𝑘
𝑡 and 𝑃𝑗 are indicative of

end-user QoE and assist Tx in adaptively parameterizing spatio-
temporal encoding functions.

C. Kalman Filter Based Jitter Buffer Adaptation

 The optimum settings for jitter buffer ensure smooth
rendering following the delay variation in the channel. Too low
jitter buffer might lead to frame losses and too high jitter buffer
may cause increased rendering latency. In case of QuOVADIS,
the Rx does not get any feedback from the Tx-side. So, we have
to estimate the future delay by observing the delay incurred for
the past received frames. The Rx determines the delay for each
data packet i using the arrival 𝐴𝑖(𝑡) and transmission 𝑇𝑖(𝑡) time
of the data packet using 𝑑𝑖(𝑡)  =  𝐴𝑖(𝑡)  −  𝑇𝑖(𝑡). Using the
delay of each packet, the delay of the corresponding frame is
determined based on average of the delay values for each packet

as 𝑑(𝑡)  =   ∑
𝑑𝑖(𝑡)

𝑁

𝑁
𝑖 = 1 . One way delay gradient for a frame is

calculated using the delay values of the current and previous
frames as 𝑑𝑔(𝑡)  = 𝑑(𝑡)  −  𝑑(𝑡 − 1). This value is fed to the

Kalman Filter model to predict the value of one-way delay
gradient 𝑑𝑔(𝑡 + 1) for the incoming frame. Eqn. 2 & 3 depict

the state and output equations respectively for the proposed
Kalman Filter model. where, 𝑚(𝑡) is the only state variable,
which is model of the one-way delay. gradient. 𝜔(𝑡) and 𝜂(𝑡)
represents state and measurement noise respectively modelled
as stationary Gaussian processes.
𝑚(𝑡 + 1) = 𝑚(𝑡) + 𝜔(𝑡) (2)
𝑑𝑔(𝑡) = 𝑚(𝑡) + 𝜂(𝑡) (3)

Iterative tuning of certain noise parameters of the KF model

such as Kalman Gain (𝐾(𝑡)), Process Noise variance (𝑃(𝑡)),
State Noise variance (𝑄(𝑡)), and measurement noise variance

2024 Workshop on Computing, Networking and Communications (CNC)

51

(𝜎2(𝑡)) with each measurement update of 𝑑𝑔(𝑡) is performed.

The next state of the KF model is determined based on the

current measurement 𝑑𝑔(𝑡) and current state of KF model using

updated value of Kalman Gain as per Eqn. 4. The updated state

of KF model serves as the one-way delay gradient 𝑑𝑔(𝑡 + 1)

for the incoming frame. Then, we can adjust the jitter buffer

for the next frame as (𝑑𝑔(𝑡 + 1)+ certain sleep time). The sleep

time is determined using the maximum desired frame rate of the

system. QuOVADIS Kalman Filter model follows that of

Google Congestion Control [27]. Interested readers can refer to

[27] for detailed explanation of the KF model.

𝑚(𝑡 + 1) = 𝑚(𝑡) + 𝐾(𝑡)(𝑑𝑔(𝑡) − 𝑚(𝑡)) (4)

IV. EXPERIMENT, RESULTS & ANALYSES

 QuOVADIS is implemented in C++ using OpenCV and

Boost libraries. It captures the raw frames and entire encoding

happens in our own S/W without using any special H/W

accelerator or encoding in camera firmware. The system was

built on Ubuntu 20.04 on a standard Intel Core i5 machine. The

transmitter side of QuOVadis is ported to R-Pi3 which is housed

in a telerobotic car designed for remote teleoperation.

QuOVADIS was designed to live stream both stored videos and

live camera feed. A parallel WebRTC implementation on JS is

created with media channel for video streaming and data channel

for exchanging kinematic controls and feedbacks. The WebRTC

system was also designed to transmit both stored video and live

camera feed. The implementation is done with 640 x 480

resolution frames. We set the maximum desired frame-rate for

QuOVADIS as 15fps. By design, it relies heavily on the delta-

frames to achieve this. This can be realized owing to the

frugalness of our system as the encoding and decoding processes

were completed within 60ms without any hardware acceleration.

For full frames, the system conservatively auto-reduces the

frame rate to 5fps. Based on our studies and visual experiences,

we have set the minimum value of μ to 25% as reducing the

foveal region beyond this will undermine the end-user QoE.

Similarly, the initial and maximum values of μ were set to 50%

and 75% respectively. To ensure very good visual quality with

retention of colour information, we set the quality of foveal

region to 90%. Initially we compare the performance of

QuOVADIS with WebRTC in terms of both full referential and

subjective quality metrics for stored video sequences taken from

[28]. To ensure to cover different test cases comprising of static

FoV, dynamic FoV, high motion, low motion, etc. we chose

Akiyo, Hall, Foreman and Tennis sequences and rescaled all to

640 × 480 resolution. In this experiment we were interested to

observe the effect of only the last-mile impairment. So, both

Tx and Rx were kept in the same Network and the access point

was moved ‘far from - and- near to’ the test set up in a U-shaped

trajectory. This resulted in the RSSI response shown in Fig. 8

(a). To enable full referential comparison (SSIM, PSNR, VQM,

VMAF) we created a stream recording mechanism in the receiver

and transmitter pages in the WebRTC system. For QuOVADIS

we get the individual transmitted and received frames. For

WebRTC the samples were all WebM encoded, and for

QuOVADIS raw frames were supplied. Besides performing full

referential measurements, the experiments were also conducted

in the front of 50 subjects who could see both the transmission

and reception and they were requested to scale the reception

quality for each video for both WebRTC and QuOVADIS. The

full referential quality measures and MOS from user study are

shown in Fig. 8 (b) & (c) respectively. The reason was loss of

GoP synchronization and failure to agile reaction to the channel

variations. But QuOVADIS continued decent performance and

tried to regain lost frames through its zero overhead error

concealment described earlier. There was momentary freeze

around deep loss of RSSI. But due to its agile frame-by-frame

operation, it regained quickly as soon as RSSI started to rise just

above -70 dB. The efficacy is reflected in subjective and full

referential results. We then deployed the system over a long-

haul P2P setting. The transmitter on the Pi-car was put in

Kolkata, India. The operator console was in Bangalore, India.

Both units were put in private networks behind restrictive NATs

which do not allow hole punching. This ensured that WebRTC

will always have to route through TURN server. We also created

a UDP-based relay service, co-located with the TURN server,

for QuOVADIS. The TURN and the relay servers were

replicated in three different AWS instances in Mumbai (India),

Tokyo (Japan), and Ohio (US-east).

(a) (b)

 (c) (d)

Fig. 5. Median-based Matrix Sparsification for: (a) first frame; (b) frame with ∆𝑃 < 𝑃𝑡ℎ making MQNR less sparse; (c) frame with ∆𝑃 < 𝑃𝑡ℎ and 𝐼𝑆 becomes 0

making MQNR equal to MSQNR (d) For frame with ∆𝑃 ≥ 𝑃𝑡ℎ performing sparsification using MQNR.

2024 Workshop on Computing, Networking and Communications (CNC)

52

Fig. 6. QoE centric Adaptive Bitrate Spatial Encoding

This way we could track performance under communication

over Internet backbones running through different parts of the

world. A person in Kolkata threw a ball on the floor in a given

trajectory, and the person in Bangalore had to track the ball by

moving the Pi-car remotely (Fig. 9). While WebRTC system

was equipped with data channel for this purpose, we created a

special control console for operating while observing feeds

using QuOVADIS. The control commands were also relayed

through the same relay server. We experimented on 50 users

aged between 25 – 45 years. Each user was told to do the ‘ball-

tracking’ exercise for 15 times in each sitting. Out of the 15

times the traffic was routed through Mumbai, Tokyo and Ohio

for 5 times each. The experiment was repeated for the same

subjects over a span of 5 days at different time of the day

(morning, afternoon, evening). Each time the stream was

recorded for full referential measures of the videos and the

operators in Bangalore were told to mark the experience in a

scale of 5. Fig. 10 (a) and (b) shows the full referential and MOS

results respectively. The MOS results had the additional

consideration for ease of operation by only looking at the video

feed from Kolkata. We also measured the motion-to-photon

latency for traffic routed through the said routes. For this we

time synchronized two smart phones with milliseconds clock in

Bangalore and Kolkata. The view of clock was streamed from

Kolkata. In Bangalore the mobile clock was set by the console

and reception was recorded showing the time in both the screen

and on the clock. Then we paused the recorded video at different

instances for each recording and measured the time difference

between the clock and screen-view for each paused screen. Fig.

10(c) shows the average latency observed in the three different

routes. As expected, we found larger latency variation in Ohio,

followed by Tokyo and then Mumbai. Mumbai was the least as

both peers were located in India. Ohio was the farthest.

WebRTC experienced regular freezing with several cycles of

Ball throw being missed especially for Ohio-routed traffic. At-

times the quality of the reception also extremely deteriorated due

to extensive compression of VP8 encoded stream in WebRTC

leading to inability to do any kind of teleoperation. So was not

the case for QuOVADIS where there was momentary reduction

in reception rate during overshoot of end-to-end latency but it

did not interfere with the teleoperation owing to its per-frame

based operation. The tightly coupled QoE centric spatio-

temporal encoder & protocol, along with robust loss

concealment & Predictive Jitter Buffer at Rx altogether could

cater to end-user QoE requirements for teleoperation.

 We used Wireshark to measure the live BW consumption for

each experiment. QuOVADIS is also bandwidth efficient as

shown in Fig. 11. Considering the figures of Bandwidth

consumption at source, the bandwidth consumption consistently

reduces from Mumbai-routed traffic to Ohio -routed traffic as

the transmission rate reduces with degrading channel from

Mumbai to Ohio. QuOVADIS outperforms WebRTC for both

Mumbai & Tokyo. But for Ohio, WebRTC pauses transmission

for several seconds causing an extreme low bandwidth

consumption at expense of visual quality. The BW consumption

at Rx results clearly shows that QuOVADIS beats WebRTC

under all the three scenarios. The BW consumed at Rx

represents the feedback sent to Tx and it increases from the case

we route the traffic via Mumbai to when we route it via Ohio

due to degrading channel conditions.

V. CONCLUSION

We have presented an end-to-end QoE-aware streaming

solution for delay and freezing sensitive telerobotics solutions.

The proposed solution can be extended to many such distributed

real-time interactive systems like gaming, etc. In the presented

solution the foveal region is fixed as per usual usage pattern. We

are currently working on inferring the gaze of the operator from

analyzing operator’s self-view and adapt the foveal location

accordingly, thus enhancing user experience without any

dedicated head-mounted sensory-system.

Fig. 7. Timing Diagram in different situation (a)Tx receives ACK with Periodic Feedback from Rx signifying no loss at the Rx and encoder performs bitrate

enhancement.(b)) Tx receives ACK with Periodic Feedback from Rx signifying loss at Rx above threshold and encoder performs bitrate reduction in response. (c)
ACK belonging to a full frame lost making Tx send next frame as full frame.(d) ACK belonging to a frame sent at Periodic Timer Expiry lost making Tx send next

frame with ‘Periodic Timer status’ flag set.

2024 Workshop on Computing, Networking and Communications (CNC)

53

Fig. 8. (a) RSSI along test trajectory (b) Full referential quality measurements

(c) MOS results under practical last mile impairments

Fig. 9. Setup for long-haul telerobotic experiment

Fig. 10. Average results under long-haul : (a) full referential QoE. (b)

Teleoperation MOS. (c) Avg. latency.

Fig. 11. Bandwidth consumption at Tx & Rx for live streaming in WebRTC &

QuOVADIS via Relay servers at Mumbai,Ohio & Tokyo

REFERENCES

[1] W. Wu, et. al., “Quality of experience in distributed interactive
multimedia environments: toward a theoretical framework”, 17th ACM
international conference on Multimedia (MM '09), NY, USA, 2009.

[2] ISO/IEC, “Dynamic Adaptive Streaming over HTTP (DASH) Part 1:
Media presentation description and segment formats,” 2014.

[3] R. Pantos, W. May, RFC 8216, “HTTP Live Streaming”, August, 2017.

[4] M. Ellis, D. P. Pezaros and C. Perkins, "Performance analysis of AL-FEC
for RTP-based streaming video traffic to residential users," 19th
International Packet Video Workshop (PV), Munich, 2012, pp. 1-6.

[5] M. Palmer, T. Krüger, B. Chandrasekaran and A Feldmann, “The QUIC
Fix for Optimal Video Streaming”, Workshop on the Evolution,
Performance, and Interoperability of QUIC (EPIQ'18), Greece,
December, 2018. DOI:10.1145/3284850.3284857.

[6] S. Patra, et al, “An ITS solution providing real-time visual overtaking
assistance using smartphones”, 40th conference on local computer
networks (LCN), IEEE, pp. 270-278, October, 2015.

[7] A. Kaknjo, et al, 2018. Real-time video latency measurement between a
robot and its remote control station: causes and mitigation. Wireless
Communications and Mobile Computing, 2018.

[8] Vechtomov, Vladimir. "LOW LATENCY H. 264 ENCODING FOR
TELEOPERATION." (2023).

[9] S. Fouladi, et al., “Salsify: Low-Latency Network Video Through Tighter
Integration Between a Video Codec and a Transport Protocol”, 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’18), Renton, USA, April, 2018.

[10] H. Alvestrand, RFC 8825, “Overview: Real Time Protocols for Browser-
based Applications”, IETF, January, 2021, doi:
https://datatracker.ietf.org/doc/html/rfc8825.

[11] “What do WebRTC Monitoring Experts Think About Salsify?”,
https://www.callstats.io/blog/2018/07/18/what-do-webrtc-monitoring-
and-analytics-experts-think-about-salsify-for-video-delay, last accessed:
Jan 27, 2023.

[12] Žádník, Jakub, et al. "Image and video coding techniques for ultra-low
latency." ACM Computing Surveys (CSUR) 54.11s (2022): 1-35.

[13] X. Tran, et. al., “Reducing Bitrate and Increasing the Quality of Inter
Frame by Avoiding Quantization Errors in Stationary Blocks”, EAI
Endorsed Trans. Ind. Networks Intell. Syst, 2020, vol.7, pp. e2.

[14] T. C. Minh, et al., “QABR: A QoE-Based Approach to Adaptive Bitrate
Selection in Video Streaming Services.” International Journal of
Advanced Trends in Computer Science and Engineering, 2019.

[15] Double Robotics - Telepresence Robot for the Hybrid Office,
https://www.doublerobotics.com/, last accessed 2023/05/15.

[16] A. Sau, A. Bhattacharyya, M. Ganguly, “Teledrive: A Multi-master
Hybrid Mobile Telerobotics System with Federated Avatar Control”,
Mobile and Ubiquitous Systems: Computing, Networking and Services.
(MobiQuitous 2021), Japan, 2021, doi: 10.1007/978-3-030-94822-1_6.

[17] https://aws.amazon.com/blogs/iot/utilizing-aws-services-to-quickly-
build-solutions-for-robotics-use-cases

[18] C. Perkins, M. Westerlund, J. Ott, “RFC8834: Media Transport and Use
of RTP in WebRTC”, IETF, 2021.

[19] N. Feamster and H. Balakrishnan, “Packet Loss Recovery for Streaming
Video”, International Packet Video Workshop, Pittsburgh, April 2002.

[20] M. Ganguly, A. Bhattacharyya, A. Sau and B. Purushothaman, "A-
REaLiSTIQ-ViBe: Entangling Encoding and Transport to Improve Live
Video Experience", International Conference on COMmunication
Systems & NETworkS (COMSNETS), Bangalore, India, 2022.

[21] A. Bhattacharyya, M. Ganguly and A. Sau, "Improving Perceived QoS of
Delay-sensitive Video Against A Weak Last-mile: A Practical Approach"
International Conference on COMmunication Systems & NETworkS
(COMSNETS), Bangalore, India, 2021.

[22] Z. Shelby, K. Hartke, C. Bormann, RFC 7252, “The Constrained
Application Protocol (CoAP)”, IETF, June, 2014.

[23] A. Bhattacharyya, et al, RFC 7967, “Constrained Application Protocol
(CoAP) Option for No Server Response”, August, 2016.

[24] Bastani, Behnam. "Strategies for Foveated Compression and
Transmission", doi: https://research.google/pubs/pub46452/ .

[25] Barnich, Olivier, and Marc Van Droogenbroeck. "ViBe: A universal
background subtraction algorithm for video sequences." IEEE
Transactions on Image processing 20, no. 6 (2010): 1709-1724.

[26] A. Bhattacharyya, S. Agrawal, H. K. Rath, A. Pal. 2018. Improving Live-
Streaming Experience for Delay-Sensitive IoT Applications: A RESTful
Approach. In Proceedings of 2018 IEEE Globecom Workshops (GC
Wkshps). Abu Dhabi, UAE, 2018.

[27] Carlucci, Gaetano, Luca De Cicco, Stefan Holmer, and Saverio Mascolo.
"Analysis and design of the google congestion control for web real-time
communication (WebRTC)." In Proceedings of the 7th International
Conference on Multimedia Systems, pp. 1-12. 2016.

[28] https://media.xiph.org/video/derf

2024 Workshop on Computing, Networking and Communications (CNC)

54

